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Abstract

In transportation systems (e.g. highways, railways, airports), traffic flows with
distinct origin-destination pairs usually share common facilities and interact exten-
sively. Such interaction is typically stochastic due to natural fluctuations in the traf-
fic flows. In this paper, we study the interaction between multiple traffic flows and
propose intuitive but provably efficient control algorithms based on modern sensing
and actuating capabilities. We decompose the problem into two sub-problems: the
impact of a merging junction and the impact of a diverging junction. We use a
fluid model to show that (i) appropriate choice of priority at the merging junction
is decisive for stability of the upstream queues and (ii) discharging priority at the
diverging junction does not affect stability. We also illustrate the insights of our
analysis via an example of management of multi-class traffic flows with platooning.

Index terms: Stochastic fluid model, Traffic flow management, Piecewise-deterministic
Markov processes.

1 Introduction

In transportation systems such as roads [1, 2, 3, 4] and airspace [5, 6, 7], traffic flows
with distinct origin-destination pairs usually share common facilities (e.g. road section
and airspace sector) to optimize system-wide efficiency and utilization of infrastructure.
Consequently, multiple traffic flows interact extensively in the common link, and such
interaction can propagate to upstream links.
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Consider the typical setting in Fig. 1. Two classes of traffic “compete” for getting
discharged from the common link 3, which can lead congestion in link 3. Limited capacities
of links 4 and 5 can also contribute to this congestion. Congestion in link 3 may further
block traffic from the upstream links.

Figure 1: Two traffic flows with distinct origin-destination pairs sharing a common high-
way section.

If both inflows at the source nodes and capacities of the links are constant, then no
congestion should arise as long as the inflows are less than the capacities. However, in
reality, congestion is prone to occur due to fluctuations in inflows. For example, inflows
to a highway depends on traffic condition on upstream arterial roads as well as demand-
disrupting events (concert, sports, etc.) Air traffic flow is heavily influenced by weather.
Furthermore, such fluctuation is typically stochastic and is best modeled probabilistically.
However, how to manage traffic flows in such scenarios, especially under stochastic inflows,
has not been well understood.

In this paper, we study the behavior of multiple traffic flows sharing a common link
and propose intuitive but provably efficient management strategies that ensure bounded
queuing delay and maximal throughput. We consider the setting where both links 1
and 2 are subject to Markovian inflows: the inflow to each link switches between two
values according to a Markov chain. We assume that the inflows to these two links
are statistically independent. The traffic flows have their respective fixed routes, which
overlap on link 3. Link 3, the common link, has a finite storage space; once the traffic
queue in link 3 attains the storage space, the flows out of links 1 and 2 will be reduced
due to spillback. The limited storage space of link 3 is shared by traffic from links 1 and
2 according to pre-specified priorities. The multiclass traffic flow is discharged from link
3 according to a proportional rule: the discharge rate of a traffic class is proportional to
the fraction of traffic of this class in the current queue. Such discharging rule may also
cause spillback from links 4 or 5 to link 3.

In this setting, the major decision variable for traffic flow management is the priorities
according to which the limited capacity of the common link is shared between two traffic
classes. In road traffic, this involves signal control (urban streets [2]) and ramp metering
(highways [1]). In air transportation, this involves ground and/or airborne holding [6, 8].
Such control actions are typically costly and must be designed based on rigorous and
systematic justification.

The main contributions of this paper are a set of results that help a system oper-
ator determine the priorities at the merging junction based on operational parameters
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(demands and capacities) to ensure guarantees of key performance metrics, viz. queuing
delay and throughput. Specifically, we argue via Theorem 1 that there exist a non-empty
set of priorities ensuring bounded traffic queues at the merging junction and maximal
throughput if and only if the average inflow of each traffic class is less than the capacity
of each link on its route. We further argue via Theorem 2 that the discharging rule and
the possible spillback at the diverging junction does not affect stability of the system. In
addition, we explicitly provide a set of priorities that stabilize the system. We expect
our results to be directly relevant for road traffic management [9] and the discrete-state
extension thereof to be relevant for air traffic management [7].

