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Stability and optimality of multi-scale transportation networks with

distributed dynamic tolls

Rosario Maggistro1 and Giacomo Como1,2

Abstract— We study transportation networks controlled by
dynamical feedback tolls. We consider a multiscale transporta-
tion network model whereby the dynamics of the traffic flows
are intertwined with those of the drivers’ route choices. The
latter are influenced by the congestion status on the whole
network as well as dynamic tolls set by the system operator.
Our main result shows that a broad class of decentralized
congestion-dependent tolls globally stabilise the transportation
network around a Wardrop equilibrium. Moreover, using
dynamic marginal cost tolls, stability of the transportation
network can be guaranteed around the social optimum traffic
assignment. This is particularly remarkable as the considered
decentralized feedback toll policies do not require any global
information about the network structure or the exogenous
traffic load on the network or state and can be computed in
a fully local way. We also evaluate the performance of these
feedback toll policies both in the asymptotic and during the
transient regime, through numerical simulations.

Index Terms— Transportation networks; traffic control; dy-
namic pricing; social-optimum traffic assignment; Wardrop
equilibrium; marginal cost pricing; dynamical flow networks;
robust distributed control.

I. INTRODUCTION

In recent years. controlling the roadway congestion has

become one of the main target of the transportation research

community. Proposed strategies include imposing constraints

on traffic flow through mechanisms such as variable speed

limits, ramp metering, or traffic signal control (see [1]–[4]

and references therein). However, such mechanisms do not

consider neither the drivers’ perspective nor affect the total

amount of vehicles. There has been also a significant research

effort to understand the drivers’ answer to external com-

munications from intelligent traveller information devices

(see, e.g., [5]–[6]) and, in particular, studying the effect of

such technologies on the drivers’ route choice behaviour and

on the dynamical properties of the transportation network

[7]. A traffic recommender which can announce potentially

misleading travel time information and a new class of

latency functions so as to influence the drivers’ behaviour

was studied in [8] and [9], respectively. Moreover, it is

known that if individual drivers make their own routing

decisions to minimize their own experienced delays, overall

*This reasearch was carried on within the framework of the MIUR-
funded Progetto di Eccellenza of the Dipartimento di Scienze Matematiche

G.L. Lagrange, CUP: E11G18000350001, and was partly supported by the
Compagnia di San Paolo and the Swedish Research Council.

1Department of Mathematical Sciences, Politecnico di Torino, Corso
Duca degli Abruzzi 24, 10129 Torino, Italy {rosario.maggistro,
giacomo.como}@polito.it.

2 Department of Automatic Control, Lund University, BOX 118, SE-
22100 Lund, Sweden giacomo.como@control.lth.se.

network congestion can be considerably higher than if a

central planner had the ability to explicitly direct traffic.

Accordingly, to charge tolls for the purpose of influencing

drivers to make routing choices that result in globally optimal

routing was a central research focus (see [10]–[15]).

In this paper, we extend the model and results of [7] by

introducing decentralized congestion-dependent tolls in order

to influence the driver’s route choice behaviour. Specifically,

we consider a multiscale dynamical model of the transporta-

tion network whereby the traffic dynamics describing the real

time evolution of the local congestion level are coupled with

those of the drivers’ path preferences. We assume that the

latter evolve following a perturbed best response to global

information about the congestion status of the whole network

and to decentralized flow-dependent tolls.

Our main result shows that by using non-decreasing de-

centralized flow-dependent tolls and in the limit of a small

update rate of the aggregate path preferences, the trans-

portation network globally stabilises around the Wardrop

equilibrium [16]. As in [7], we assume that the drivers’ path

preferences evolve at a slower time scale than the physical

traffic flows and adopt a singular perturbation approach [17]

to the stability analysis of the ensuing multiscale closed-loop

traffic dynamics. Note that classic results of evolutionary

game theory and population dynamics [18]–[19] cannot be

applied to our framework since they suppose that the access

to information take place at a single temporal and spatial

scale and that the traffic dynamics are neglected by assuming

that they are instantaneously equilibrated.

