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Abstract— Improving endurance is crucial for extending the
spatial and temporal operation range of autonomous underwa-
ter vehicles (AUVs). Considering the hardware constraints and
the performance requirements, an intelligent energy manage-
ment system is required to extend the operation range of AUVs.
This paper presents a novel model predictive control (MPC)
framework for energy-optimal point-to-point motion control of
an AUV. In this scheme, the energy management problem of an
AUV is reformulated as a surge motion optimization problem in
two stages. First, a system-level energy minimization problem is
solved by managing the trade-off between the energies required
for overcoming the positive buoyancy and surge drag force in
static optimization. Next, an MPC with a special cost function
formulation is proposed to deal with transients and system
dynamics. A switching logic for handling the transition between
the static and dynamic stages is incorporated to reduce the com-
putational efforts. Simulation results show that the proposed
method is able to achieve near-optimal energy consumption
with considerable lower computational complexity.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are advancing
the state-of-the-art in numerous oceanography and aquatic
environmental monitoring applications. With high level of
autonomy, AUVs are well-suited for deep water or long-
range explorations. Endurance is a key consideration for
AUV design and operation. With constraints on the construc-
tion cost and other competing design requirements, the on-
board energy storage of AUV is often limited, making AUV
endurance a challenge and priority for design and operation.

Extensive efforts were made to improve the energy con-
sciousness of AUV control in either the planning stage or the
execution stage. At the planning stage, the ocean currents,
which can be comparable in magnitude to the average vehicle
operational speed, are considered to obtain the optimal trajec-
tories associated with the minimum energy consumption [1].
In [2], a stochastic optimization method integrated with data-
driven ocean modeling is presented to generate an energy-
optimal trajectory with reference speed and heading. The
Pontryagin’s maximum principle (PMP) was applied in [3]
to obtain the global optimal energy trajectory. However, the
intensive computation associated with the above planning
algorithms makes their real-time implementation infeasible.
Moreover, since the planning is performed offline, the results
are sensitive to uncertainties in the AUV model and time-
varying disturbances.
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Works have also been reported on the design of trajectory
tracking controllers for energy consumption reduction at
the execution level. In [4], a sliding mode controller was
designed with Euler-Lagrange based classical optimal control
for minimizing the control efforts and saving energy. State-
dependent Riccati equation was applied in [5] for an energy-
efficient AUV tracking control. These control strategies as-
sume a given planned trajectory and achieve energy savings
by compromising the tracking accuracy.

In this paper, we propose an execution-level controller for
a point-to-point motion control of an AUV, while optimizing
the vehicle trajectory online by utilizing dynamic vehicle
model to improve the energy efficiency of the system. To
this end, an innovative model predictive control (MPC)
framework with low computational complexity is developed
to facilitate real-time implementation. The main contribution
of this paper relies on reformulating the energy management
problem of an AUV as a surge motion optimization problem,
which incorporates the heave-related energy spending as
a terminal cost in MPC to capture the “cost-to-go”. In
order to reduce the computational efforts, the surge motion
optimization is performed in static and dynamic stages via a
switching strategy in the proposed MPC.

II. AUV SIMULATION MODEL

In this study, the DROP-Sphere [6], a low cost, 6000m
rated AUV designed for optical benthic mapping of the deep
sea is used as the virtual testbed for algorithm development.
A. DROP-Sphere Configuration

DROP-Sphere, whose scheme is shown in Fig.1, is pro-
pelled by four hub-less bi-directional thrusters powered by
DC motors. Two horizontal thrusters are used for the surge
and yaw controls, while two vertical thrusters are used
for the heave and pitch controls. All the electrical devices
(e.g., battery, camera, microprocessor) are mounted inside a
transparent sphere located at the middle of the vehicle.

Fig. 1. Schematic of the DROP-Sphere
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B. Mathematical Modeling

To develop the equations of motion of an AUV, body-fixed
and earth-fixed coordinate frames [7] are employed. Then the
velocity, position, orientation, force and moment components
(shown in Fig. 2) are defined as follows:

ν =
[
u v w p q r

]T
, (1)

η =
[
x y z φ θ ψ

]T
, (2)

τ =
[
X Y Z K M N

]T
, (3)

where, ν, η, and τ are the vectors of velocities, positions and
orientations, and external forces and moments respectively.

