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Abstract— This paper presents a novel approach to numeri-
cally solve stochastic differential games for nonlinear systems.
The proposed approach relies on the nonlinear Feynman-Kac
theorem that establishes a connection between parabolic deter-
ministic partial differential equations and forward-backward
stochastic differential equations. Using this theorem the
Hamilton-Jacobi-Isaacs partial differential equation associated
with differential games is represented by a system of forward-
backward stochastic differential equations. Numerical solution
of the aforementioned system of stochastic differential equations
is performed using importance sampling and a Long-Short
Term Memory recurrent neural network, which is trained in an
offline fashion. The resulting algorithm is tested on two example
systems in simulation and compared against the standard risk
neutral stochastic optimal control formulations.

I. INTRODUCTION

Stochastic optimal control is a mature discipline of control
theory with a plethora of applications to autonomy, robotics,
aerospace systems, computational neuroscience, and finance.
From a methodological stand point, stochastic dynamic pro-
gramming is the pillar of stochastic optimal control theory.
Application of the stochastic dynamic programming results
in the so-called Hamilton-Jacobi-Bellman (HJB) Partial Dif-
ferential Equation (PDE). Algorithms for stochastic control
can be classified into different categories depending on the
way of how they are dealing with the curse of dimensionality
in solving the HJB PDE for systems with many degrees of
freedom and/or states.

Game-theoretic, or min-max, extension to optimal con-
trol was first investigated by Isaacs [1]. He associated the
solution of a differential game with the solution to a HJB-
like equation, namely its min-max extension, also known as
the Hamilton-Jacobi-Isaacs (HJI) equation. The HJI equation
was derived heuristically under the assumptions of Lipschitz
continuity of the cost and the dynamics, in addition to the
assumption that both of them are separable in terms of
the maximizing and minimizing controls. Despite extensive
results in the theory of differential games, algorithmic devel-
opment has seen less growth, due to the involved difficulties
in addressing such problems. Prior work, including the
Markov Chain approximation method [2], largely suffers by
the curse of dimensionality. In addition, a specific class of
min-max control trajectory optimization methods have been
derived recently, relying on the foundations of differential
dynamic programming (DDP) [3]–[5], which requires linear
and/or quadratic approximation of the dynamics and value
function.
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Due to the inherent difficulties of solving stochastic dif-
ferential games, most of the effort in optimal control theory
was focused on the HJB PDE. Addressing the solution of the
HJB equation, a number of algorithms for stochastic optimal
control have been proposed that rely on the probabilistic
representation of solutions of linear and nonlinear backward
PDEs. Starting from the path integral control framework
[6], the HJB equation is transformed into a linear backward
PDE under certain conditions related to control authority
and variance of noise. The probabilistic representation of
the solution of this PDE is provided by the linear Feynman-
Kac theorem [7]–[9]. The nonlinear Feynman-Kac theorem
avoids the assumption required in the path integral control
framework at the cost, however, of representing the solution
of the HJB equation with a system of Forward-Backward
Stochastic Differential Equations (FBSDEs) [10], [11]. Pre-
vious work by our group aimed at improving sampling
efficiency and reducing computational complexity, and in
[12]–[14] an importance sampling scheme was proposed and
employed to develop iterative stochastic control algorithms
using the FBSDE formulation. This work lead to algorithms
for L2,L1, risk-sensitive stochastic optimal control, as well
as stochastic differential games [15]–[17].

In [18] the authors incorporate deep learning algorithms,
such as Deep Feed-Forward Neural Networks, within the
FBSDE formulation and demonstrated the applicability the
resulting algorithms to solving PDEs. While the approach in
[18] offers an efficient method to represent the value function
and its gradient, it has been only applied to PDEs that
correspond to simple dynamics. Motivated by the limitations
of the existing work on FBSDEs and Deep Learning (DL),
the work in reference [19] utilizes importance sampling
together with the benefits of recurrent neural networks in
order to capture the temporal dependencies of the value
function and to scale the deep FBSDE algorithm to high
dimensional nonlinear stochastic systems.