Our study is based on a fluid model. Fluid models are commonly used for highway
bottlenecks [10, Ch. 2]. Its discretized version is also common for air traffic management
[5]. We are aware that queuing models (e.g. M/M/1) are also widely used in transporta-
tion studies [2, 11]. However, queuing models focus on the delay due to random headways
between vehicles rather than the congestion due to demand fluctuation; therefore, fluid
model fits our purpose better. In fact, we view our fluid model as a reduced-order abstrac-
tion for queuing model: it is well known that stability of queuing models is closely related
to their fluid counterparts [12, 13]. Hence, our analysis in itself contributes to the liter-
ature on stochastic fluid models, which has mainly focused on controlling single/parallel
links [9, 14, 15] or characterizing steady-state distribution of queue sizes [16, 17], rather
than quantifying spillback-induced delay and throughput loss.

The rest of this paper is organized as follows. In Section 2, we isolate the merging
junction from the network and study its behavior. In Section 3, we add the diverging
junction into our analysis and obtain results for the merge-diverge system. In Section 4,
we present a numerical example illustrating the main results that we derived. In Section 5,
we summarize the main conclusions and propose several directions for future work.

2 Analysis of merging junction

In this section, we study the behavior of a single merging junction (see Fig. 2). This is an
important component in the merge-diverge system and turns out to play a decisive role
in terms of stability and throughput analysis.

Figure 2: Merging junction (left); inflow to link k ∈ {1, 2} evolves according to a Markov
chain (right).

2.1 Model and main result

The merging junction consists of three links. Traffic flows out of the upstream links 1
and 2 join and enter the downstream link 3. The inflows to links 1 and 2 are specified as
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follows. Let Ak(t) be the inflow to link k at time t. Then, Ak(t) is a two-state Markov
process with state space {0, a+k } and transition rates λk and µk, as illustrated in Fig. 2.
Thus, the mean inflows are given by

āk =
λk

λk + µk
a+k k = 1, 2.

Note that our results can be extended to the case where Ak(t) is a two-state Markov
process with state space {a−k , a

+
k } for some a−k > 0. We assume that {A1(t); t > 0}

and {A2(t); t > 0} are independent processes. Consequently, we can use a four-state
Markov chain to describe the evolution of the inflows. The state of the Markov chain is
a ∈ A = {0, a+1 }×{0, a+2 }. Fig. 3 uses a shorthand notation where “00” means a = [0 0]T

and “10” means a = [a+1 0]T . We also use the unified notation {νij; i, j ∈ A} to denote
the transition rates; e.g. ν00,10 = λ1.

Figure 3: Markov chain for {A(t) = [A1(t) A2(t)]
T ; t > 0}.

The flows f13, f23 between the links are determined by the sending flows offered by
links 1 and 2 as well as the receiving flow allowed by link 3. Specifically, let qk ∈ [0,∞)
be the queue length in link k and Q = [0,∞)2 be the set of queue lengths. Then, the
sending flow out of link k is given by

sk(qk, ak) =

{
ak qk = 0,

Fk qk > 0,
k = 1, 2,

where Fk is the capacity of link k. The receiving flow of link 3 is given by

r3(q3) =

{
R3 q3 < θ,

F3 q3 = θ,

where R3 is the maximal receiving flow of link 3. In this section, we focus on the merging
junction and assume that link 3 is not constrained downstream and Q3(t) = 0 for all
t ≥ 0; we will relax this assumption in the next section. Thus, the between-link flows are
given by

f13(a, q) = min{s1(a1, q1), R3Iq2=0 + φ1R3Iq2>0}, (1a)

f23(a, q) = min{s2(a2, q2), R3Iq1=0 + φ2R3Iq1>0} (1b)

where φk ∈ [0, 1] is the priority of link k = 1, 2 and R3 = r3(0) is the receiving flow of
link 3 for q3 = 0; the priority vector φ = [φ1 φ2]

T must satisfy

φ ≥ 0, |φ| = 1. (2)
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In practice, the priority vector specify how the limited capacity of the shared link is
distributed over the upstream links. A typical mechanism for implementing such capacity
allocation is traffic signal control, i.e. intersection control on urban streets and ramp
metering on highways. In air transportation, this is done by air traffic management
instructions.

The state of the merging junction is (a, q) ∈ A × Q. The evolution of A(t) is fully
specified by the Markov chain in Fig. 3. For a given initial condition Q(0) ∈ Q, the
evolution of Q(t) is governed by

d

dt
Qk(t) = Ak(t)− fk3(A(t), Q(t)) k = 1, 2, t > 0.

