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Abstract— This paper proposes a structure exploiting al-
gorithm for solving non-convex power system state estima-
tion problems in distributed fashion. Because the power flow
equations in large electrical grid networks are non-convex
equality constraints, we develop a tailored state estimator
based on Augmented Lagrangian Alternating Direction Inexact
Newton (ALADIN) method, which can handle the nonlinearities
efficiently. Here, our focus is on using Gauss-Newton Hessian
approximations within ALADIN in order to arrive at at an
efficient (computationally and communicationally) variant of
ALADIN for network maximum likelihood estimation prob-
lems. Analyzing an IEEE 30-Bus system we illustrate how
the proposed algorithm can be used to solve highly non-
trivial network state estimation problems. We also compare the
method with existing distributed parameter estimation codes in
order to illustrate its performance.

I. INTRODUCTION

State estimation is of increasing importance in modern
electricity transmission and distribution systems. Due to
the integration of renewable energy systems, effective grid
operation often requires detailed knowledge of the system
state. High-accuracy measurement devices are usually costly.
Hence it is relevant to consider all available information and
also cost-effective (including possibly inaccurate) measure-
ment devices for determining the power system’s state.1 A
standard method to solve the arising Power System State
Estimation (PSSE) problem is via weighted nonlinear least
squares [27], [1], [22].

Centralized formulations of AC PSSE—i.e. considering
the full AC power flow equations—have a long history
and can be traced back to [25]. AC PSSE is in general
hard to solve as it is usually formulated as nonlinear least
squares problem yielding a large-scale non-convex opti-
mization problem. Different formulations including polar
vs. rectangular coordinates and algorithms with different
Jacobian approximations, including exact Jacobian [27], p-q

DX, YJ and BH are supported by ShanghaiTech University, Grant-Nr.
F-0203-14-012. This work received funding from the European Unions
Horizon 2020 research and innovation program under grant agreement
No. 730936. TF acknowledges further support from the Baden-Wrttemberg
Stiftung under the Elite Programme for Postdocs.

XD, YJ and BH are with the School of Information Science and Tech-
nology, ShanghaiTech University, Shanghai, China {duxu, jiangyn,
borish}@shanghaitech.edu.cn

AE and TF are with the Institute for Automation and
Applied Informatics, Karlsruhe Institue of Technology, Eggenstein-
Leopoldshafen, Germany alexander.engelmann@kit.edu
timm.faulwasser@ieee.org

1We remark that in power systems the notion of state variables differs
slightly from control. Hence here we refer to a set of variables defined as
the solution of a stationary nonlinear system of equations.

decoupled Jacobian [13], and Gauss-Newton approximation
[22], have been considered for the AC PSSE problem.

The non-convexity of the power flow equations makes
large-scale PSSE problems difficult to solve. Hence several
authors have considered convex formulations and relaxations
of this problem. This includes DC approximations [26], [21]
and more recently SDP relaxations [32], [19]. However,
as voltage and reactive power are often needed (especially
in context of renewables) the practical usefulness of DC
approximations is in general limited.

As power systems are large scale and as limited informa-
tion exchange is desirable, distributed approaches have also
been considered for AC and DC state estimation [25], [2],
[16].2 The DC case is considered in [26], [31], [28]. In a
distributed setting, AC PSSE is even harder to solve than
in the centralized setting. The reason being that so far there
are only a few algorithms for general distributed non-convex
optimization [5], [14]. Classical methods for distributed AC
state estimation often exploit the sparsity pattern of the
Jacobian of the measurement equations. These works started
already in the 1970s with the seminal paper [25], continued
with [2], [15]; and can also be found today [17]. Recently
[20] proposed a distributed Gauss-Newton approach using
matrix splitting techniques with promising results. Exploiting
sparsity one obtains distributed methods where a coordinator
typically solves preferably simple coordination problems.