Fig. 2. Reference Frames and Notations
Based on the defined reference frames and notations, a

general description of the nonlinear coupled AUV model is
derived through the Newton-Euler equations of motion for a
rigid body [8]. A compact form of the model is given as:{

Mtν̇ + Fc(ν) + Fh(ν)ν + Fg(η) = τc,
η̇ = J(η)ν,

(4)

where, Mt is the total mass, Fh(ν) is the hydrodynamic
damping matrix, τc is the control inputs. The Fc(ν), Fg(η)
and J(η) detailed in [9] are the Coriolis and centripetal force,
the hydrostatic force, and the coordinate transformation
between the body-fixed and earth-fixed frames.

The total mass consists of the rigid body mass and
the added mass. For the sake of simplicity and without
consequential loss of accuracy, only diagonal terms in the
added mass matrix (Ma) are considered:

Ma = −diag(Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ), (5)
where, Xu̇, Yv̇ , Zẇ, Kṗ, Mq̇ , Nṙ are the added mass coeffi-
cients. Similarly, only diagonal and quadratic drag terms in
hydrodynamic damping matrix are considered:
Fh(ν) = −diag(X|u|u, Y|v|v , Z|w|w,K|p|p,M|q|q , N|r|r) · |ν|, (6)

where, X|u|u, Y|v|v , Z|w|w, K|p|p, M|q|q , N|r|r are the
quadratic drag coefficients.

The control input vector τc consists of six components
representing the control forces or moments in each DOF in
the body-fixed frame. By combining the input transformation
matrix with the thruster inputs, τc can be expressed as:
τc =

[
τX τY τZ τK τM τN

]T
=

[
T 1 + T 2 0 T 3 + T 4 0 l1(T 3 − T 4) l2(T 1 − T 2)

]T
,

(7)

where, as shown in Fig. 1, T i is the input force of the ith

thruster. l1 is the distance between the vertical thrusters and
the midship. l2 is the distance from the horizontal thrusters
to the center line.

The thruster inputs are converted from force to power
in order to facilitate the energy consumption analysis. The
power consumption of unit input force is calculated accord-
ing to the momentum conservation theory as [10]:

P (T i) =

√
1

2πρ
· (T i)1.5

R
= Cp(T

i)1.5, (8)

in which, P (T i) is the power consumption of the ith thruster,
ρ is the water density, R is the radius of thruster, and Cp is
defined as the power conversion ratio. The numerical values
for the vehicle parameters are provided in Appendix I.

III. SURGE MOTION OPTIMIZATION FORMULATION

A. Energy Management Problem Formulation

In this paper, we consider energy-optimal maneuvering of
the DROP-Sphere between two horizontal waypoints in an
obstacle-free underwater area with no ocean currents. The
vehicle is located at the initial position (x0) heading towards
the final position (xf ) with zero initial velocity in sway,
heave, roll, pitch and yaw. While the controller is designed
to drive the vehicle from x0 to xf , the energy consumed by
the thruster input sequence {T ik} is defined as:

J(xf − x0, u0, {T ik}) =
n−1∑
k=0

(

4∑
i=1

P (T ik) · ttravel
n

), (9)

with xf − x0 being the total distance, k the index for step
time, n the number of samples, and ttravel the travel time.

The minimization of J in (9) is subject to (i) 6 DOF
system dynamics described in (4), and (ii) the state and input
constraints given by the inequalities:

Cmin ≤ Ck ≤ Cmax, (10)
where, (·)min and (·)max are the minimum and maximum of
the corresponding variables, Ck = [T ik, yk, zk, φk, θk, ψk]T .

B. Optimal Solution of the Energy Management Problem

Treated as a trajectory optimization problem, the problem
in (9) can be solved with direct collocation (DC) [11] or other
numerical methods to obtain the global optimal solution. In
this study, we consider the maneuvering from x0 = 0 to xf =
10 with u0 = 0. The state equation is discretized into 300
segments and approximated with the trapezoid rule to guar-
antee the optimality and robustness. The constraints are set
as Cmax = −Cmin = [7.84, 0.01, 0.005, 0.2, 0.01, 0.01]T .
The units for the variables are N for thrusts, m for positions
and rad for orientations.

As illustrated by the resulted position and orientation
traces shown in Fig. 3, the optimal solution achieves point-to-
point motion control while enforcing the constraints. How-
ever, DC method suffers from two issues. The open-loop
nature of the solution makes it sensitive to modeling errors.
In addition, their intensive computation renders the real-time
implementation impractical. For example, solving (9) with
DC method for 74.04 s of simulation takes more than 3 hours
on a 2.9 GHz Intel Core i5 processor with 8GB RAM.