In this work, we demonstrate that the FBSDEs associated
with stochastic differential games can be solved with the
deep FBSDE framework. We focus on the case of min-
max stochastic control that corresponds to risk sensitive con-
trol. Using the Long-Short Term Memory (LSTM) network
architecture [20], we introduce a scalable deep min-max
FBSDE controller that results in trajectories with reduced
variance. We demonstrate the variance reduction benefit of
this algorithm against the standard risk neutral stochastic
optimal control formulation of the deep FBSDE framework
on a pendulum and a quadcopter in simulation.

The rest of this paper is organized as follows: in Section
II we introduce the min-max stochastic control problem,
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Fig. 1: A schematic diagram showing the relationship be-
tween PDEs and FBSDE. Terms in orange denote drift in
FSDE, and terms in green denote drift in BSDE.

demonstrate its connection to risk sensitive control, and re-
formulate the problem with a system of FBSDEs. We present
the min-max FBSDE controller in Section III. In Section IV,
we compare the controller introduced in this work against
the deep FBSDE algorithm for standard stochastic optimal
control, and we explore the variance reduction benefit of
our controller as a function of risk sensitivity. Finally, we
conclude the paper in Section V.

II. FBSDE FOR DIFFERENTIAL GAMES

A. Min-Max Stochastic Control

Consider a system with control affine dynamics in a
differential game setting as follows:

dx = f (x(t), t)dt +G(x(t), t)u(t)dt +L(x(t), t)v(t)dt

+Σ(x(t), t)dw(t) t ∈ [τ,T ].
(1)

where τ ∈ [0,T ], T is the task horizon, x ∈ Rn is the state,
u ∈ Rp is the minimizing control, v ∈ Rq is the adversarial
control, w(t) is a standard m dimensional Brownian motion,
f : Rn× [τ,T ]→ Rn represents the drift, G : Rn× [τ,T ]→
Rn×p represents the actuator dynamics, L : Rn × [τ,T ] →
Rn×q represents the adversarial control dynamics and Σ :
Rn× [τ,T ]→Rn×m represents the diffusion. For this system
we can define the following cost function:

J(τ,xτ ;u(·),v(·)) =

E
[

g(x(T ))+
∫ T

τ

q(x(t), t)+
1
2

uTRuu−
1
2

vTRvvdt
]
,

(2)

where g : Rn→ R+ is the terminal state cost, q : Rn→ R+

is the running state cost, and Ru ∈ Rp×p and Rv ∈ Rq×q are
positive definite control cost matrices.

The min-max stochastic control problem is formulated as
follows:

V (xτ ,τ) = inf
u∈U

sup
v∈V

J(τ,xτ ;u(·),v(·)), (3)

where the minimizing control’s goal is reducing the cost
under all admissible non-anticipating strategies U , while the
adversarial control maximizes the cost under all admissible
non-anticipating strategies V .

The HJI equation for this problem is:


Vt + infu∈U supv∈V

{
1
2

tr
(
VxxΣΣT

)
+V T

x ( f +Gu+Lv)

+q+
1
2
uTRuu−

1
2
vTRvv

}
= 0, (t,x) ∈ [τ,T )×Rn,

V (x,T ) = g(x), x ∈ Rn.
(4)

The terms inside the infimum and supremum operations
are collectively called the Hamiltonian. The optimal mini-
mizing and adversarial controls u and v are those for which
the gradient of the Hamiltonian vanishes, which take the
following form:

u(x(t), t) =−R−1
u GTVx,

v(x(t), t) = R−1
v LTVx.

(5)

Substitution of the expressions above into the HJI equation
results in:

Vt +
1
2

tr
(
VxxΣΣT

)
−

1
2
V T

x

(
GR−1

u GT−LR−1
v LT

)
Vx

+V T
x f +q = 0, (t,x) ∈ [τ,T )×Rn,

V (x,T ) = g(x), x ∈ Rn.

(6)

Note that we will drop functional dependence in all PDEs
for notational compactness. In the following section we show
the equivalence of a certain case of min-max control to risk
sensitive control.