The process {(A(t), Q(t)); t > 0} is actually a piecewise-deterministic Markov process
[18].

We say that the the merging junction is stable if the total queue size is bounded, i.e.
if there exists Z <∞ such that for each initial condition

lim sup
t→∞

1

t

∫ t

s=0

E[Q1(s) +Q2(s)]ds ≤ Z. (3)

This definition of stability is motivated by [19]. Note that stability of the merging junction
depends on the inflow, the capacities, the maximal receiving flow, and the priority vector.

The main result of this section is a criterion for existence of priority vectors that
stabilize the queues:

Theorem 1 Consider a merging junction and let [φ1 φ2]
T ∈ [0, 1]2 be the priority vector

satisfying (2). Then, there exists a non-empty set of priority vectors that stabilize the
merging junction if and only if

ā1 < F1, ā2 < F2, ā1 + ā2 < R3. (4)

Furthermore, when (4) holds, if furthermore

ā1
F1

+
ā2
F2

< 1 (5)

holds, then every φ ∈ Φ is stabilizing; otherwise, a set of stabilizing priority vectors is
given by

Φ1 = {φ ∈ Φ : φ1 > ā1/R3, φ2 > ā2/R3} (6)

and a set of destabilizing priority vectors is given by the complement of the set

Φ0 =

{
φ ∈ Φ :

ā1
F1

+
ā2
F2

+

(
1− φ1R3

F1

− φ2R3

F2

)

×min

{
ā1
φ1R3

,
ā2
φ2R3

}
≤ 1

}
.
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The above theorem essentially states that there exist stabilizing priority vectors if and
only if the average inflows are less than the respective capacities. Furthermore, we provide
criteria for the stability of particular priority vectors. Note that the set Φ1 (resp. Φ0) is
derived from a sufficient (resp. necessary) condition for stability; there may exist a gap
between Φ1 and Φ0. For priority vectors in the gap, our results do not provide a conclusive
answer regarding stability; see Section 4 for a numerical example with a visualization of
this gap.

2.2 Proof of Theorem 1

This subsection is devoted to a series of results leading to Theorem 1. First, we derive a
necessary condition for stability of the merge:

Proposition 1 Consider the merging junction and let φ1 ∈ [0, 1] be the priority of link
1. If the traffic queues upstream to the merging junction are stable, then either

ā1
F1

+
ā2
F2

≤ 1 (7)

or

ā1
F1

+
ā2
F2

+

(
1− φ1R

F1

− φ2R

F2

)
min

{
ā1
φ1R

,
ā2
φ2R

}
≤ 1 (8)

holds, where 1/φk :=∞ for φk = 0, k = 1, 2.

Proof: Apparently, for each initial condition, the fluid queuing process {Q(t); t > 0}
can always visit the state q1 = 0, q2 = 0 within finite time and with positive probabil-
ity. Hence, the fluid queuing process is ergodic [20, Theorem 2.11]. Hence, there exist
constants p01, p10, and p11 such that for any initial condition

p00 = lim
t→∞

1

t

∫ t

s=0

IQ1(s)=0,Q2(s)=0ds a.s.

p01 = lim
t→∞

1

t

∫ t

s=0

IQ1(s)=0,Q2(s)>0ds a.s.

p10 = lim
t→∞

1

t

∫ t

s=0

IQ1(s)>0,Q2(s)=0ds a.s.

p11 = lim
t→∞

1

t

∫ t

s=0

IQ1(s)>0,Q2(s)>0ds a.s.

where I is the indicator variable. If the upstream queues are stable, then

ā1 = p10F1 + p11φ1R (9a)

ā2 = p01F2 + p11φ2R (9b)
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Also note that

p01 ≥ 0, p10 ≥ 0, p11 ≥ 0, (10a)

p01 + p10 + p11 ≤ 1. (10b)

Then, one can obtain from (9a)–(10b) that either (7) or (8) holds. �
Second, we derive a sufficient condition for stability of the merge:

Proposition 2 Consider a merging junction and let φ1 ∈ [0, 1] be the priority of link 1.
The traffic queues upstream to the merging junction are stable if either (i) (4)–(5) hold
or (ii) the following inequalities

ā1 −min{F1, φ1R} < 0 (11a)

ā2 −min{F2, φ2R} < 0. (11b)

hold.