C. Optimization Problem Reformulation

To gain insights into the optimal operation of the DROP-
Sphere, an in-depth analysis of the optimal solution is
conducted. The total energy consumption (69.08 J) resulted
from the DC method is distributed for surge (22.08 J), heave
(46.28 J), pitch (0.16 J) and yaw (0.01 J) controls. Note
that the energy used for controlling yaw (0.01 %) and pitch
(0.23 %) are negligible compared to that of surge (32.92 %)



Fig. 3. Vehicle Trajectories from Direct Collocation Method

and heave (66.83 %) controls. Given the constraints in (10),
then the yaw and pitch angles will be nearly zero during
the whole trajectory. Thus, under this point-to-point motion
control problem formulation, the energy saving potential
from yaw and pitch controls is minimum.

Moreover, it can be observed from Fig. 4 that the heave
power stays constant for most of the simulation time. By
inspecting the heave dynamics in (4), this constant value
equals the power used for balancing the difference between
the buoyancy and weight of the vehicle, i.e., the positive
buoyancy. Given the pitch moment is approximately zero,
the heave power can be calculated as:

PPB =

√
2

2
Cp(B −W )1.5, (11)

where, W and B are the weight and buoyancy. Since the
heave power is almost constant, the total heave energy
becomes a linear function of the traveling time. This means
that the heave energy is a reciprocal function of the surge
speed, if the total distance is fixed. Thus, the energy saving
could be substantial by increasing the surge velocity. On the
other hand, higher surge speed leads to larger surge drag
force (X|u|u|u|u), which ultimately results in higher surge
energy consumption. Thus, an optimization using the surge
speed as the key variable can properly capture the sensitivity
and trade-off of energy consumption to vehicle operation.

Fig. 4. Heave Power Time History of the Optimal Solution

The analysis of the optimal solution leads to a decentral-
ized control architecture where the yaw, pitch, and heave
are independently controlled by three PID controllers and
the energy management problem in (9) is reformulated as a
surge motion optimization problem. This results in a much
simpler problem formulation compared to the original energy
management problem. The surge motion optimization aims at
finding the total horizontal thruster input sequence {T totalk }
to minimize the following cost function:

Jsurge(xf − x0, u0, {T totalk }) =
n−1∑
k=0

(2 · P (
1

2
T totalk ) + PPB) · ttravel

n
,

(12)

where, T totalk equals the combination of two horizontal
thruster forces, which are same in magnitude and direction
when the yaw moment is nearly zero. The optimization
of Jsurge is subject to (i) input and state (xf , x0, u0)
constraints, and (ii) 2 DOF dynamically decoupled surge dy-
namics (i.e., the accelerations from other DOF are considered
as zero, while the velocities and orientations are assumed to
be constant over the prediction horizon) described as:

(m−Xu̇)u̇+m(wq − vr+zgpr) + (W −B)sθ

= −X|u|u|u|u+ T total,
(13)

ẋ = (cψcθ)u+ (cψsθsφ− sψcφ)v

+ (sψsφ+ cψsθcφ)w,
(14)

where, zg is the center of gravity in the heave direction, c
and s are cos(·) and sin(·) respectively.

IV. STATIC SURGE MOTION OPTIMIZATION

One can approach the optimization problem defined in (12)
by tracking an optimal surge velocity setpoint derived from
solving a static optimization problem (i.e., assuming constant
surge velocity). Note that from the optimal solution, varia-
tions in the responses of the state variables other than surge
velocity and x position is minor. If we further assume that
the surge speed is constant, then the total horizontal thrust
(T total) will be equal to the surge drag force (X|u|u|u|u) in
(13). According to the heave power expression in (11), the
total energy consumption can be described as:

Jstatic(xf − x0, u0) = (xf − x0) · EPD(u0), (15)
where, EPD is energy cost per distance defined as:

EPD(u) =

√
2

2
CpX

1.5
u|u|u

2 +
PPB

u
. (16)

The absolute operator on the surge velocity in X|u|u|u|u is
dropped, as the negative surge velocity is not considered in
this study. Based on (15), the minimization of total energy
will be equivalent to the minimization of EPD in (16) for
given xf −x0. Since EPD consists of a reciprocal function
and a quadratic function of surge speed, there is a static
optimal surge velocity (u∗static) minimizing EPD as well as
the total energy consumption:

u∗static = arg min
u
{EPD(u)}, (17)

which represents the best trade-off between the energies for
overcoming the positive buoyancy and the surge drag force.

