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Verification of Switched Stochastic Systems via Barrier Certificates*

Mahathi Anand†, Pushpak Jagtap† and Majid Zamani

Abstract— The paper presents a methodology for temporal
logic verification of continuous-time switched stochastic sys-
tems. Our goal is to find the lower bound on the probability
that a complex temporal property is satisfied over a finite
time horizon. The required temporal properties of the system
are expressed using a fragment of linear temporal logic,
called safe-LTL with respect to finite traces. Our approach
combines automata-based verification and the use of barrier
certificates. It relies on decomposing the automaton associated
with the negation of specification into a sequence of simpler
reachability tasks and compute upper bounds for these reach-
ability probabilities by means of common or multiple barrier
certificates. Theoretical results are illustrated by applying a
counter-example guided inductive synthesis framework to find
barrier certificates.

I. INTRODUCTION

Formal verification of dynamical systems against complex

specifications has attracted significant attention in the past

few years [1]. The verification problem becomes very chal-

lenging for the continuous-time continuous-space dynamical

systems with noise and discrete dynamics. There are few

results available on verification of continuous-time stochastic

hybrid systems utilizing discrete approximations. Examples

include probabilistic verification based on a discrete approxi-

mation for safety and reachability [2], verification of stochas-

tic hybrid systems described as piece-wise deterministic

Markov processes [3], and safety verification of stochastic

systems with state-dependent switching [4]. However, these

abstraction techniques are based on state set discretization

and face the issue of discrete state set explosion.

On the other hand, a discretization-free approach, based

on barrier certificates, has been used for verifying stochastic

hybrid systems against invariance property. Authors in [5]

used barrier certificate for safety verification of stochastic

systems with probabilistic switching. Similar results are

reported in [6] for switched diffusion processes and piece-

wise deterministic Markov processes. These results provide

infinite time horizon guarantees. However, they require that

barrier certificates exhibit a supermartingale property which
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presupposes stochastic stability and vanishing noise at the

equilibrium point.

Our previous work [7] presents the idea of combining

automata representation of a specification and barrier certifi-

cates, for the formal verification of discrete-time stochastic

systems without requiring any stability assumption on the

dynamics of the system. There, we only require c-martingale

property which can be fulfilled by unstable stochastic sys-

tems as well. The current manuscript follows the same

direction to solve the problem of formal verification of

continuous-time switched stochastic systems.

To the best of our knowledge, this paper is the first to

use barrier certificates for the verification of continuous-

time switched stochastic systems against a wide class of

temporal logic properties. Our main contribution is to provide

a systematic approach for computing lower bounds on the

probability that a given switched stochastic system satisfies

a fragment of linear temporal logic specifications, called

safe-LTL, over finite time horizon. This is achieved by

first decomposing the given specification into a sequence

of simpler verification tasks based on the structure of the

automaton corresponding to the negation of the specification.

Then we use barrier certificates for computing probability

bounds for these simple verification tasks which are then

combined to get a (potentially conservative) lower bound

on the probability of satisfying the original specification.

We provide those probability bounds using common barrier

certificates for arbitrary switching and using multiple barrier

certificates for some probabilistic switching. The theoretical

results are illustrated with the help of a numerical example.

II. PRELIMINARIES

A. Notations

We denote the set of real, positive real, nonnegative

real, and positive integer numbers by R, R
+, R

+
0 , and

N, respectively. We use R
n to denote an n-dimensional

Euclidean space and R
n×m to denote a space of real matrices

with n rows and m columns. Given a matrix A ∈ R
n×n,

Tr(A) represents trace of A which is the sum of all diagonal

elements of A. Int(X) represents interior of set X .

B. Switched Stochastic Systems

Let the triplet (Ω,F ,P) denote a probability space with

a sample space Ω, filtration F , and the probability measure

P. The filtration F = (Fs)s≥0 satisfies the usual conditions

of right continuity and completeness [8]. Let (Ws)s≥0 be an

r-dimensional F-Brownian motion.