A second and more recent line of research applies dis-
tributed optimization techniques coming from convex opti-
mization to AC PSSE. These approaches include the aux-
iliary problem principle [7] and the popular Alternating
Direction of Multipliers Method (ADMM) [16]. An algo-
rithm based on gossiping techniques can be found in [31].
These methods usually have an advantage over splitting
techniques—they are typically decentralized, i.e. they avoid
central coordination and communicate based on neighbor-
hood information only. However, despite working well for
many cases, these methods usually have limited convergence
guarantees for AC PSSE. A recent overview on distributed
AC state estimation can be found in [11].

In this paper, we follow a different route tailoring the
Augmented Lagrangian Alternating Direction Inexact New-
ton (ALADIN) method [14] to AC PSSE problems. After in-
troducing the problem at hand in Section II, we explain how
to exploit its distributed structure in Section III. Section IV
introduces the main algorithmic contribution of this paper;

2Sometimes distributed approaches are also called hierarchical depending
on the amount of central coordination [11].
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i.e. we construct a variant of ALADIN based on generalized
Gauss-Newton Hessian approximation. Such Gauss-Newton
approximation based approaches have been analyzed exhaus-
tively for unconstrained nonlinear least-squares problems
[23, Chapter 10.3] as well as in the context of centralized
parameter estimation of constrained problem as analyzed
in [3], [4] and [24]. However, one interesting contribution
of Section IV is analyzing such Hessian approximations in
the context of distributed least squares estimation with the
ALADIN framework proving a local convergence proof. The
main contribution of this paper is presented in Section V,
where we not only illustrate the performance of the proposed
algorithm on the IEEE 30-bus system in comparison to the
widely used ADMM algorithm [5], but also elaborate on the
communication effectiveness of the proposed scheme.

II. POWER SYSTEM STATE ESTIMATION

This section briefly reviews the main physical relations
in electrical grids, including power flow equations, and
introduces the AC PSSE problem.

A. Grid Model

This paper considers a power system (N ,L, Y ) consisting
of a set of buses N = {1, . . . , N}, a set of transmission lines
L ⊆ N×N , and a sparse, complex-valued admittance matrix
Y = G + jB ∈ CN×N with j =

√
−1 . The admittance

matrix is defined by

Yk,l =

{ ∑
l 6=k

(gk,l + jbk,l) if k = l,

− (gk,l + jbk,l) if k 6= l,

where gk,l denotes the line conductance and bk,l denotes the
line susceptance for all transmission lines (k, l) ∈ L. For
(k, l) /∈ L, we have gk,l = bk,l = 0.

To each node in the grid, we assign a state as

x>k = (θk vk pk qk)> ∈ R4, (1)

where θi is the voltage angle, vi is the voltage magnitude
and pi, qi are the net active and reactive power at node
i ∈ N . The state of the grid is then defined as x> =
(x1, . . . , xN )> ∈ R4N . The grid physics are described by
the the power flow equations in polar form as

0 = pk − vk
∑
l∈N

vl(Gk,l cos(θk,l) +Bk,l sin(θk,l)), (2a)

0 = qk − vk
∑
l∈N

vl(Gk,l sin(θk,l)−Bk,l cos(θk,l)), (2b)

for all nodes k ∈ N with θk,l = θk − θl, cf. [1]. Note that
Gk,l and Bk,l refer to the real and imaginary pats of the
entries of the admittance matrix Y .