To track the calculated u∗static, a setpoint tracking MPC (T-
MPC) is designed. The T-MPC calculates the total horizontal
thruster input sequence {T totalk|t } over a prediction horizon N
to minimize the following cost function:

JT (u∗static, ut, {T totalk|t }) =

N−1∑
k=0

(u∗static − uk+1|t)
2, (18)

where, (·)k+1|t is the k+1-step ahead prediction made at time
t. The optimization in (18) is subject to the decoupled surge
dynamic model in (13) and (14), and the input constraints.

The T-MPC results in a sub-optimal performance in terms
of energy consumption. For this case study, it results in
5.11% additional energy cost compared to the optimal DC
solution (i.e., 72.61J vs. 69.08J). A comparison of surge



velocity trajectory and total horizontal input from DC and
T-MPC are shown in Fig. 5. It can be seen from Fig. 5 that
for most of the time, solution from T-MPC is close to that of
DC with the same surge velocity, which verifies that tracking
a statically optimized velocity setpoint can lead to “almost”
optimal solution. However, during the acceleration and de-
celeration phases, the response of T-MPC differs from DC
substantially. This is expected as T-MPC aims at reducing
the tracking error regardless of the energy consumption. This
motivates the dynamic surge motion optimization approach
proposed in the next section to take the energy consumption
into consideration during the dynamic stage.

Fig. 5. Performance Comparison of T-MPC and DC

V. DYNAMIC SURGE MOTION OPTIMIZATION

In order to incorporate energy-consciousness into the
MPC, one can consider the following cost function:

JL(xt, ut, {T totalk|t }) =

N−1∑
k=0

(2·P (
1

2
T totalk|t )+PPB)∆t, (19)

where, ∆t is the sampling time. The policy to optimize (19),
however, will set the control input to zero for minimizing
the energy consumption, unless the terminal position (xf ) is
included in the MPC formulation as a state constraint and
a long prediction horizon is used. With a long prediction
horizon, the MPC becomes almost identical to those compu-
tationally demanding global optimization methods.

To overcome this problem, we propose to add a terminal
cost term (JK) to JL in (19) to reflect the “cost-to-go” and
ensure that the MPC controller takes into account both the
energy saving and the destination reaching. This terminal
cost JK should approximate the “cost-to-go” and satisfy the
following two requirements: (i) JK is an increasing function
of the distance between xf and the x position at the end of
prediction horizon (xN |t). (ii) JK provides an estimation of
the energy consumption for reaching xf from xN |t.

Recalling the discussion in Section. IV, we propose the
following function as the terminal cost:

JK =
xf − xN |t
uN |t

· (PPB +

√
2

2
CpX

1.5
u|u|u

3
N |t), (20)

where, uN |t is surge velocity at the end of the prediction
horizon. Then the overall cost function of the modified MPC
called the energy-optimal MPC (EO-MPC) is described as:

JEO(xf − xt, ut, {T totalk|t }) = JL + JK , (21)
where JL is defined in (19). The optimization problem of
(21) is subject to the same constraints as T-MPC.

According to the Bellman’s Principle of Optimality [12],
the EO-MPC would yield the optimal solution if JK were

indeed the “cost-to-go”, namely, JK(xf − xN |t, uN |t) =
J∗DC(xf − xN |t, uN |t, {T ik}), where J∗DC is the global op-
timal solution from (9). Extensive analysis has been carried
out to evaluate the sensitivity of JK in estimating J∗DC
with respect to different initial surge velocities at different
distances to xf . It can be seen from Fig. 6 that if the distance
to xf is large, JK is close to J∗DC only when uN |t is near
u∗static. Thus, if the prediction horizon is tuned to ensure that
(19) is used for approximating the energy consumption in
cost function during the region where the vehicle accelerates
from ut to u∗static, then a near-optimal energy consumption
can be obtained with EO-MPC.

Fig. 6. Jk − J∗DC for Different Initial Conditions

Fig. 7 shows the effect of the prediction horizon on energy
consumption and the maximum CPU time for solving the
optimization problem per iteration. It can be seen that as the
length of the MPC prediction horizon increases, the energy
consumption ultimately decreases and converges to 69.84J ,
which is close to the energy consumption from the global
optimal solution (69.08J). On the other hand, the CPU time
increases as the prediction horizon becomes longer. Thus, in
order to avoid high computational complexity and achieve
near-optimal energy consumption, the prediction horizon
can be selected as the minimum value that ensures the
performance convergence [13]. Additionally, the maximum
CPU time per iteration should also be smaller than the
sampling time to guarantee the real-time execution of the
MPC. For this case study, based on Fig. 7, the prediction
horizon is chosen as N = 15. It should be noted that because
of the randomness associated with solving the optimization
problem, the CPU time is calculated by taking average of the
results from running the problem repeatedly for 10 times.