Definition 2.1: A switched stochastic system is a tuple

S = (Rn,M,M, F,G), where
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• R
n is the state space;

• M = {1, 2, . . . , l} is a finite set of modes;

• M is a subset of the set of all piece-wise constant càdlàg

(i.e. right continuous and with left limits) functions

of time from R
+

0 to M , and characterized by a finite

number of discontinuities on all bounded interval in R
+
0 ;

• F = {f1, f2, . . . , fl} and G = {g1, g2, . . . , gl} are

such that for any m ∈ M , fm : R
n → R

n and

gm : R
n → R

n×r satisfy standard local Lipschitz

continuity and linear growth.

A continuous-time stochastic process ξ : Ω×R
+

0 → R
n is a

solution process of S if there exists µ ∈ M satisfying

d ξ = fµ(ξ) d t+ gµ(ξ) dWt (II.1)

P-almost surely (P-a.s.) at each time t ∈ R
+

0 . For any given

m ∈M , we denote Sm as the subsystem of S defined as

d ξ = fm(ξ) d t+ gm(ξ) dWt. (II.2)

The solution process of Sm exists and is unique due to the

assumptions on fm and gm [8]. We write ξµ(t) to denote

the value of the solution process at time t ∈ R
+
0 under the

switching signal µ, starting from the initial state ξµ(0) = x0
P-a.s. Note that a solution process of Sm is also a solution

process of S corresponding to constant switching signal

µ(t) = m, for all t ∈ R
+

0 . We also use ξm(t) to denote

the value of solution process of Sm at time t ∈ R
+
0 , starting

from the initial state of ξm(0) = x0 P-a.s. The generator D
of the solution process ξ acting on function B : Rn → R is

defined as follows.

Definition 2.2: For any given m ∈M , the generator D of

the process ξ of the stochastic system Sm acting on function

B : Rn → R is given by

DB(x0,m) = lim
t→0

E[B(ξm(t))|ξm(0) = x0]−B(x0)

t
.

(II.3)

By using Dynkin’s formula [9], one has,

E[B(ξm(t2)|ξ
m(t1)]

= B(ξm(t1) + E[

t2
∫

t1

DB(ξm(t),m) d t|ξm(t1)], (II.4)

for t2 ≥ t1 ≥ 0.

C. Linear Temporal Logic Over Finite Traces

In this paper, we consider specifications represented using

linear temporal logic over finite traces, referred to as LTLF

[10]. LTLF uses the same syntax of LTL over infinite

traces given in [11]. Note that, the semantics of LTLF are

however limited to interpretation over finite traces. The LTLF

formulas over a set Π of atomic propositions are obtained as

ϕ ::= ⊤ | p | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | �ϕ | ♦ϕ | �ϕ | ϕ1Uϕ2,

where p ∈ Π, ⊤ represents true, � is the next operator, ♦

is eventually, � is always, and U is until. The semantics of

LTLF is given in terms of finite traces, i.e., finite words σ,

denoting a finite non-empty sequence of consecutive steps

over Π. Detailed definitions for the semantics of LTLF have

been omitted due to lack of space and can be found in [7].

In this paper, we consider only safety properties [11]. In

addition, we exclude the next (�) operator which enables us

to describe behaviour of continuous trajectories using such

properties. Hence, we use a subset of LTLF called safe-

LTLF\� as introduced in [12].

Definition 2.3: An LTLF formula is called a safe-LTLF\�

formula if it can be represented in a positive normal form,

i.e., negations can only occur adjacent to atomic propositions,

using temporal operator always (�).

Now, we define deterministic finite automata which can

be used to represent LTLF formulas.

Definition 2.4: A deterministic finite automaton (DFA) is

a tuple A = (Q,Q0,Σ, δ, F ), where Q is a finite set of

states, Q0 ⊆ Q is a set of initial states, Σ is a finite set

(a.k.a. alphabet), δ : Q × Σ → Q is a transition function,

and F ⊆ Q is a set of accepting states.