B. Risk Sensitive Stochastic Optimal Control

Risk sensitive stochastic optimal control [21] is essential
in cases where decision has to be made in a manner that is
robust to the stochasticity of the environment. Let us consider
the following performance index:

J(τ,xτ ;u(·)) =

ε lnE
[

exp
1
ε

(
g(x(T ))+

∫ T

τ

q(x(t), t)+
1
2

u(t)TRu(t)dt
)]

,

(7)

where ε ∈ R+ is the risk sensitivity. The risk sensitive
stochastic optimal control problem is formulated with the
following value function:

V (xτ ,τ) = inf
u∈U

J(τ,xτ ;u(·)), (8)

subject to the dynamics:

dx(t) = f (x(t), t)dt +G(x(t), t)u(t)dt +

√
ε

2γ2Σ̃(x(t), t)dw(t),

(9)
where γ ∈R+ is a small constant, and Σ̃ represents diffusion
[22].



The HJB equation for this stochastic optimal control
problem is formulated as follows:

Vt + infu∈U

{
ε

4γ2 tr
(
VxxΣ̃Σ̃T

)
+V T

x ( f +Gu)+q

+
1
2

uTRu+
1

4γ2V T
x Σ̃Σ̃TVx

}
= 0, (t,x) ∈ [τ,T )×Rn,

V (x,T ) = g(x), x ∈ Rn.
(10)

The optimal control can be obtained by finding the control
where the gradient of the terms inside the infimum vanishes
and has the form u(x(t), t) =−R−1GTVx. By substituting in

the optimal control and setting Σ =

√
ε

2γ2Σ̃ in (10), we get

the following final form of the HJB PDE:


Vt +

1
2

tr
(
VxxΣΣT

)
−

1
2
V T

x

(
GR−1GT−

1
ε

ΣΣT
)

Vx

+V T
x f +q = 0, (t,x) ∈ [τ,T )×Rn,

V (x,T ) = g(x), x ∈ Rn.

(11)

Note that the above PDE is a special case of the HJI PDE
(6) when L = Σ and Rv = εI (Fig. 1). Intuitively, this means
that min-max control collapses to risk sensitive control when
it is solving a problem with non-zero mean noise as the
adversary, and the control authority of this adversary is
proportional to the risk sensitivity.

C. FBSDE Reformulation

We now reformulate the min-max control PDE (6) in the
risk sensitive case to a set of FBSDEs. Here we restate the
nonlinear Feynman-Kac theorem (Theorem 2) from [16]:

Theorem 1 (Nonlinear Feynman-Kac): Consider the
following Cauchy problem:Vt +

1
2

tr(VxxΣΣT)+V T
x b+h = 0, (t,x) ∈ [τ,T )×Rn,

V (T,x) = g(x), x ∈ Rn,
(12)

wherein the functions Σ, b(t,x), h(t,x,V,ΣTVx), and g(x) sat-
isfy mild regularity conditions. Then (12) admits a unique
viscosity solution V : [τ,T ]×Rn→R, which has the follow-
ing probabilistic representation:(

V (t,x), Σ
TVx(t,x)

)
=
(

y(t,x), z(t,x)
)
, ∀(t,x)∈ [τ,T ]×Rn,

(13)
wherein

(
x(·),y(·),z(·)

)
is the unique adapted solution of the

FBSDEs given by:{
dx(t) = b(x(t), t)dt +Σ(x(t), t)dw(t), t ∈ [τ,T ]
x(τ) = ξ

(14)

and{
dy(t) =−h(t,x(t),y(t),z(t))dt + z(t)Tdw(t), t ∈ [τ,T ]
y(T ) = g(x(T ))

(15)