B. Measurement Functions

PSSE aims at determining the steady state, x, of the grid
using a given set of measurements. In general one considers
two types of measurements: firstly one can directly measure
the system states xk (or parts thereof) at the nodes. And
secondly, one can attempt to measure the power flows at the
transmission lines, which depend on the state of the grid at

neighboring nodes. In order to arrive at a model that allows
us to take the second type of measurements into account, we
introduce so-called measurement functions, which relate the
nodal states to the power flows over the transmission lines.
These functions are given by

fp(xk, xl) = vk[vkgk,l − vlgk,l cos(θk,l)]

− vk[vlbk,l sin(θk,l)] ,

fq(xk, xl) = − vk[vkbk,l − vlbk,l cos(θk,l)]

+ vk[vlgk,l sin(θk,l)] ,

fi(xk, xl) =
fpt(xk, xl)

2 + fqt(xk, xl)
2

v2
k

,

where fp, fq, fi : R4×R4 → R denote the active power, re-
spectively, reactive power and the current in the transmission
line (k, l) ∈ L. The complete vector-valued measurement
function FN ,L : R4|N | → R4|N |+3|L| is then given by

FN ,L(x) :=

(
Σ

1
2

k (xk − x̂k)k∈N

W
1
2

k,l (f(xk, xl)− ŵk,l)(k,l)∈L

)
(3)

where f = (fp, fq, fi)
> is used. Moreover, we use the

shorthand ŵk,l = (p̂k,l, q̂k,l, î
2
k,l)
> to collect the actual

measurements of the active and reactive power, p̂k,l and
q̂k,l, as well as the measurement îk,l of the current at the
transmission line (k, l) ∈ L. In this context, it is assumed
that approximations of the inverse of variance matrices of
the associated measurement errors, Σk ∈ S4 and Wk,l ∈ S3,
are given by positive semi-definite matrices [3].

C. Maximum Likelihood State Estimation

The above model is used to formulate the AC PSSE
problem of interest as the following nonlinear least-squares
optimization problem

min
x

‖FN ,L(x)‖22
s.t. (2) for all k ∈ N .

(4)

Here, the underlying assumption is that the measurement er-
rors have Gaussian probability distributions. This way (4) can
be interpreted as a maximum likelihood parameter estimation
problem [4], [29], recalling that the inverse variance matrices
of the measurement errors, Σk ∈ S4 and Wk,l ∈ S3, are
assumed to be given.

Remark 1 Although the theoretical properties of nonlin-
ear least-squares optimization problems are rather well-
understood [18], Problem (4) is in general a large-scale non-
convex optimization problem with non-convex objective and
non-convex constraint set over the complete electrical grid.
As it turns out, AC PSSE problems are rather callenging to
solve in practice. In particular, there might be multiple local
minima and numerical algorithms might converge to one or
the other minimum depending on the initialization [6].



III. DISTRIBUTED LEAST SQUARES ESTIMATION

This section outlines the main strategy for breaking
large-scale electrical grid networks into smaller sub-regions,
thereby revealing the distributed structure of AC PSSE
problems.

A. Problem Decomposition

In order to solve (4) in distributed fashion, we reformulate
(4) in affinely-coupled separable from [14]. To this end,
we recall the partitioning method from [9], for alternative
partitioning schemes see [10], [11], [16]. Figure 1 depicts
the whole IEEE 30-Bus network as well as the partitioning
strategy used throughout this paper.

1

2
4

3

Fig. 1. IEEE 30-bus system with partitioning.

We first divide the bus set N into several node sets N 0
i ,

one for each region R = {1, . . . R} such that ∪
i∈R
N 0
i = N

and N 0
i ∩ N 0

j = ∅ for all i, j ∈ R with i 6= j. At each
transmission line connecting two adjacent regions, i.e. all
(m,n) ∈ L with m ∈ Ni and n ∈ Nj , i 6= j, we introduce
an auxiliary bus pair (k, l) and we collect all auxiliary bus
pairs in set A. The set of auxiliary buses of region i ∈ R
are denoted as Ai. Finally, we combine all auxiliary nodes
and original nodes belonging to one region in combined
node sets Ni = N 0

i ∪ Ai. The line set connecting original
nodes with each other and all auxiliary nodes for region
i ∈ R is denoted by Li. We assume a decomposition in
the middle of each transmission line connecting two regions.
This leads to new line admittances ym,k = 2ym,n and yn,l =
2ym,n, respectively. The partitioning strategy is graphically
illustrated in Figure 2 and Figure 1. In order to resemble the
original physical properties of the grid model, we introduce
the consensus constraints3

θk = θl, vk = vl, for all (k, l) ∈ A, (5)

a particular class of affine equality constraints.