The introduction of tolls has long been studied as a way

to influence the rational and selfish behaviour of drivers

so that the associated Wardrop equilibrium can align with

the system optimum network flow. A well-studied taxation

mechanism that guarantees this alignment is marginal-cost

pricing (see, e.g., [20] and [21]). Marginal-cost tolls do not

require any global information about the network structure,

user demands or state and can be computed in a fully

local way. Using marginal-cost tolls we prove that our

transportation network stabilizes around the social optimum

traffic assignment. It is worth observing that our results go

well beyond the traditional setting [20] where only static

frameworks are considered as well as [21] where only path

preference dynamics are consider, neglecting the physical

ones that are assumed equilibrated. In fact, our analysis is

carried over in a fully dynamical flow network setting. In this

respect, the global optimality guarantees that are obtained in

this paper through decentralized feedback toll policies should

be compared with other recent results on global performance
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and resilience results on robust distributed control of dynam-

ical flow networks [22]–[26].

In the last part of the paper through numerical simulations

we compare the performance both asymptotic and during the

transient of the system by using distributed marginal cost

tolls and constant marginal cost ones. The latter, know in

the literature as “fixed” tolls (being the tolling function on

each edge a constant function of edge flow) have been well

studied, and it is known that they can be computed to enforce

the social optimum equilibrium provided that the system

planner has a complete knowledge of the network topology,

user demand profile and delay functions. We show that not

only is more convenient take into account the marginal cost

tolls at convergence speed level but also they are strongly

robust to variation of network topology, user demand and

traffic rate (see [27] and [28]).

The rest of this paper is organized as follows. In Sec-

tion II, we describe the model and observe the influence

of distributed dynamics tolls on the network dynamics.

In Section III we state the main results of the paper. In

Section IV we provide a numerical study of the different

time and asymptotic convergences of the system. Section V

draws conclusions and suggests future works. Due to space

limitations, we do not include any proofs of our results here

and refer the reader to a forthcoming journal publication [29].

A. Notation

Let R and R+ := {x ∈ R : x ≥ 0} be the set of real and

nonnegative real numbers, respectively. Let A and B be finite

sets. Then |A| denotes the cardinality of A, RA the space

of real-valued vectors whose components are indexed by

elements of A, and R
A×B the space of real-valued matrices

whose entries are indexed by pairs in A×B. The transpose

of a matrix Q ∈ R
A×B is denoted by Q′ ∈ R

B×A, I is an

identity matrix and 1 an all one vector whose size depends on

the context. We use the notation Φ := I−|A|−1
11

′ ∈ R
A×A

to denote the projection matrix of the space orthogonal to 1.

The simplex of a probability vector over A is denoted by

S(A) = {x ∈ R
A
+ : 1′x = 1}. Let ‖ · ‖p be the class of

p-norms for p ∈ [1,∞], and by default, let ‖ ·‖ := ‖ ·‖2. Let

now sgn : R → {−1, 0, 1} be the sign function, defined

by sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and

sgn(x) = 0 if x = 0. By convention, we will assume the

identity d|x|/dx = sgn(x) to be valid for every x ∈ R,

including x = 0. Finally, given the gradient ∇f of a function

f : D → R with D ⊆ R
A, we denote with ∇̃f = Φ∇f the

projected gradient on S(A).

II. MODEL DESCRIPTION

A. Network characteristics

We describe the topology of the transportation network

by a directed multi-graph G = (V , E), where V is a finite set

of nodes and E is the set of links e, each directed from its

tail node θe to its head node κe 6= θe. We shall allow for

parallel links, i.e. θe = θj and κe = κj with e 6= j, but

not for self loops, i.e., we shall assume that θe 6= κe for

every e ∈ E . We shall denote by B ∈ {−1, 0, 1}V×E the

node-link incidence matrix of G, whose entries are defined

as Bie = 1 if i = θe, Bie = −1 if i = κe, and Bie = 0
otherwise. For two nodes o 6= d in V , an o-d path is a length-

ℓ string of links p = (e1, e2, . . . , eℓ) such that θes+1 = κes

for s = 1, . . . , ℓ − 1, θe1 = o, κeℓ = d, and no node is

touched twice, i.e., ir 6= is for all 0 ≤ r < s ≤ ℓ. The

set of o − d paths in G of any length ℓ will be denoted by

P . Moreover, we shall denote the corresponding link-path

incidence matrix by A ∈ {0, 1}E×P with entries

Aep =

{

1 if e is along p

0 otherwise

and assume that each link e ∈ E lies on at least one path

from node o to node d. A path of length greater than or equal

to 2 from a node to itself is referred to as a cycle. Observe

that, in contrast to [7] where the transportation network was

assumed acyclic, we allow for the presence of cycles in the

network topology G. For every link e ∈ E and time instant

t ≥ 0 we denote the current traffic density and flow by xe(t)
and fe(t) respectively, and assume the following functional

dependence

fe = µe(xe), e ∈ E , (1)