Fig. 7. Prediction Horizon Sensitivity Analysis

VI. REAL-TIME ENERGY-OPTIMAL MPC

With the proposed EO-MPC in Sec. V, the controller is
able to achieve real-time near-optimal point-to-point motion
control. However, as it was indicated from the performance



comparison between T-MPC and DC, the benefit of conduct-
ing dynamic optimization in steady state is minimum. To
further simplify the computational complexity of EO-MPC,
a switching MPC algorithm is developed as the real-time
energy-optimal MPC (RTEO-MPC). The RTEO-MPC takes
different actions during the static and dynamic stages of the
point-to-point motion control. As shown in Algorithm (1),
at the beginning where the initial speed is different than
the static optimal surge velocity (u∗static) and at the end of
the trajectory where the vehicle needs to decelerate in order
to save energy, the RTEO-MPC has the same structure of
the EO-MPC. During the cruise operation where the vehicle
operates close to the u∗static, the RTEO-MPC switches to a
simple logic to keep the vehicle at a constant surge speed.
The overall schematic of the real-time energy-optimal MPC
(RTEO-MPC) along with the PIDs for depth and steering
controls are illustrated in Fig. 8.

Algorithm 1 Switching Strategy for RTEO-MPC
1: Given the vehicle configuration, xf , compute u∗static;
2: Set uswitchlow , uswitchhigh , xswitch;
3: If xt < xswitch

4: If u0 < u∗static
5: If ut < uswitchlow or ut−1 < ut
6: Compute T totalt using EO-MPC;
7: Else
8: Set T totalt same as T totalt−1 ;
9: Else

10: If ut > uswitchhigh or T totalt−2 < T totalt−1
11: Compute T totalt using EO-MPC
12: Else
13: Set T totalt same as T totalt−1 ;
14: Else
15: Compute T totalt using EO-MPC;

Note: t is the current time. uswitch
low and uswitch

high are the low and high
bounds around the u∗static. xswitch is the starting X position after which
the vehicle is near the destination.

Fig. 8. Architecture of the Control System

VII. SIMULATION RESULTS AND ANALYSIS

This section presents the simulation results verifying the
effectiveness of the proposed RTEO-MPC. In this case study,
x0, u0, and xf are chosen as 0, 0, and 10. The thruster input
constraint is considered as −15.72N ≤ T total ≤ 15.72N .
The sampling time is set as 0.1s. The MPC is implemented
in MATLAB/Simulink on the full order model, as the virtual
testbed, which provides full state feedback to the controllers.

TABLE I
PERFORMANCE COMPARISON

Control Strategy Travel Time (s) Energy
Consumption (J) Loss (%)

DC 74.04 69.08 –
T-MPC 72.20 72.61 5.11

EO-MPC 75.15 69.84 1.10
RTEO-MPC 74.70 69.83 1.09

The energy consumption and the traveling time resulted
from using the RTEO-MPC are listed in Table (I). The
performance of three other algorithms: (a) direct collocation
(DC), (b) MPC for tracking velocity setpoint derived from
static optimization (T-MPC), and (c) energy-optimal MPC
(EO-MPC) are included for comparison. As indicated in
Table (I), the performance of the proposed RTEO-MPC
is close to the optimal baseline (DC) with 1.09% more
energy consumption. This difference is caused by assuming
constant heave power in the cost function. Besides, compared
to T-MPC, a 3.83% reduction in energy cost is achieved
with the RTEO-MPC. The RTEO-MPC improves the energy
efficiency by leveraging the vehicle dynamics and optimizing
the surge velocity trajectory during the dynamic stage, while,
in the static stage, it guarantees the surge velocity to be close
to the static optimal surge velocity (u∗static) as shown in
Fig. 9. The time history of positions and orientations resulted
from RTEO-MPC is illustrated in Fig. 10. It can be seen from
Fig. 10, all the constraints enforced on the original energy
management problem are satisfied by using the RTEO-MPC.