3Note that there exist different variants of coupling. Here we only couple
voltages as we observed best performance in this case. However additional
active/reactive power coupling is also possible [8], cf. [11] for an overview
of different coupling methods.

N 0
i

l

aux. node pair (k, l) ∈ A

pk, qk
vke

jθk

N 0
jk

(. . . ) (. . . )

m n
2 ymn 2 ymn

pl, ql
vle

jθl
Ni Nj

Fig. 2. Decoupling of regions via auxiliary nodes.

B. Distributed Formulation of the AC PSSE Problem

This section reformulates (4) in affinely coupled separable
form, as required in the context of distributed optimiza-
tion [14]. To this end, we introduce state vectors zi for all re-
gions i ∈ R such that z>i = (θi vi pi qi)i∈Ni ∈ R4|Ni|.
Summarizing the measurement equations for all nodes Ni
and transmission lines (k, l) ∈ Li in each region i ∈ R, i.e.
FNi,Li

yields

min
z

∑
i∈R
‖FNi,Li

(zi)‖22 (6a)

subject to
∑
i∈R

Aizi = 0 | λ (6b)

Hi(zi) = 0 for all i ∈ R,

with z> = (z>1 , . . . , z
>
R) ∈ R4|N |, (6b) contains equa-

tions (5) by appropriate choice of coupling matrices Ai ∈
R2|A|×4|N | and λ denotes Lagrange multipliers assigned to
(6b). Subsequently we denote FNi,Li

as Fi for simplicity.
The equality constraint Hi collects the power flow equations
(2) for all i ∈ R.

IV. DISTRIBUTED OPTIMIZATION ALGORITHM

This section introduces a Gauss-Newton Hessian approx-
imation based variant of the distributed optimization algo-
rithm ALADIN [14], which is tailored to AC PSSE problems
in nonlinear least-squares form.

A. Main Algorithmic Steps

Algorithm 7 outlines a variant of ALADIN for solving (6).
Similar to the traditional ALADIN procedure, there are two
main steps: A parallelizable Step 1) and a consensus Step 3).
In Step 1), decoupled NLPs (7a) are solved followed by a
sensitivity evaluation (7b)—both in parallel. Note that due to
the Gauss-Newton Hessian approximation, we only need to
compute first-order derivatives. This way the computational
burden and communication overhead is reduced significantly
compared with standard ALADIN.

B. Local Convergence Analysis

Let (z∗, λ∗, κ∗) denote a primal-dual locally optimal solu-
tion of (6), where λ? denotes the multiplier of the linear cou-
pling constraints and κ? the multiplier that is associated with
the power-flow equations. In the following, we introduce the
following regularity assumption on the physical power flow
equations.



Algorithm 1 Gauss-Newton ALADIN
Initialization: Initial guess (z, λ), choose ρ, ε > 0.
Repeat:

1) Parallelizable Step: Solve for each i ∈ R

min
yi

‖Fi(yi)‖22 + λ>Aiyi +
ρ

2
‖yi − zi‖22

s.t. Hi(yi) = 0 | κdi
(7a)

and compute

bi = Fi(yi), Bi = ∇Fi(yi)>, Ci = ∇Hi(yi)> (7b)

in parallel.
2) Termination Criterion: Terminate if∥∥∥∥∥∑

i∈R
Aiyi

∥∥∥∥∥ ≤ ε and ‖yi − zi‖∞ ≤ ε . (7c)

3) Consensus Step: Solve the coupled QP problem

min
∆y

∑
i∈R
‖Bi∆yi‖22 + 2∆y>i Bibi

s.t.
∑
i∈R

Ai(yi + ∆yi) = 0 | λQP,

Ci∆yi = 0 | κQP
i i ∈ R.