such that µe : R+ → R+ is continuously differen-

tiable, strictly increasing, strictly concave and µe(0) =
0, µ′

e(0) < ∞. Note that in classical transportation theory

the flow-density function are typically not strictly increasing,

but here our assumption is valid as long as we confine

ourselves to the free-flow region, as is done in [7]. Then,

for every link e ∈ E , let Ce := sup{µe(xe) : xe ≥ 0} be its

maximum flow capacity and let F :=
∏

e∈E [0, Ce) be the

set of feasible flow vectors. We shall use the delay functions

T : RE
+ → [0,+∞]E ,

Te(fe) :=































+∞ if fe ≥ Ce,

µ−1
e (fe)

fe
if fe ∈ (0, Ce),

1

µ′
e(0)

if fe = 0

(2)

returning the delay incurred by drivers traversing link e ∈
E , when the current flow out of it is fe. Note that, by the

properties of µe, Te(fe) is continuous, strictly increasing,

and such that Te(0) > 0.

B. Paths choice and traffic dynamics

We assume that the physical traffic flow consist of in-

distinguishable homogeneous drivers which enter in the

network through the origin node, travel through it using the

different paths and finally exit from the network through the

destination node. The relative appeal of the different paths to

the drivers is modelled by a time-varying probability vector

over P , which will be referred as the current aggregate path

preference and denoted by z(t). Assuming a constant unit

in-flow in the origin node, we consider the vector

fz := Az



of the flows associated to the path preference z(t) and define

Z := {z ∈ S(P) : fz
e < Ce ∀e ∈ E}

the set of feasible path preference. The vector z(t) is up-

dated as drivers access global information about the current

congestion status of the whole network (that is embodied

by the flow vector f(t)) and is influenced by a vector of

decentralized congestion-dependent tolls

w : RE
+ → [0,+∞]E , we(fe) ≥ 0 ∀e ∈ E , (3)

that are charged to users traversing link e. In particular,

we shall assume that the tolls we are continuous and non-

decreasing functions of the current flow for every link e ∈ E .

We shall assume that the cost perceived by each user

crossing a link e ∈ E is given by the sum of the the

delay Te(fe) and the toll we(fe). Moreover, as in [7], we

shall assume that path preferences are updated at some rate

η > 0 which is small with respect to the time scale of

the network flow dynamics. Then, from f(t), the drivers

evaluate the vector A′(T (f(t))+w(f(t))), whose pth entry,
∑

eAep(Te(fe(t))+we(fe(t))), coincides with the perceived

total cost that a driver expects to incur on path p assuming

that the congestion levels on that path won’t change during

the journey. Hence, according to some feasible path prefer-

ence Fh(f(t)) ∈ Z , z(t) evolves as

ż(t) = η(Fh(f(t))− z(t)), (4)

where Fh : F → Z is a perturbed best response function,

Fh(f) := argmin
α∈Zh

{α′A′(T (f) + w(f)) + h(α)}, f ∈ F ,

(5)

and h : Zh → R is an admissible perturbation such

that Zh ⊆ Z is a closed convex set, h(·) is strictly

convex, twice differentiable in int(Zh), and is such that

limz→∂Zh
‖∇̃h(z)‖ = ∞. The definition of Fh and the

conditions on h imply that Fh(f) ∈ int(Zh) and that Fh(f)
is differentiable on F .

We now describe the local route decisions, characterizing

the fraction of drivers choosing each outgoing link when

traversing a nondestination node. Such a fraction is the

function Ge(z) defined as

Ge(z) =



























fz
e

∑

j∈E:θj=θe

fz
j

if fz
e > 0,

1

|{j ∈ E : θj = θe}|
if

∑

j∈E:θj=θe

fz
j = 0,

(6)

for every e ∈ E . Note that
∑

k Gk(z) = 1, where k are the

outgoing links from the same node.

We refer to G : Z → R
E as the local decision function that

is continuously differentiable on Z .

Now, for every e ∈ E conservation of mass implies that

ẋe(t) = He(f(t), z(t)), (7)

where for all z ∈ Z and f ∈ F ,

He(f, z) := Ge(z)

(

δ
(o)
θe

+
∑

j:κj=θe

fj

)

− fe. (8)

We now consider the evolution of the coupled dynamics
{

ż(t) = η(Fh(f(t))− z(t)),

ẋ(t) = H(f(t), z(t))
(9)

where Fh is defined in (5), η > 0 is the rate at which z(t)
is updated and H(f, z) = {He(f, z) : e ∈ E}.