In order to apply the Nonlinear Feynman-Kac theorem
to (6), we assume that there exist matrix-valued func-
tions Γu : [τ,T ]×Rn → Rm×p and Γv : [τ,T ]×Rn → Rm×q

such that G(x(t), t) = Σ(x(t), t)Γu(x(t), t) and L(x(t), t) =
Σ(x(t), t)Γv(x(t), t) for all (t,x) ∈ [τ,T ]×Rn, satisfying the
same regularity conditions. This assumption suggests that
there can not be a channel containing control input but no
noise. In the risk sensitive case of min-max control, this
assumption is already satisfied with L(x(t), t) = Σ(x(t), t)
and Γv(x(t), t) = I, where I is a m× m identity matrix
because adversarial control enters through the noise channels.
Under this assumption, Theorem 1 can be applied to the risk
sensitive case of HJI equation (6) with

b(x(t), t) = f (x(t), t)

h(x(t),y(t),z(t), t) = q(x(t))

−
1
2
V T

x

(
ΣΓuR−1

Γ
T
u Σ

T−
1
ε

ΣΣ
T
)

Vx.

(16)

The relationship between FBSDE (14), (15), HJI PDE (6),
HJB PDE (11), and the parabolic PDE (12) is summarized
in Fig. 1.

D. Importance Sampling

The system of FBSDEs in (14) and (15) corresponds to
a system whose dynamics are uncontrolled. In many cases,
especially for unstable systems, it is hard or impossible to
reach the target state with uncontrolled dynamics. We can
address this problem by modifying the drift term in the
dynamics (forward SDE) with an additional control term.
Through Girsanov’s theorem [23] on change of measure, the
drift term in the forward SDE (14) can be changed if the
backward SDE (15) is compensated accordingly. This results
in a new FBSDE system given by

dx̃(t) = [b(x̃(t), t)+Σ(x̃, t)K(t)]dt
+Σ(x̃(t), t)dw̃(t), t ∈ [τ,T ]

x̃(τ) = ξ

(17)

and 
dỹ(t) = [−h(t, x̃(t), ỹ(t), z̃(t))+ z̃TK(t)]dt

+z̃(t)Tdw̃(t), t ∈ [τ,T ]
ỹ(T ) = g(x̃(T ))

, (18)

for any measurable, bounded and adapted process K :
[τ,T ]→Rn. It is easy to verify that the PDE associated with
the new system is the same as the original one (12). For the
full derivation of change of measure for FBSDEs, we refer
readers to proof of Theorem 1 in [14]. We can conveniently
set K = Γu(x̃(t), t)ū+Γv(x̃(t), t)v̄ for min-max control. Note
that the nominal controls ū and v̄ can be any open or closed
loop control or control from a previous iteration.

E. Forward Sampling of BSDE

The compensated BSDE (18) needs to satisfy a terminal
condition, meaning its solution needs to be propagated
backward in time, yet the filtration evolves forward in time.
This poses a challenge for sampling based methods to solve



𝑦"(𝑥%, 𝑡%) 𝑦"(𝑥), 𝑡))𝑦"(𝑥)*+,𝑡)*+)𝑦"(𝑥+, 𝑡+) 𝑦"(𝑥,, 𝑡,)

𝑧̃(𝑥%, 𝑡%) 𝑧̃(𝑥)*+,𝑡)*+)𝑧̃(𝑥+, 𝑡+) 𝑧̃(𝑥,, 𝑡,)

𝑥"% 𝑥")𝑥")*+𝑥"+ 𝑥", ⋯⋯

⋯⋯

⋮

⋯⋯

𝑦∗(𝑥), 𝑡))

𝐿3(𝑦∗, 𝑦")
𝑧̃(𝑥), 𝑡))

𝐿𝑆𝑇𝑀

𝐹𝐶

𝐿𝑆𝑇𝑀

𝐹𝐶

𝐿𝑆𝑇𝑀

𝐹𝐶

𝐿𝑆𝑇𝑀

𝐹𝐶

⋯

𝑢%∗

𝑣%∗

𝑢%∗

𝑣%∗

𝑢%∗

𝑣%∗

𝑢%∗

𝑣%∗

𝑢%∗

𝑣%∗

Fig. 2: LSTM network architecture.

TABLE I: Comparison of total state variance between deep min-max controller and baseline deep FBSDE controller.