(7d)

and update z+ ← y + ∆y, λ+ ← λQP.

Assumption 1 The Jacobian of the power flow equations (2)
with respect to all states x of the network at z? has full row-
rank.

Notice that a detailed discussion of mathematical con-
ditions under which the linear inpendendence constraint
qualification (LICQ) condition in Assumption 1 is satisfied
for power flow networks can be found in [12], where it is
also discussed why this assumption is essentially satisfied for
all power-flow networks of practical interest.

Proposition 1 If Assumption 1 holds, then the LICQ con-
dition for the decoupled NLPs (7a) as well as the coupled
QP (7d) is satisfied, that is, the matrix [Aᵀ Cᵀ]ᵀ has full
row rank.

Proof. The proof of the proposition follows from the fact that
the Jacobian of the consensus constraint has—by definition—
full rank, as this constraint enforces linear coupling between
neighboring regions. Because the power-flow equations are
local (decoupled) in the reformulated problem (6), they
satisfy the decoupled LICQ conditions (since Assumption 1
holds), and, additionally, cannot possibly be redundant to the
coupling constraints. �

In order to further ensure that any local solution (z∗, λ∗, κ∗)
is a regular KKT point of (6), the following proposition is
introduced.

Proposition 2 If the residuum
∑
i ‖Fi(z?i )‖22 in the optimal

solution is sufficiently small and if the matrices Σk are

positive definite, then the second order sufficient optimality
condition (SOSC) is satisfied for (6) at z? and the Gauss-
Newton Hessian approximation, ∇Fi(zi)∇Fi(zi)> � 0 is
positive definite in a local neighborhood of z?.

Proof. The statement of the above proposition is well-known
in the context of Gauss-Newton SQP methods and a formal
proof can be found in [3]. We remark that the conditions
therein are indeed satisfied if the matrices Σk are positive
definite, as this condition trivially ensures identifiability of
all measured states. �

Note that the conditions of the above proposition are satisfied
in practice if the model-data mismatch is small—but it can
be violated otherwise.

Theorem 1 Let Assumption 1 be satisfied and let the
residuum

∑
i ‖Fi(z?i )‖22 at the local minimizer be sufficiently

small such that Propsition 2 is applicable. Then the iterates
(z, λ) locally converge to (z∗, λ∗) achieving a locally linear
convergence rate.

Proof. Propositions 1 and 2 ensure that minimizers of
the decoupled NLPs (7a) are regular KKT points in a
neighborhood of the optimal solution. Hence we can apply
Lemma 3 in [14] to show that the solution (y, κd) of the
decoupled NLP satisfies∥∥∥∥[ y − z∗

κd − κ∗
]∥∥∥∥

2

≤ α
∥∥∥∥[ z − z∗

λ− λ∗
]∥∥∥∥

2

(8)

for a constant α <∞. Furthermore, in [14] it has been shown
that the consensus step of ALADIN is locally equivalent
to one SQP iteration. Thus, as we employ a Gauss-Newton
Hessian approximation, we have∥∥∥∥[ z+ − z∗

λ+ − λ∗
]∥∥∥∥

2

≤ γ

∥∥∥∥∥∥
 y − z∗

λ− λ∗
κd − κ∗

∥∥∥∥∥∥
2

.

Next, recall that the linear convergence rate of Gauss-Newton
methods is locally proportional to the least-squares residuum
at the optimal solution. In other words, we have γ =
O(
∑
i ‖Fi(z?i )‖22), as proven in [3]. Thus, as long as the

least-squares residuum is sufficiently small, it holds that∥∥∥∥[ z+ − z∗
λ+ − λ∗

]∥∥∥∥
2

≤ γ(α+ 1)

∥∥∥∥[ z − z∗
λ− λ∗

]∥∥∥∥
2

with γ(α+ 1) < 1. This finishes the proof. �

Note that Theorem 1 establishes local convergence of Al-
gorithm 1 only. Thus, if one has poor initial guesses for
the state, the proposed method needs to be augmented by a
globalization routine, as discussed in [14]. This is subject to
future work.