We use notation q
σ

−→ q′ to denote transition relation

(q, σ, q′) ∈ δ. A finite word σ = (σ0, σ1, . . . , σn−1) ∈ Σn

is accepted by a DFA A if there exists a finite state run

q = (q0, q1, . . . , qn) ∈ Qn+1 such that q0 ∈ Q0, qk
σk−→ qk+1

for all 0 ≤ k < n and qn ∈ F . The accepted language of

A, denoted by L(A), is the set of all words accepted by A.

According to [13], every LTLF formula ϕ can be translated

to a DFA Aϕ that accepts the same language as ϕ, i.e.,

L(ϕ) = L(Aϕ). Such DFA can be constructed explicitly or

symbolically using existing tools: SPOT [14], MONA [15].

Remark 2.5: For a given LTLF formula ϕ over atomic

propositions Π, the associated DFA Aϕ is usually con-

structed over the alphabet Σ = 2Π. Without loss of gen-

erality, we work with the set of atomic propositions directly

as the alphabet rather than its power set.

D. Property Satisfaction by Switched Stochastic Systems

For a given switched stochastic system S =
(Rn,M,M, F,G) with dynamics (II.1), the solution

processes over finite time intervals are connected to LTLF\�

formulas with the help of a measurable labeling function

L : Rn → Π, where Π is the set of atomic propositions.

Definition 2.6: For a switched stochastic system S =
(Rn,M,M, F,G) and the labeling function L : Rn → Π,

a finite sequence σξ = (σ0, σ1, . . . , σn−1) ∈ Πn is a finite

trace of the solution process ξ over a finite time horizon

[0, T ) ⊂ R
+
0 if there exists an associated time sequence

t0, t1, . . . , tn−1 such that t0 = 0, tn = T , and for all

j ∈ {0, 1, . . . , n− 1}, tj ∈ R
+
0 following conditions hold

• tj < tj+1;

• ξµ(tj) ∈ L−1(σj);
• If σj 6= σj+1, then for some t′j ∈ [tj , tj+1], ξ

µ(t) ∈
L−1(σj) for all t ∈ (tj , t

′
j); ξ

µ(t) ∈ L−1(σj+1) for all

t ∈ (t′j , tj+1); and either ξµ(t′j) ∈ L−1(σj) or ξµ(t′j) ∈
L−1(σj+1).

Next we define the probability that the solution process

ξ of the switched stochastic system S starting from some

initial state ξµ(0) = x0 ∈ R
n satisfies safe-LTLF\� formula

ϕ over a finite time horizon [0, T ) ⊂ R
+
0 .



Definition 2.7: Consider a switched stochastic system S

and a safe-LTLF\� formula ϕ over Π. Then Px0
{σξ |= ϕ}

is the probability that ϕ is satisfied by the solution process

ξ of the system S starting from the initial value of x0 ∈ R
n

over a finite time horizon [0, T ) ⊂ R
+

0 .

Remark 2.8: The set of atomic propositions Π =
{p0, p1, . . . , pN} and the labeling function L : R

n → Π
provide a measurable partition of the state space R

n =
∪N
i=1Xi as Xi := L−1(pi). Without loss of generality, we

assume that Xi 6= ∅ for any i.

E. Problem Formulation

Problem 2.9: Given a switched stochastic system S =
(Rn,M,M, F,G) with dynamics (II.1), a safe-LTLF\� over

a set Π = {p0, p1, . . . , pN} of atomic propositions, and a

labeling function L : R
n → Π, compute a lower bound

on the probability Px0
{σξ |= ϕ} for all x0 ∈ L−1(pi) for

i ∈ {0, 1, . . . , N}.