Proof: We only prove the case where (5) holds; the case where (11a)–(11b) hold can be
proved analogously. Suppose that (5) holds. Consider the quadratic Lyapunov function

V1(a, q) :=qT
[

1 α
α α2

]
q + [βi αβi]q,

q ∈ [0,∞)2, i ∈ {00, 10, 01, 11}

where the parameters are given by

α :=
1

2

(
ā1

F2 − ā2
+
F1 − ā1
ā2

)
, (12a)

β00 := 1, β10 :=
ā1
λ1

+ 1, (12b)

β01 := α
ā2
λ2

+ 1, β11 :=
ā1
λ1

+ α
ā2
λ2

+ 1. (12c)

The above parameters are guaranteed to be positive by (5). Let L1 be the infinitesimal
generator (see [18] for definition) of the merge system. With α and βi as given above, one
can show that for each i and q

L1V1(i, q) =
(

(ā1 − f1(q)) + α(ā2 − f2(q))
)

(q1 + αq2).

Then, there exist

c := min{F1 − ā1 − αā2, αF2 − ā1 − αā2}min{1, α} > 0

d := max
q1≤q̃1,q2≤q̃2

L1V1(i, q) <∞

such that

L1V1(i, q) ≤ −c|q|+ d ∀i, q
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which implies (3) according to the Foster-Lyapunov drift criteria [21, Theorem 4.3]. �
Finally, we optimize the priority under various scenarios. The following result char-

acterizes the priorities that leads to maximal throughput under the stability constraint
given by Proposition 2:

Proof of Theorem 1: The necessity of (4) is apparent: if the queues are stable, then
the average inflows must be less than the corresponding capacities.

To show the sufficiency of (4), note that (4) implies that every φ ∈ Φ1 verifies (11a)–
(11b). The sets Φ1 and Φ′1 naturally result from Propositions 1 and 2. �

3 Analysis of merge-diverge network

In this section, we extend the results for a merging junction to the merge-diverge network
in Fig. 4.

Figure 4: Merge and diverge in series; two classes of traffic flows share a common link.

3.1 Model and main result

The dynamics is essentially the same as that of the merging junction; the main difference
results from the interaction between two traffic classes at the diverge according to the
discharging rule, which is specified by ψ, the fraction of class 1 traffic in the sending
flow s3. For the flow out of link 3, we consider a proportional discharging rule ψ :
[0,∞)2 ×

∏2
k=1[0, Fk]→ [0, 1]2 defined as

ψ(q13, q
2
3, f13, f23)

=


[

q13
q13+q

2
3

q23
q13+q

2
3

]T
q13 + q23 > 0[

f13
f13+f23

f23
f13+f23

]T
q13 + q23 = 0, f13 + f23 > 0

[1/2 1/2]T o.w.

(13)

The sending and receiving flows are sk(qk) and rk(qk) respectively, k = 1, 2, . . . , 5.
With a slight abuse of notation, we denote q = [q1 q2 · · · q5]T . The inter-link flows are
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given by

f13(q) = min

{
s1(q1),

(
r3(q3)− (1− φ)s2(q2)

)
+

}
(14a)

f23(q) = min

{
s2(q2),

(
r3(q3)− φs1(q1)

)
+

}
(14b)

f34(q) = min

{
ψs3(q3), r4(q4),

ψ

1− ψ
r5(q5)

}
(14c)

f35(q) = min

{
ψs3(q3), r5(q5),

1− ψ
ψ

r4(q4)

}
(14d)

In the above, (14a)–(14b) are direct extensions of (1a)–(1b) from q3 = 0 to q3 ≥ 0. (14c)–
(14d) essentially follow the same logic; the only difference is the impact of the discharging
ratio ψ. That is, congestion in one traffic class (e.g. q5) may undermine the flow in the
other (e.g. f34). For ease of presentation, we assume that

R4 < F3, R5 < F3, F3 < R4 +R5.