III. MAIN RESULTS

In this section we give the main results of the paper. We

shall prove that for small η and h, the long-time behaviour

of the system (9) is approximately at Wardrop equilibrium

[16] which, under proper distributed dynamic tolls, coincides

with the social optimum equilibrium.

Definition 1: (Social optimum equilibrium). A feasible

flow vector f∗ ∈ F is a Social optimum equilibrium if and

only if is the unique solution of the following network flow

optimization problem

f∗ = argmin
f≥0

Bf=(δ(o)−δ(d))

∑

e∈E

feTe(fe). (10)

Definition 2: (Wardrop equilibrium). For a given vector

w ∈ R
E
+ of decentralized link tolls, a feasible flow vector

f (w) ∈ F is a Wardrop equilibrium if f (w) = fz for some

z ∈ Z such that for all p ∈ P ,

zp > 0 =⇒
(A′ (T (fz) + w(fz)))p ≤

(A′ (T (fz) + w(fz)))q ∀q ∈ P .
(11)

Existence and uniqueness of a Wardrop equilibrium are

guaranteed considering the direct multi-graph G and under

the assumption on µe and we. (See Theorem 2.4 and 2.5 in

[30] for a complete proof).

Theorem 3: Let G be the direct multi-graph, µ be as

in (1) and w as in (3). Then for every initial condition

(z(0), x(0)) ∈ Z × [0,+∞)E there exists a unique solution

of (9). Moreover, there exists a perturbed equilibrium flow

f (h) ∈ F such that for all η > 0

lim sup
t→∞

‖f(t)− f (h)‖ ≤ δ(η), (12)

where δ(η) is a non negative real-valued, nondecreasing

function such that limη→0 δ(η) = 0. Moreover, for ev-

ery sequence of admissible perturbations {hk} such that

limk‖hk‖ = 0 and limk Zhk
= Z 1, one has

lim
k→∞

f (hk) = f (w). (13)

Theorem 3 states that the system planner globally stabilises

the transportation network around the Wardrop equilibrium

using increasing decentralised congestion-dependent tolls.

Remark 4: Note that Theorem 3 is not a Corollary of

Theorem 2.5 in [7], because, although the functions T and

1The convergence limk Zhk
= Z holds with respect to the Hausdorff

metric and Z is the closure of Z .



w both depend on the flow f , it is not possible consider an

auxiliary function T = T+w and directly applying the result

from [7] due to the specific structure imposed on T in (2).

Now, we choose as decentralized tolls the marginal cost

ones, namely,

we(fe) = feT
′
e(fe) ∀e ∈ E . (14)

Due the properties of the delay function Te(fe), the above

tolls (14) are increasing, then the Theorem 3 continue to

hold. Moreover the following holds

Corollary 5: Considering (14) one gets that the system

(9) globally stabilises the transportation network around the

social optimum traffic assignment f∗ without knowing arrival

rates or the network structure.

In order to prove the above we observe that considering

proper costs on the links, the vector f (w) is the solution

of a network flow optimization problem. Let

De(fe) :=

∫ fe

0

(

Te(s) + sT ′
e(s)

)

ds e ∈ E ,

be the integral of the perceived cost on link e using (14).

Then, the network flow f (w) ∈ R
E
+ is a Wardrop equilibrium

if and only if is the unique solution of the network flow

optimization problem

f (w) = argmin
f≥0

Bf=(δ(o)−δ(d))

∑

e∈E

De(fe), (15)

where Bf = (δ(o) − δ(d)) is the mass conservation law.

Moreover, the Wardrop equilibrium coincides with the sys-

tem optimum flow,

f (w) = f∗. (16)

The proof of such result is very simple and use the Lagrange

techniques.

Remark 6: The tolls (14) differ by the well now decentral-

ized constant marginal cost tolls w∗
e = f∗

eT
′
e(f

∗
e ) ∀e ∈ E ,

since the latter, in order to be used, require the knowledge

of both of the social optimum flow and the inflow vector.

Anyway taking into account such w∗
e , condition (16) continue

to hold.

IV. ASYMPTOTIC AND TRANSIENT PERFORMANCES

In this section, through numerical simulations we will

compare the different performances both asymptotic and

during the transient given by using the marginal cost tolls

(14) and the constant marginal cost ones (see the Remark

6). We performed several experiments with different graph

topologies for η ranging from 0.1 to 50. In all these cases

we found that the use of the decentralized marginal cost tolls

is more convenient than the constant marginal ones. Indeed:

− concerning the transient convergence, one shows that the

time needed to reach the perturbed equilibrium associated

to the marginal cost tolls is lower than the one to reach the

equilibrium associated to the constant marginal ones;

− when the admissible perturbation goes to zero, the per-

turbed equilibrium associated to marginal cost tolls, asymp-

totically converges to the social optimum flow faster than the

one associated to the constant marginal cost ones.