Example 2.10: Consider a switched stochastic system

S = (R2,M,M, F,G) with M = {1, 2}, and dynamics

S1 :
d ξ1 = −0.1ξ22 d t+ dW1t,

d ξ2 = −0.1ξ1ξ2 d t+ dW2t;
(II.5)

S2 :
d ξ1 = −0.1ξ21 d t+ dW1t,

d ξ2 = −0.1ξ1ξ2 d t+ dW2t.
(II.6)

Let the regions of interest be given as

X0 = {(x1, x2) ∈ R
2 | (x1 + 5)2 + x22 ≤ 2.5},

X1 = {(x1, x2) ∈ R
2 | (x1 − 5)2 + (x2 − 5)2 ≤ 3},

X2 = {(x1, x2) ∈ R
2 | (x1 − 4)2 + (x2 + 3)2 ≤ 2}, and

X3 = R
2 \ (X0 ∪X1 ∪X2).

The sets X0, X1, X2, and X3 are shown in Figure 1(a).

The set of atomic propositions is given by Π =
{p0, p1, p2, p3}, with labeling function L(x) = pi for any

x ∈ Xi, i ∈ {0, 1, 2, 3}. Given an initial state, we are inter-

ested in computing a tight lower bound on the probability

that the solution process of S over time horizon [0, T ) ⊂ R
+

0

satisfies the following specification:

• If it starts in X0, it will always stay away from X1 or

always stay away from X2 within time horizon [0, T ) ⊂
R

+
0 . If it starts in X2, it will always stay away from X1

within time horizon [0, T ) ⊂ R
+

0 .

This property can be expressed by the safe-LTLF\� formula

ϕ = (p0 ∧ (�¬p1 ∨�¬p2)) ∨ (p2 ∧�¬p1). (II.7)

The DFA corresponding to the negation of the safe-LTLF

formula ϕ in (II.7) is shown in Figure 1(b).

III. BARRIER CERTIFICATES

We recall that a functionB : Rn → R is a supermartingale

for system S if E[B(ξµ(t2) | ξµ(t1)] ≤ B(ξµ(t1)) for all

t2 ≥ t1. Although this condition is useful for the verification

of stochastic systems [5] for infinite horizons, it pre-supposes

stochastic stability of the system and such a function may

not exist in general. Hence, we use a relaxation of super-

martingale condition called c-martingale which enables us
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Fig. 1. (a) State space and regions of interest for Example 2.11, (b) DFA
A¬ϕ that accepts all traces satisfying ¬ϕ where ϕ is given in (II.7).

to provide results over a finite time horizon [16] without any

stability assumption.
Definition 3.1: A function B : Rn → R is a c-martingale

for the system S if

E[B(ξµ(t2) | ξ
µ(t1)] ≤ B(ξµ(t1)) +

∫ t2

t1

c(t) d t

for all t2 ≥ t1, where c is a function of time.
We provide the following lemma and use it in the sequel.

This lemma is a direct consequence of [17, Theorem 1].
Lemma 3.2: Let B : R

n → R
+

0 be a non-negative c-

martingale for the system S. Then for any constant λ > 0
and any initial condition x0 ∈ R

n,

P{ sup
0≤t<T

B(ξµ(t)) ≥ λ | x(0) = x0} ≤
B(x0) +

∫ T

0
c(t) d t

λ
.

(III.1)
The next two theorems provide inequalities on barrier cer-

tificates to give an upper bound on reachability probability.

These theorems have been inspired by the results in [5] that

uses supermartingales for safety verification of continuous-

time switching diffusion systems.
Theorem 3.3: Consider a switched stochastic system S =

(Rn,M,M, F,G) with dynamics (II.1) and sets X0, X1 ⊆
R

n. Suppose there exists a twice differentiable function B :
R

n → R
+

0 and constants c ≥ 0 and γ ∈ [0, 1], such that

B(x) ≤ γ ∀x ∈ X0, (III.2)

B(x) ≥ 1 ∀x ∈ X1, (III.3)



∂B

∂x
(x)fm(x) +

1

2
Tr
(

gTm(x)
∂2B

∂x2
(x)gm(x)

)

≤ c

∀x ∈ R
n, ∀m ∈M. (III.4)

Then the probability that the solution process ξ of the system

S starts from initial state ξµ(0) = x0 ∈ X0 and reaches X1

within time horizon [0, T ) ⊂ R
+
0 is upper bounded by γ+cT .