C. Communication Overhead

Step 3 of Algorithm 7 communicates between different re-
gions. The forward communication collects matrices B>i Bi,
Ci and vectors Bibi, Aiyi such that there are in total∑

i∈R
6|Ni|+ 16|Ni|2 + 2|A|



floats that need to be uploaded. The download phase af-
ter (7d) is solved sends the dual update λ+ and local direction
∆yi to each region, which requires 2|A|+4|Ni| floats in total
for each region i ∈ R.

V. NUMERICAL EXAMPLE

In this section, we illustrate the performance of Algo-
rithm 7 drawing upon the 30-bus system shown in Figure 1.

A. Implementation and Data

The problem data is obtained from the MATPOWER
dataset [33], although in our case study shunt elements are
neglected. The system is partitioned into four regions R =
{1, 2, 3, 4} which are linked by |A| = 8 pairs of auxiliary
nodes. We use nodal measurements and line measurements
for all original nodes k ∈ N 0 and all lines connecting
original nodes (k, l) ∈ Ni \ Ai ×Ni \ Ai and all i ∈ R.

The measurements in our case study have been obtained by
running a realistic scenario simulation in MATPOWER. During
this simulation, we have introduced an additional Gaussian
white noise with zero mean and a relative error variance of
10−4 the states θk, pk, qk. In addition, the relative variance
of the noise added to the voltage magnitude vk has been
set to 10−5. Notice that such a white noise as been added
for all k ∈ N 0. The flows over transmission lines pk,l, qk,l
and ik,l are subject to a relative variance of 10−5, which is a
standard value that is often used in the context of PSSE [30].
The considered associated weighting matrices of the least-
squares objective are

Σk = cov(x̂k)−1 =


104 0 0 0
0 105 0 0
0 0 104 0
0 0 0 104

 ,

for all nodes k ∈ N 0 and

Wk,l = cov(ŵk)−1 =

104 0 0
0 104 0
0 0 104


for all (k, l) ∈ Ni \ Ai × Ni \ Ai. It can be checked nu-
merically that this choice ensures that the local convergence
conditions of Theorem 1 are indeed satisfied.

B. Numerical Comparison of ADMM and ALADIN

The implementation of Algorithm 1 relies on
Casadi-v3.4.5 with IPOPT and MATLAB 2018a.
The tuning parameters in Algorithm 7 are set to ρ = 104

and ε = 10−4. Moroever, in order to assess the numerical
performance of the proposed Gauss-Newton ALADIN
algorithm, we compare our implementation with a
standard implementation of ADMM, where the augmented
Lagrangian parameter is set to ρADM = 104, too. Note that
ADMM does provide convergence guarantees for general
non-convex problems. Indeed counter-examples where
ADMM is divergent are given in [14]. However, it turns out
that both ADMM and Gauss-Newton ALADIN converge
for this particular PSSE case study.
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Fig. 3. Convergence of states for the IEEE 30-bus system.
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Fig. 4. Consensus violation.

Figure 3 shows the convergence of voltage angles, voltage
magnitudes and active/reactive powers over the iteration
index k. One can observe that ALADIN converges at a
fast linear rate while ADMM converges quite slower to
lower accuracy. Figure 4 shows the convergence of the
corresponding consensus constraint violation ‖Axk − b‖∞,
which can be interpreted as the degree of matching of the
voltage angles and magnitudes at auxiliary nodes according
to (5). The fast linear convergence of ALADIN can also
here be witnessed; that is, at least for this PSSE problem,
our numerical results indicate a much better convergence of
ALADIN when compared to ADMM. However, as shown
in [8], one should keep in mind that ALADIN has a higher
per-step communication overhead and complexity compared
to ADMM.