We demonstrate these findings through the following exam-

ple. The parameters were selected as follows:

• graph topology G as in Fig. 1;

• the flow-density function is

µe(xe) = 2(1− e−xe) ∀e ∈ E ,

and the corresponding delay function, according to (2)

is given by

Te(fe) =















+∞ if fe ≥ 2,
1

fe
log

(

2

2− fe

)

if fe ∈ (0, 2),

1/2 if fe = 0.

(17)

• Fh as the logit function

Fh
p (f) =

exp(−β(A′(T (f) + w(f)))p)
∑

q∈P exp(−β(A′(T (f) + w(f)))q)
, p ∈ P ,

(18)

with β > 0 the fixed noise parameter.

• η = 0.1, G as in (6),

• initial conditions: zp1(0) = 1/2, zp2(0) = 1/6,

zp3(0) = 1/3, xe1(0) = 4, xe2 (0) = 2, xe3 (0) = 3,

xe4(0) = 1, xe5 (0) = 5.

By the implementations follows that for t ∈ [0, 350] and β =
1, the first time in which the system reaches the equilibrium

associated to (14) is t = 2.17 · 102, while it is t = 2.5 · 102

the one to approach the equilibrium relative to w∗
e .

The 1-norm distance of fβ (that is the perturbed equilibrium

flow corresponding to the system (9) using (18)) computed

at final time T = 350, from the social optimum flow f∗ for

β ranging from 1 to 12 is plotted in Fig. 2. This is done

both considering (14) and w∗
e . Note that the parameter β

o

a

b

d

e1

e2

e3

e4

e5

1 1

Fig. 1. The graph topology used for the simulations.

should takes very large values in order to completely vanish

the norm of the difference between fβ and f∗; but, in our

numerical example, we can see in Fig. 2 that already for β =
12 the previous norm is almost null and also the asymptotic

convergence of fβ associated to (14) is slightly faster than

the one of fβ associated to w∗
e .

A. Robustness

To investigate the robustness of the marginal cost tolls

to variations of network’s parameters, a system planner can
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Fig. 2. Plot of ‖fβ(T ) − f∗‖1 for decentralised marginal and constant
marginal tolls .

study the effect of the variation on the total latency computed

in f (w), where the total latency is defined as

L(f) =
∑

e∈E

feTe(fe).

By corollary 5 follows that the efficiency guarantees provided

by the marginal cost tolls are robust to variation in network

and demand structure. Indeed the following hold:

Proposition 7: (See [20]) For homogeneous populations,

the marginal cost tolls (14) incentives optimal flows on all

networks, i.e.,

L(f (w)) = L(f∗). (19)

Hence, the marginal cost tolls are strongly robust to varia-

tions of network topology, user demand structure and overall

traffic rate. In the following we will show (see Fig. 3), still

using the graph topology in Fig. 1 and its parameters, that

lim
β→+∞

L(fβ) = L(f∗)

and the asymptotic convergence using fβ associated to (14)

is lightly faster than the one in which using fβ associated

to w∗
e .

2 4 6 8 10 12

beta

0

0.05

0.1

0.15

L(
f

)-
L(

f*
)

constant marginal tolls
marginal tolls

11 11.5 12

7

8

9

10
10-4

Fig. 3. Plot of the difference L(fβ(T )) −L(f∗) as β increases.

V. CONCLUSIONS

In this paper, we studied stability of Wardrop equilibria of

multi-scale transportation networks with distributed dynamic

tolls. We prove that if the frequency of updates of path

preferences is sufficiently small and considering positive,

non-decreasing decentralized flow-dependent tolls, then the

state of the network ultimately approaches a neighborhood

of the Wardrop equilibrium. Then, using a particular class of

tolls, i.e., the marginal cost ones, we observe that the stability

is around the social optimum equilibrium and, thanks to

numerical experiments, the performances both asymptotic

and during the transient of the system is better than the one

obtained considering the constant marginal tolls. In future

research, inspired by the numerical results we will provide

analytic estimates about the different convergence rates. We

also plan to define a more general class of tolls that does not

require the knowledge of the delay functions and at the same

time guarantees the convergence to the social optimum.
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