Proof: The generator associated with the system Sm is

given by

DB(x,m) =
∂B

∂x
(x)fm(x) +

1

2
Tr(gTm(x)

∂2B

∂x2
(x)gm(x)),

where m ∈ M . Now, by using Dynkin’s formula, we can

show that B(x) is a nonnegative c-martingale for all m ∈M

and hence (III.1) in Lemma 3.2 holds. Using (III.2) and

the fact that X1 ⊆ {x ∈ R
n | B(x) ≥ 1}, we have

P{ξµ(t) ∈ X1 for some 0 ≤ t < T | ξµ(0) = x0} ≤
P{sup0≤t<T B(ξµ(t)) ≥ 1 | ξµ(0) = x0} ≤ B(x0) + cT ≤
γ + cT . This concludes the proof.

If there exists a twice differentiable function B : R
n →

R
+
0 satisfying the conditions (III.2)-(III.4) of Theorem 3.3,

then we call it a common barrier certificate. In most of

the cases, finding common barrier certificates may not be

feasible or may result in conservative probability bounds.

To alleviate these issues, we provide results using multiple

barrier certificates for switched stochastic systems with a

restricted set of switching signals as defined below.

Consider a switched stochastic system S as defined in

(II.1) and m,m′ ∈ M = {1, 2, . . . , k}. At any instant t,

the transition probability between modes is given by

P{(m,m′), t+ h} =

{

λmm′(ξµ(t))h, if m 6= m′,

1 + λmm(ξµ(t))h, if m = m′,

where h > 0, λmm′ : R
n → R is a bounded and

Lipschitz continuous function representing transition rates

such that λmm′(x) ≥ 0 for all x ∈ R
n if m 6= m′ and

∑

m′∈M λmm′(x) = 0 for all m ∈M . It is assumed that the

transition from one mode to another is independent of the

Wiener process Wt.

The next theorem provides conditions to obtain an upper

bound on the reachability probability for switched stochastic

systems using multiple barrier certificates.

Theorem 3.4: Consider a switched stochastic system S =
(Rn,M,M, F,G) with dynamics (II.1), sets X0, X1 ⊆
R

n, and the transition rates between two switching modes

m,m′ ∈ M as λmm′ : Rn → R. Suppose there exists a

set of twice differentiable functions Bm : Rn → R
+
0 , and

constants c ≥ 0 and γ ∈ [0, 1], such that

Bm(x) ≤ γ ∀x ∈ X0, (III.5)

Bm(x) ≥ 1 ∀x ∈ X1, (III.6)

∂Bm

∂x
(x)fm(x) +

1

2
Tr(gTm(x)

∂2Bm

∂x2
gm(x))

+
∑

m′∈M

λmm′(x)Bm′ (x) ≤ c ∀x ∈ R
n. (III.7)

for all m ∈M . Then the probability that the solution process

ξ of the system S starts from initial state ξµ(0) = x0 ∈ X0

and reaches X1 within time horizon [0, T ) ⊂ R
+

0 is upper

bounded by γ + cT .

Proof: The proof is similar to that of Theorem 3.3.

IV. DECOMPOSITION INTO SEQUENTIAL REACHABILITY

Consider a DFA A¬ϕ = (Q,Q0,Π, δ, F ) that accepts all

finite words over Π that satisfy ¬ϕ. The sequence q =
(q0, q1, . . . , qn) ∈ Qn+1, n ∈ N is called an accepting state

run if q0 ∈ Q0, qn ∈ F , and there exists a finite word

σ = (σ0, σ1, . . . , σn−1) ∈ Πn such that qk
σk−→ qk+1 for all

k ∈ {0, 1, . . . , n−1}. We denote the set of such finite words

by σ(q) ⊆ Πn. We also indicate the length of q ∈ Qn+1 by

|q|, which is n+ 1. Let R be the set of all finite accepting

state runs starting from p ∈ Π excluding self-loops, where

R:={q=(q0, q1, . . . , qn)∈Q
n+1 | qn∈F, qk 6=qk+1, ∀k<n}.