Pendulum QuadCopter
Low Noise High Noise Low Noise High Noise

Baseline 5.3 149.5 3.2 78.6
RS 3.9 134.2 2.7 69.6
Variance Reduction (%) 26 10 16 11

the system of FBSDEs. One solution is to approximate the
conditional probability of the process and back-propagate
the expected value. This approach lacks scalability due to
inevitable compounding of approximation errors that are
accumulated at every time step during regression.

This problem can be alleviated with DL. Using a deep
recurrent network, we can initialize the value function and its
gradient at t = τ and treat the initializations as trainable net-
work parameters. This allows for the BSDE to be propagated
forward in time along with the FSDE. At the final time, the
terminal condition can be compared against the propagated
value in the loss function to update the initialzations as
well as the network parameters. Compared to the conditional
probability approximation scheme, the DL approach has the
additional advantage of not accumulating errors at every time
step since the recurrent network at each time step contributes
to a common goal of predicting the target terminal condition
and thus prediction errors are jointly minimized.

III. DEEP MIN-MAX FBSDE CONTROLLER

With eqs. (17) and (18), we have a system of FBSDEs
that we can sample from around a nominal control trajectory.
Inspired by the network architecture developed in [19], we
propose a deep min-max FBSDE algorithm that solves the
risk sensitive formulation of the min-max control.

A. Numerics and Network Architecture

The task horizon τ < t < T can be discretized as n =
{0,1, · · · ,N} with a time discretization of ∆t = (T − τ)/N.
With this we can approximate the continuous variables as
step functions and obtain their discretization as x̃n, ỹn, z̃n,un =
x̃(t), ỹ(t), z̃(t),u(t) if τ +n∆t ≤ t < τ +(n+1)∆t.

The network architecture used in this paper is shown in
Fig. 2, which is based on the LSTM network in [19] with
min-max dynamics and value function dynamics incorpo-
rated. LSTM is a natural choice of network here since it

is designed to effectively deal with the vanishing gradient
problem in recurrent prediction of long time series [20]. We
use a two-layer LSTM network with tanh activation and
Xavier initialization [24]. At every time step, the LSTM
predicts the value function gradient using the current state
as input. The optimal minimizing and adversarial control are
then calculated with

u∗n =−R−1
u Γu,nz̃n (19)

v∗n =
1
ε

z̃n (20)

and fed back to the dynamics for importance sampling. Note
that the adversarial control is only present during training.
After the network is trained, only the optimal minimizing
control is used at test time. By exposing the minimizing
controller to an adversary that behaves in an optimal fashion,
it becomes more robust resulting in trajectories with smaller
variances.

B. Algorithm

The Deep Min-max FBSDE algorithm can be found in
Algorithm 1. It solves a finite time horizon control problem
by approximating the gradient of the value function z̃i

n (the
superscript i denotes the batch index, and the batch-wise
computation can be done in parallel) at every time step with
a LSTM, which is parameterized by θ , and propagating the
FBSDE associated with the control problem. For a given
initial state condition ξ , the algorithm randomly initializes
the value function and its gradient at n= 0. The initial values
are trainable and are parameterized by ψ . During training,
at every time step, control inputs are sampled around the
optimal minimizing and adversarial controls and applied to
the system. The discretized forward dynamics and the value
function SDEs are propagated using an explicit forward Euler
integration scheme. The function h is calculated using (16).



Algorithm 1: Deep Min-max FBSDE Controller
Given:
x̃0 = ξ , f , G,Σ: Initial state and system dynamics;
g, q, Ru, ε(= Rv): Cost function parameters;
N: Task horizon; K: Number of iterations; M: Batch size;
∆t: Time discretization; λ : weight-decay parameter;
γ: Loss function parameter;
Parameters:
ỹ0 =V (x̃0,τ;ψ): Value function at t = τ;
z̃0 = ΣT ∇x̃V : Gradient of value function at t = τ;
θ : Weights and biases of all LSTM layers;
Initialize:
{x̃i