Fig. 9. Surge Velocity Trajectory Comparison

Fig. 10. Vehicle Trajectories from the RTEO-MPC

A further comparison of the computation time using two
energy-optimal MPCs (EO-MPC and RTEO-MPC) and the
DC method is presented in Table (II). It can be seen that by
using the switching strategy, the RTEO-MPC reduces the av-
erage computation time by 74.59%, without any deterioration
in the energy efficiency compared to the EO-MPC. Moreover,
compared to the DC method, the RTEO-MPC reduces the
total computation time by 99.98%.



TABLE II
COMPUTATION TIME COMPARISON

Control Strategy Average CPU Time
/ Sampling Time (s)

Total CPU Time for
the Simulation of the Trip (s)

EO-MPC 0.0122 9.1824
RTEO-MPC 0.0031 2.3503

DC – 11267.8

To illustrate the robustness of the RTEO-MPC against
different initial conditions, the energy consumption obtained
from the RTEO-MPC (E∗RTEO) and the T-MPC (E∗T ), with
different initial positions and velocities, are compared to
that of the DC method (J∗DC) respectively, and the results
are shown in Fig. 11. The ranges of initial position and
velocity are set as x0 ∈ [0, 10] and u0 ∈ [0, 0.5]. It can
be seen from Fig. 11 that the performance of the T-MPC
deteriorates as the difference of initial velocity and the static
optimal surge velocity increases, while the proposed RTEO-
MPC is able to provide a near-optimal energy consumption
under different initial conditions by combining dynamic and
static optimizations via a switching logic. Higher energy
consumption occurs for both the RTEO-MPC and the T-MPC
when the vehicle starts very close to the target destination
with low velocity, which is caused by neglecting the coupling
effect of the heave and surge dynamics in the surge motion
optimization problem formulation. However, this scenario is
less likely to happen in an AUV deployment.

Fig. 11. E∗T −J
∗
DC and E∗RTEO −J

∗
DC for Different Initial Conditions

VIII. CONCLUSION

In this paper, an innovative energy-optimal model predic-
tive controller (MPC) was developed for real-time point-to-
point motion control and energy management optimization
of an AUV. To reduce the computational efforts and allow for
real-time implementation of the proposed MPC, the overall
AUV controller was designed and integrated based on a
decentralized control architecture with the proposed MPC
combined with several PIDs. The underlying physics of the
vehicle motion and energy consumption is exploited by for-
mulating the MPC cost function in terms of the total energy
cost for transversing the remaining distance. Exploring the
”static optimal” that achieves the best trade-off between
energies for surge and heave controls is achieved, a switching
logic was incorporated into the developed RTEO-MPC to
switch the control law between static and dynamic stages
of the surge motion for further reduction in the computation
time. Simulation results verified that the proposed method

allows for the real-time trajectory optimization with near-
optimal energy consumption under different initial condi-
tions. For a case study presented, the RTEO-MPC showed
a 3.83% improvement in energy consumption compared to
the MPC for tracking static optimal surge velocity setpoint
(T-MPC), and 99.98% reduction in total computation time
compared to the global optimization method (DC).

Future works will be focusing on generalizing this frame-
work to (i) complicated maneuvering operations (e.g., steer-
ing and diving), and (ii) realistic environmental conditions
(e.g., ocean currents and obstacles). Meanwhile, theoretical
results about the recursive feasibility and optimality resulted
from the proposed terminal cost will be investigated for the
point-to-point navigation scenario.

ACKNOWLEDGMENT

The authors thank Dr. Corina Barbalata, and Mr. Eduardo
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APPENDIX I
SPHERE VEHICLE PARAMETERS

W = 200.116N B = 201.586N m = 20.42 kg
Ixx = 0.1205 kgm2 Iyy = 0.9431 kgm2 Izz = 1.0061 kgm2

zg = 0.0018m l1 = 0.1694m l2 = 0.2794m
R = 0.025m Xu̇ = −2.042 kg Yv̇ = −32.2013 kg
Zẇ = −32.2013 kg Kṗ = −0.0805 kg Mq̇ = −2.6834 kg
Nṙ = −2.6834 kg Xu|u| = 48.17 kg/m Yv|v| = 4.11 kg/m
Zw|w| = 4.11 kg/m Kp|p| = 48.17 kg/m Mq|q| = 4.11 kg/m

Nr|r| = 4.11 kg/m ρ = 1.025 kg/m3

http://www.starlino.com/power2thrust.html
http://www.starlino.com/power2thrust.html
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