Computation of R can be done algorithmically by viewing

A¬ϕ as a directed graph G = (V , E) with vertices V = Q

and edges E ⊆ V × V such that (q, q′) ∈ E if and only if

q′ 6= q and there exist p ∈ Π such that q
p

−→ q′. From the

construction of the graph, it is obvious that the finite path

in the graph starting from vertices q0 ∈ Q0 and ending at

qF ∈ F is an accepting state run q of A¬ϕ without any self-

loop and therefore belongs to R. One can easily compute R
using depth first search algorithm [18].

For each p ∈ Π, we define a set Rp as

Rp := {q = (q0, q1, . . . , qn) ∈ R | σ(q0, q1) = p}. (IV.1)

Decomposition into sequential reachability is performed

as follows. For any q = (q0, q1, . . . , qn) ∈ Rp ∀p ∈ Π, we

define Pp(q) as a set of all state runs of length 3,

Pp(q) := {(qk, qk+1, qk+2) | 0 ≤ k ≤ n− 2}. (IV.2)

Remark 4.1: Note that Pp(q) = ∅ for |q| = 2. Any

accepting state run of length 2 begins from a subset of the

state space that already satisfies ¬ϕ and hence gives trivial

zero probability for satisfying the specification, and is thus

neglected in the sequel.

Example 2.11 For safe-LTLF\� formula ϕ given in (II.7),

Figure 1(b) shows a DFA A¬ϕ that accepts all words that

satisfy ¬ϕ. From Figure 1(b), we get Q0 = {q0} and F =
{q3}. The set of accepting state runs without self-loops is

R = {(q0, q4, q3), (q0, q1, q2, q3), (q0, q1, q4, q3), (q0, q3)}.

The sets of Rp for p ∈ Π are

Rp0 = {(q0, q1, q2, q3), (q0, q1, q4, q3)}, R
p1 = {(q0, q3)},

Rp2 = {(q0, q4, q3)}, Rp3 = {(q0, q3)}.

The sets Pp(q) for q ∈ Rp are as follows:

Pp0(q0, q1, q2, q3) = {(q0, q1, q2), (q1, q2, q3)},

Pp0(q0, q1, q4, q3) = {(q0, q1, q4), (q1, q4, q3)},

Pp2(q0, q4, q3)={(q0, q4, q3)},P
p1(q0, q3)=Pp3 (q0, q3)=∅.



V. COMPUTATION OF PROBABILITIES USING BARRIER

CERTIFICATES

Having the set of state runs of lengths 3, we provide

a systematic approach to compute lower bound on the

probability that the solution process ξ satisfies ϕ. Given the

DFA A¬ϕ corresponding to specification ¬ϕ, we perform the

computation of upper bound on reachability probability over

each element of Pp(q), q ∈ Rp using barrier certificates.

Next theorem provides an upper bound on the probability

that the solution process ξ satisfies the specification ¬ϕ.

Theorem 5.1: For a given safe-LTLF\� specification ϕ,

let A¬ϕ be the DFA corresponding to its negation, Rp be

the set defined in (IV.1), and Pp be the set of runs of

length 3 defined in (IV.2). Then the probability that the

solution process of system S starting from any initial state

x0 ∈ L−1(p) satisfies ¬ϕ within time horizon [0, T ) is upper

bounded by

Px0
{σξ |=¬ϕ}≤

∑

q∈Rp

∏

{(γν + cνT )|ν=(q, q′, q′′)∈Pp(q)},

(V.1)

where γν + cνT is the upper bound on the probability

of the solution process of system S starting from X0 :=
L−1(σ(q, q′)) and reaching X1 := L−1(σ(q′, q′′)) within

time horizon [0, T ) computed via Theorem 3.3 (or Theo-

rem 3.4).