0}M
i=1, x̃i

0 = ξ

{ỹi
0}M

i=1, ỹi
0 =V (x̃i

0,0;ψ)
{z̃i

0}M
i=1, z̃i

0 = ΣT∇x̃V (x̃i
0,0;ψ)

for k = 1 to K do
for i = 1 to M do

for n = 1 to N−1 do
Compute gamma matrix: Γi

u,n = Γu
(
x̃i

n
)
;

ui∗
n =−R−1

u ΓiT
u,nz̃i

n;

vi∗
n =

1
ε

z̃i
n;

Sample Brownian noise: ∆w̃i
n ∼N (0,1)

Update value function:
ỹi

n+1 = ỹi
n−
(

h̃
(
x̃i

n, ỹi
n, z̃i

n
)
+ z̃i

n(Γ
i
u,nui∗

n + vi∗
n )
)

∆t

+z̃iT
n ∆w̃i

n
√

∆t
Update system state:
x̃i

n+1 =

x̃i
n + f (x̃i

n)∆t +Σ
(
(Γi

u,nui∗
n + vi∗

n )∆t +∆w̃i
n
√

∆t
)

Predict gradient of value function:
z̃i

n+1 = fLST M
(
x̃i

n+1;θk
)

end for
Compute target terminal value: y∗iN = g

(
x̃i

N
)

end for
Compute mini-batch loss:

L̃ =
1
M

M

∑
i=1

(
γ‖y∗iN − ỹi

N‖2 +(1− γ)‖y∗iN‖2
)
+λ‖θ 2

k ‖2

θk+1← Adam.step(L ,θk); ψk+1← Adam.step(L ,ψk)
end for
return θK ,ψK

At the final time step n = N, a modified L2 loss with regu-
larization is computed which compares the propagated value
function ỹi

N against the true value function y∗iN calculated
using the final state (y∗iN = g(x̃i

N)). For training our network,
we propose a new regularized loss function, which is a
convex combination of a) the difference between the target
and the predicted value function, and b) the target value
function itself:

L̃ =
1
M

M

∑
i=1

(
β‖y∗iN − ỹi

N‖2+(1−β )‖y∗iN‖2
)
+Reg(θk), (21)

since we want the prediction to be close to the target and at
the same time, the target value function to converge to zero

Fig. 3: Pendulum states. Left: Pendulum Angle; Right: Pen-
dulum Angular Rate.

Fig. 4: Pendulum controls.

for the sake of the optimality. Notice that this additional
component in the loss function is possible only due to
importance sampling. The modified drift is implemented as
a connection in the computational graph between the LSTM
output and input to forward SDE at the next timestep. This
allows the network parameters to influence the next state
and hence the final state. The network can be trained by
Stochastic Gradient Descent (SGD) type optimizer and in
our experiments, we used the Adam [25] optimizer.

IV. EXPERIMENTS

The algorithm is implemented on a pendulum and quad-
copter system in simulation. The task for the two systems is
to reach a target state. The trained networks are tested on 128
trajectories. The time discretization is 0.02 seconds across all
cases. We compare the algorithm proposed in this paper with
the one in [19], where the standard optimal control problem
is considered, in two different noise conditions. We will use
“RS” to denote the algorithm in this work and “Baseline” for
the algorithm that we are comparing against. All experiments
were done in TensorFlow [26] on an Intel i7-4820k CPU
Processor.



Fig. 5: Quadcopter states. Top Left: X Position; Top Right: X
Velocity; Bottom Left: Y Position; Bottom Right: Y Velocity.

Fig. 6: Quadcopter states. Top Left: Z Position; Top Right:
Z Velocity; Bottom Left: Roll Angle; Bottom Right: Roll
Velocity.

In all trajectory plots, the solid line denotes the mean
trajectory in low noise condition, the dashed line denotes the
mean trajectory in high noise condition, and the red dashed
line denotes the target state. In addition, the 4 conditions are
denoted by different colors, with blue for RS in low noise
condition, green for RS in high noise condition, orange for
Baseline in low noise condition, and magenta for Baseline
with high noise. The shaded region of each color denotes the
95% confidence region.