The other cases can be analogously studied but are less interesting.
Since the queue in link 3 is upper-bounded and since links 4 and 5 are not constrainted

downstream, the merge-diverge network is stable if (3) holds. However, in this setting
the upstream queues Q1(t) and Q2(t) are also affected by links 4 and 5. The main result
of this section is a criterion for exisitence priority vectors that stabilize the network:

Theorem 2 Consider a merge-diverge system. The merging junction has a priority vec-
tor [φ1 φ2]

T ∈ [0, 1]2 satisfying (2) . The diverging junction has a discharging rule
ψ ∈ [0, 1] satisfying (13). Then, there exists a non-empty set of static priorities φ ∈ [0, 1]2

that stabilize the system if and only if

ā1 < min{F1, R4}, ā2 < min{F2, R5}, ā1 + ā2 < F3. (15)

Furthermore, when (4) holds, a set of stabilizing priority vectors is given by

Φ2 =
{
φ ∈ Φ : ā1 −min{F1, φ1F3, R4, (φ1/φ2)R5} < 0,

ā2 −min{F2, φ2F3, R5, (φ2/φ1)R4} < 0
}
. (16)

Comparing the above result with Theorem 1, we can see that the diverge junction
does not affect the existence of stabilizing priority vectors; however, it does affect the set
of stabilizing priority vectors. Apparently, Φ2 ⊂ Φ1, where Φ1 is given by (6).

3.2 Proof of Theorem 2

The necessity of (15) is apparent: if the fluid queuing process is stable, then the average
inflow has to be less than the capacity for both traffic classes.

We next prove the sufficiency of (15). We only consider the case where a+1 > F1 and
a+2 > F2; the other cases can be covered following analogous steps. The proof is based on
the following intermediate result:
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Lemma 1 For the fluid queuing process over the merge-diverge system, suppose that φ ∈
Φ2 and a+k > Fk, k = 1, 2. Then, for any t > 0 and any q̃k ≥ 0, k = 1, 2, if Qk(t) ≥ q̃k,
then

ψk(A(t), Q(t)) ≥ ψ̃q̃kk :=
θq̃kk
Θ

(17)

where θq̃kk is given by

θq̃kk =∫ q̃k/(a
+
k −min{Fk,φkF3})

s=0

(
min{Fk, φkF3} − (θks/Θ)F3

)
ds. (18)

This result essentially states that under priority vector φ ∈ Φ2, if there is a long queue
in link 1 (resp. 2), then the fraction of class 1 (resp. 2) traffic in link 3 is subject to a
lower bound.

Proof of Lemma 1: Suppose that Q1(t) = θ1 ≥ 0 and Q1
3(t) = θ13 ≥ 0 for a given t > 0.

Since Q̇1(s) ≤ a+1 −min{F1, φ1F3} for any s, we have

Q1(s) ≥ (a+1 −min{F1, φ1F3})(s− t0)

for each s ∈ (t− θ1/(a+1 −min{F1, φ1F3}), t].
Thus, for each s ∈ (t − θ1/(a

+
1 − min{F1, φ1F3}), t], Q1(s) > 0 and consequently

f12(A(s), Q(s)) = min{F1, φ1F3}. In addition, θ1s as specified in (18) is the solution to
Q1

3(s) with the initial condition Q1
3(0) = 0, Q2

3(0) = Θ and the constraints Q1(s) > 0 and
Q2(s) for t ∈ (0, θ1/(a

+
1 −min{F1, φ1F3})]. The above scenario is the one where f34 would

be minimized. Hence, f34(A(t), Q(t)) ≥ f34(·, q), where q = [q1 q2 q
1
3 q

2
3]T satisfies q1 = θ1

and q13 = θk
θ1/(a

+
k −min{Fk,φkF3})

.

If Q1
3(t) = Q2

3(t) = 0, then ψ1 ≥ φ1, which naturally satisfies (17). Otherwise,
ψ1 ≥ θk

θ1/(a
+
k −min{Fk,φkF3})

/Θ. This completes the proof. �

Lemma 1 implies that if (15) holds, then the fluid queuing process over the merge-
diverge system admits an invariant set M such that

M = ∪q̃1≥0,q̃2≥0{q ∈ Q : qk ≥ q̃k, ψk(q) ≥ ψ̃q̃kk , k = 1, 2}.

Lemma 1 also implies that there exist q̂1 and q̂2 such that

∀q : q1 ≥ q̂1, ψ1(q) ≥ 1−R5/F3,

∀q : q2 ≥ q̂2, ψ2(q) ≥ 1−R4/F3,

which enable us to derive Theorem 2:
Proof of Theorem 2: Let

x =

[
(q1 − q̂1)+ + q13
(q2 − q̂2)+ + q23

]
10



and consider the Lyapunov function

V2(i, q) :=xT
[

1 α̃
α̃ α̃2

]
x+ [βi α̃βi]x,

q ∈ Q, i ∈ {00, 10, 01, 11}

where

α̃ :=
1

2

( ā1
min{F2, φ2F3, R5, (φ2/φ1)R4} − ā2

+
min{F1, φ1F3, R4, (φ1/φ2)R5} − ā1

ā2

)
and βi are specified by (12b)–(12c).