Proof: For p ∈ Π, consider an accepting run q ∈ Rp

and set Pp(q) as defined in (IV.2). For an element ν =
(q, q′, q′′) ∈ Pp(q), the upper bound on the probability

that solution processes of S starting from L−1(σ(q, q′)) and

reaching L−1(σ(q′, q′′)) within time horizon T is given by

γν + cνT . This follows from Theorem 3.3 (or Theorem 3.4).

Now the upper bound on the probability that the trace of

the solution process reaches the accepting state following

the path corresponding to q is given by the product of

the probability bounds corresponding to all elements ν =
(q, q′, q′′) ∈ Pp(q) and is given by

P{σ(q) |= ¬ϕ} ≤
∏

{(γν + cνT ) |ν=(q, q′, q′′)∈Pp(q)} .
(V.2)

The upper bound on the probability that the solution process

of system S starting from any initial state x0 ∈ L−1(p)
violate ϕ can be computed by summing the probability

bounds for all possible accepting runs as computed in (V.2)

and is given by

Px0
{σξ |=¬ϕ}≤

∑

q∈Rp

∏

{(γν + cνT )|ν=(q, q′, q′′)∈Pp(q)}.

Theorem 5.1 enables us to decompose the specification into

a collection of sequential reachabilities, compute bounds on

the reachability probabilities using Theorem 3.3 (or Theo-

rem 3.4), and then combine the bounds in a sum-product

expression.

Remark 5.2: In case we are unable to find barrier cer-

tificates for some of the elements ν ∈ Pp(q) in (V.1), we

replace the related term (γν+cνT ) by the pessimistic bound

1. In order to get a non-trivial bound in (V.1), at least one

barrier certificate must be found for each q ∈ Rp.

Corollary 5.3: Given the result of Theorem 5.1, the prob-

ability that the solution process of S starting from any

x0 ∈ L−1(p) over time horizon [0, T ) ⊂ R
+
0 satisfies safe-

LTLF\� specification ϕ is lower-bounded by

Px0
{σξ |= ϕ} ≥ 1− Px0

{σξ |= ¬ϕ}.

VI. COMPUTATION OF BARRIER CERTIFICATES

In this section, we provide the Counter-Example Guided

Inductive Synthesis (CEGIS) framework for searching barrier

certificates of specific forms satisfying conditions in The-

orem 3.3 (or Theorem 3.4). The approach uses feasibility

solvers for finding barrier certificates of a given parametric

form using Satisfiability Modulo Theories (SMT) solvers

such as Z3 [19] and dReal [20]. In order to use the CEGIS

framework, we raise following assumption.

Assumption 6.1: System S has compact state-space X ⊂
R

n and partition sets Xi ∈ L−1(pi), i ∈ {1, 2, . . . , N} are

bounded, semi-algebraic sets, i.e., they can be represented

by polynomial equalities and inequalities.

Remark 6.2: The assumption of compactness of state-

space X ⊆ R
n can be supported by considering stopped

process ξ̃ : Ω× R
+

0 → X as

ξ̃µ(t) :=

{

ξµ(t), for t < τ,

ξµ(τ), for t ≥ τ,

where τ is the first time of exit of the solution process ξ of

S = (Rn,M,M, F,G) from the open set Int(X). Note that,

in most cases, the generator corresponding to ξ̃ is identical

to the one corresponding to ξ over the set Int(X), and is

equal to zero outside of the set [21]. Thus, the results in

theorems 3.3 and 3.4 can be used for the systems with this

assumption.

The feasibility condition for the existence of common

barrier certificate required in Theorem 3.3 is provided in next

lemma.

Lemma 6.3: Consider a switched stochastic system S =
(X,M,M, F,G) with Assumption 6.1. Suppose sets X0,

X1, and X are bounded semi-algebraic sets. Suppose there

exists a function B(x), constants γ ∈ [0, 1] and c ≥ 0, such

that the following expression is true
∧

x∈X

B(x) ≥ 0
∧

x∈X0

B(x) ≤ γ
∧

x∈X1

B(x) ≥ 1

∧

m∈M

(

∧

x∈X

∂B

∂x
(x)fm(x) +

1

2
Tr
(

gTm(x)
∂2B

∂x2
(x)gm(x)

)

≤ c
)

.