Remark 2 (Effects of scaling on convergence) It is well-
known that ADMM is rather scaling dependent [5]. In our
numerical implementation all variables have already been
scaled before running the ADMM routine, but, of course,
we cannot exclude that it is possible to further improve the
performance of ADMM by developing more sophisticated
scaling or pre-conditioning strategies. However, one of the
key advantages of Algorithm 1 versus ADMM is that it
works “out of the box”; that is, there is no pre-conditioning
or scaling needed, as Gauss-Newton methods are naturally
invariant with respect to scaling [3], [14].

C. A Posteriori Error Analysis

As for Bayesian inference or maximum likelihood estima-
tion problem, there arises also in PSSE the question what can
be said about the quality of the a posteriori distribution of the
parameter estimate. At this point, we rely on a mature body
of literature on nonlinear parameter estimation theory as



reviewed in [18]. Therein, it has been proven that the inverse
of the Fisher information matrix of a nonlinear least-squares
parameter estimation problem is as a lower bound of the a-
posteriori parameter estimation variance matrix. This relation
is also known as Cramér-Rao bound. We refer to [18], [29]
for an in-depth discussion and further references. Note that
the inverse Fisher information matrix of the state estimate of
the i-th subregion is in our context given byI0

0


> B

>
RBR C>R A>R
C>R 0 0

A>R 0 0


−1 I0

0

 ,

where BR = diag(Bi)i∈R denotes the derivative of F
while AR and CR denote the associated constraint Jacobian
matrices, all evaluated a-posteriori at the optimal solution. A
detailed derivation of this expression for the inverse Fisher
information matrix in the context of constrained Gauss-
Newton methods can be found in [4], see also [29]. The
square-roots of selected diagonal elements of the above ma-
trix relative to the nominal value of the associated parameter
estimate can be found in Table I. As there are 30 busses

TABLE I
RELATIVE A-POSTERIORI STANDARD DEVIATIONS AT SELECTED NODES.

Relative Standard Deviation of the A-Posteriori Distribution

Bus# θ v p q

1 ∗ 0.12% 0.16% 2.65%

8 0.32% 0.12% 0.16% 0.23%

13 0.65% 0.17% 0.05% 0.79%

20 0.25% 0.18% 0.46% 14.16%

30 0.33% 0.23% 0.28% 2.95%

AVG 0.49% 0.17% 0.98% 2.75%

in total not all values are shown. However, the last line lists
the average values for the standard deviation over the whole
network. Since most of the relative errors are below 1%,
it can certainly be claimed that no over-fitting effects are
visible in our PSSE case study. Nevertheless, some of the a-
posteriori standard deviations of the reactive power estimates
are around 14%, which indicates that some of the states of
this 30-bus power system are rather difficult to estimate from
the measurement data. In fact, these results suggest that a
more detailed analysis of the parameter estimation accuracy
in PSSE, as well as the optimization of sensor locations in
power grids are an interesting future research direction.

VI. CONCLUSION & OUTLOOK

This work has introduced a distributed state estimation
algorithm for non-convex AC PSSE problems based on
ALADIN and a Gauss-Newton Hessian approximation. A
local convergence condition for this algorithm has been given
in Theorem 1. Moreover, we have illustrated the promising
convergence behavior of Gauss-Newton compared to state-
of-the-art ADMM methods by analyzing a highly non-trivial
IEEE 30-bus power grid.
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[9] A. Engelmann, T. Mühlpfordt, Y. Jiang, B. Houska, and T. Faulwasser.
Distributed stochastic AC optimal power flow based on polynomial
chaos expansion. In 2018 Annual American Control Conference
(ACC), pages 6188–6193, June 2018.

[10] T. Erseghe. A distributed approach to the OPF problem. EURASIP
Journal on Advances in Signal Processing, 2015(1):45, May 2015.
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