A. Pendulum

For the pendulum system, the algorithm was implemented
to complete a swing-up task with a task horizon of 1.5
seconds. The two system states are the pendulum angle [rad]
and the pendulum angular rate [rad/s]. Fig. 3 plots the
pendulum states in all 4 cases (RS with low and high noise
and Baseline with low and high noise). The control applied
to the system is the torque [N ·m] (Fig. 4).

Fig. 7: Quadcopter states. Top Left: Pitch Angle; Top Right:
Pitch Velocity; Bottom Left: Yaw Angle; Bottom Right: Yaw
Velocity.

Fig. 8: Quadcopter controls.

B. Quadcopter

The algorithm was implemented on a quadcopter system
for the task of reaching a final target state from an initial
position with a task horizon of 2 seconds. The initial con-
dition is 0 across all states. The target is 1 [m] upward,
forward and to the right from the initial position with zero
velocities and attitudes. The quadcopter dynamics used can
be found in [27]. The 12 system states are composed of
the position [m], angles [rad], linear velocities [m/s], and
angular velocities [rad/s]. The control inputs to the system
are 4 torques [N ·m], which control the rotors (Fig. 8).

C. Reduced Variance with Deep Min-max FBSDE Controller

The trajectory plots (Fig. 3, 5, 6, and 7) compare the Deep
Min-max FBSDE controller against the risk neutral Deep
FBSDE controller in a low noise setting and a high noise
setting for both systems. From the plots we can observe that
the min-max controller proposed in this work accomplishes
the tasks with similar level of performance compared to
the baseline controller. Numerical comparisons of the total
state variance (sum of variance in all states over the entire
trajectory) of all test cases can be found in Table I. The



Fig. 9: Total state variance vs. ε for both systems. Left: Pendulum; Right: QuadCopter.

results demonstrate at least 10% reduction in total state
variance across all cases. It is worth noting that the high
noise setting results in less variance reduction benefits. By

examining the substitution of Σ =

√
ε

2γ2Σ̃ from (10) to (11)

in risk sensitive control derivation, we can see that increasing
noise level is in some sense equivalent to increasing ε . This
naturally reduces the effect of the risk sensitive controller,
as shown in the next section.

D. Variance vs. Risk Sensitivity

We also investigated the relationship between total state
variance and risk sensitivity in the two systems. Fig. 9 plots
the total state variance for different ε (Rv) values while also
keeping track of task completion. In the variance versus
ε scatter plots, blue circles are used to denote runs with
successful task completion, whereas red cross denotes runs
where the task failed. Since the risk sensitivity parameter ε is
inversely proportional to the adversarial control authority, we
expect the risk sensitive controller to converge to standard
optimal controller as ε increases to infinity. On the other
hand, as ε gets smaller, the adversarial control will eventually
dominate the minimizing control and cause task failure.
This is reflected in the plots as we can observe that the
minimizing controller starts to fail when ε is too low. It is
worth noting that the failure threshold increases as the system
gets more complex and higher dimensional. Although the
variance starts to increase as ε increases in the Quadcopter
plot, the convergence to standard optimal controller is harder
to observe as we only explore a limited range of ε values.

V. CONCLUSIONS

In this paper, we proposed the Deep Min-max FBSDE
Control algorithm, based on the risk sensitive case of stochas-
tic game-theoretic optimal control theory. Utilizing prior
work on importance sampling of FBSDEs and efficiency
of the LSTM network to predict long time series, the algo-
rithm is capable of solving stochastic game-theoretic control
problems for nonlinear systems with control-affine dynamics.
Comparison of this algorithm against the standard stochastic
optimal control formulation suggests that by considering
an adversarial control in the form of noise-related risk,
the controller outputs trajectories with lower variance. Our

algorithm scales in terms of the number of system states
and system complexity for the min-max control problem,
while the previous works did not. For future works, we would
like to explore different network architectures to reduce the
training time.
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