(VI.1)

Then B(x) satisfies conditions in Theorem 3.3.

One can easily obtain an analogous feasibility condition

for the existence of multiple barrier certificates required in

Theorem 3.4.

In order to utilize CEGIS framework, we consider a barrier

certificate of the parametric form B(a, x) =
∑k

i=1
aibi(x)

with some user-defined (nonlinear) basis functions bi(x) and

unknown coefficients ai ∈ R, i ∈ {1, 2, . . . , k}. With this



TABLE I

VALUES OF c AND γ FOR ALL ν ∈ Pp(q), q ∈ Rp

ν c γ γ + cT

(q0, q1, q2) 1.953125 × 10−4 9.765 × 10−5 0.002050
(q1, q2, q3) 0.25 0.25 1
(q0, q1, q4) 1.853125 × 10−4 1.853125 × 10−4 0.002038
(q1, q4, q3) 1.953125 × 10−4 9.765 × 10−5 0.002050
(q0, q4, q3) 0.003125 0.003125 0.003437

choice of barrier certificate the feasibility expression (VI.1)

can be rewritten as

ψ(a, x):=
∧

x∈X

B(a, x)≥0
∧

x∈X0

B(a, x)≤γ
∧

x∈X1

B(a, x)≥1

∧

m∈M

(

∧

x∈X

∂B

∂x
(a, x)fm(x)+

1

2
Tr
(

gTm(x)
∂2B

∂x2
(a, x)gm(x)

)

≤c
)

.

In a similar way, one can obtain a feasibility expression

ψ(a, x) for multiple barrier certificates. The coefficients ai
can be efficiently found using SMT solvers such as Z3

for the finite set X ⊂ X of data samples. We denote the

obtained candidate barrier certificate with fixed coefficients

ai by B(a, x)|a and the corresponding feasibility expression

by ψ(a, x)|a. Next we obtain counterexample x ∈ X such

that B(a, x)|a satisfies ¬ψ(a, x)|a. If ¬ψ(a, x)|a has no

feasible solution, then the obtained B(a, x)|a is a true barrier

certificate. If ¬ψ(a, x)|a is feasible, we update data samples

as X = X ∪ x and recompute coefficients ai iteratively

until ¬ψ(a, x)|a becomes infeasible. For detailed overview

on CEGIS procedure to compute such barrier certificates we

refer interested readers to [22]. To obtain a tight upper bound

on the probability, one can utilize bisection method over c

and γ iteratively.

Remark 6.4: In addition, under the assumption that fm
and gm, m ∈ M are polynomial functions of ξ, the

conditions in theorems 3.3 and 3.4 can be formulated as a

sum-of-square program to compute polynomial type barrier

certificate similar to the one used in [5].

VII. EXAMPLE

For the Example 2.10,the obtained minimal values of c

and γ for each of the elements of Pp(q) and their computed

upper bounds γ + cT based on SMT solver Z3 and CEGIS

approach are listed in Table I. Now, using Theorem 5.1 we

find that the lower bound on the probabilities that ξ starts at

any x0 ∈ L−1(p), p ∈ Π satisfying safe-LTLF\� property

(II.7) over time horizon T = 10 are

Px0
{σξ |= ϕ} ≥ 0.99788 ∀x0 ∈ L−1(p0);

Px0
{σξ |= ϕ} ≥ 0.96563 ∀x0 ∈ L−1(p1); and

Px0
{σξ |= ϕ} ≥ 0 ∀x0 ∈ L−1(p1) and ∀x0 ∈ L−1(p3).

For this computation, we used polynomial barrier certificates

of order 5 each with 21 coefficients for all ν. Each individual

computation takes an average of 3 hours using an Intel i7-

7700 processor with a 16GB RAM.
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