Then, following procedures analogous to the proof of Proposition 2, we can show that
there exist c > 0 and d <∞ such that

L2V2(a, q) ≤ −c|q|+ d ∀a ∈ A, ∀q ∈M

which implies stability. �

4 Numerical example

Now we use a numerical example to illustrate the results that we obtained in the pre-
vious sections. Consider a merge-diverge network with the parameters in Table 1; the
parameters make practical sense for the highway traffic setting. In modern intelligent

Table 1: Model parameters

Parameter Notation Value
Average inflow ā1, ā2 1200 veh/hr

Merging link capacity F1, F2 1500 veh/hr
Diverging link capacity

(receiving flow)
R4, R5 1400 veh/hr

transportation systems, the Markovian inflow can be interpreted in a particular scenario,
i.e. traffic flow with connected and autonomous vehicles traveling in platoons, or “pla-
tooning” [22]. In this scenario, if we assume that (i) the headways between platoons are

Figure 5: Randomly arriving platoons cause Markovian switches in traffic flow.
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independent and identically distributed (IID) random variables X with the cumulative
distribution function (CDF)

FX(x) = 1− e−λx, x ≥ 0,

and (ii) the lengths of platoons are IID with the CDF

FY (y) = 1− e−λy, y ≥ 0;

see Fig. 5. Furthermore, we assume that the background traffic flow is constant. Then,
the inflow is a two-state Markov process [23].

We study the range of stabilizing priority vectors for various values of the capacity of
the common link, F3. That is, for every given value of F3 and given value of φ1, we check
the stability conditions, i.e. verifying whether φ = [φ1 φ2]

T is in the sets Φ′1, Φ1, and Φ2.

Figure 6: Stability of the merge-diverge network under various priorities and various
capacities of the common link.

Fig. 6 illustrates the results; the nomenclature is explained in Table 2. The following

Table 2: Nomenclature for various regions in Fig. 6.

Region φ ∈ Φ0? φ ∈ Φ1? φ ∈ Φ2?
unstable no no no
unknown yes no no

merge stable yes yes no
merge-diverge stable yes yes yes

observations are noteworthy. First, there exists stabilizing priority vectors if and only
if the common link has sufficient capacity to discharge both traffic classes, i.e. F3 >
2400 = ā1 + ā2. Second, there exist gaps (“unknown”) between the “stable” regions and
the “unstable” region due to the gap between the necessary condition (characterized by
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Φ0) and the sufficient condition (characterized by Φ1) for stability. Third, merge-diverge
stability requires more restrictions on φ than merge stability alone. Fourth, as long as
F3 is larger than a certain threshold (2600 in this example), the set of priority vectors
stabilizing the merge-diverge network is insensitive to F3; the reason is that in that range
the downstream receiving flows R4 and R5 are the decisive quantities for stability.

5 Concluding remarks

In this article, we studied the behavior of two traffic flows of distinct origins and desti-
nations sharing a common link on their routes. Both flows are generated by a Markov
process, and the delay is estimated using a fluid model. We found that the way in which
the limited space in the shared link is allocated to either traffic flow (characterized by the
priority vector at the merging junction) plays a decisive role in the network’s behavior.
In general, the fractional priority of a traffic flow should be in a neighborhood (which we
quantitatively specify) of the inflow-to-capacity ratio of that flow. Furthermore, although
spillback may also happen at the diverging junction, it does not affect the stability or
throughput or the network.

This work can serve as the basis for several directions of future work. First, modern
traffic networks are equipped with real-time sensing and actuating capabilities. There-
fore, the priority vector at the merging junction can be made responsive to real-time
traffic condition. The advantage of a dynamic feedback priority vector is that it does
not necessarily require accurate prediction of inflow or capacity. Second, our analysis can
be extended to more general networks, and approximated models can be developed for
scalability. Third, route choice model (road traffic) or routing algorithm (air traffic) can
be added in the network extension as a second dimension of control capabilities.
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