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Abstract

Platooning of heavy-duty vehicles (HDVs) is a key component of smart and connected
highways and is expected to bring remarkable fuel savings and emission reduction. In this
paper, we study the coordination of HDV platooning on a highway section. We model
the arrival of HDVs as a Poisson process. Multiple HDVs are merged into one platoon
if their headways are below a given threshold. The merging is done by accelerating the
following vehicles to catch up with the leading ones. We characterize the following random
variables: (i) platoon size, (ii) headway between platoons, and (iii) travel time increment
due to platoon formation. We formulate and solve an optimization problem to determine
the headway threshold for platooning that leads to minimal cost (time plus fuel). We also
compare our results with that from Simulation of Urban MObility (SUMO).

Index terms: Automated highways, connected and autonomous vehicles, vehicle platoon-
ing, Poisson point process.

1 Introduction

Platooning of heavy-duty vehicles (HDVs) has the potential for remarkable efficiency and envi-
ronmental benefits [1, 2, 3]. A typical platooning procedure on a highway network involves two
steps, viz. (i) coordinating the time when multiple HDVs arrive at a junction and (ii) merging
the HDVs into a platoon at the junction [4, 5]. Although much progress has been made recently
on vehicle-level control algorithms to achieve safe and efficient merging [6, 7, 8, 9], we still lack
a realistic and tractable framework to evaluate and design large-scale coordinating strategies.

Previous work on platoon formation typically focused on development of efficient scheduling
algorithms that coordinate the movement of HDVs to facilitate platooning. Larson et al. [5]
proposed a network of distributed platooning coordinators that manage formation of platoons
at highway junctions. Van de Hoef et al. [10] considered the en-route formation of platoons.
However, the previous work mainly focused on analysis at the vehicle level and in deterministic
settings. However, to support large-scale platooning operations, a system-level model that
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Figure 1: Coordinated platooning on a highway section.

captures the randomness in the HDVs’ movement is needed. Such a model enables us to better
understand the impact of various platooning strategies on properties of the consequent HDV
platoons and to design platooning strategies with performance guarantees.

In this paper, we develop an analytical model for the coordinated platooning process on a
highway section and optimize the platooning strategy using this model. Fig. 1 illustrates the
setting that we consider. A platooning coordinator is situated at the entrance to a highway (e.g.
a junction). The coordinator is able to collect movement information of every HDV within a
coordinating zone, the size of which is significantly larger than the original spacings between
HDVs before getting platooned. HDVs randomly enter the coordinating zone and arrive at the
entrance as a homogeneous Poisson process. The entrance is followed by a pre-specified merging
zone, where HDVs form platoons. A coordinator at the entrance instructs multiple HDVs to
platoon if their headways are below a certain threshold, which is the major decision variable
considered in this paper. To complete the platooning, the coordinator instructs the involved
vehicles to coordinate their speeds within the merging zone so that they can form a platoon.
HDVs leave the merging zone and travel on the rest of the highway (cruising zone) as platoons.
The above model can be viewed as a link-level refinement and a stochastic extension of the
model considered in [5].

To obtain system-level insights, we develop a stochastic model that is closely related to
random geometric graphs and Poisson point processes [11]. Such a relation is very natural, since
HDVs on a highway essentially form a one-dimensional spatial point process, and platooning
is essentially connecting and clustering nearby HDVs. Researchers have used similar models to
study the connectivity of the communications network (vehicular ad hoc network) over connected
vehicles with random headways [12, 13]. A key distinction between our model and the classical
Poisson point process is that we also consider relocation of points (HDVs) to form connected
components (platoons), while classical models only connect but do not relocate points. Note that
our model is also related to but distinct from queuing systems (even those with batch services)
in that our model, although it involves a Poisson arrival process, does not have a service process
or incorporate the influence of background vehicles, and thus does not involve waiting due to
limited service capacity.

We use the stochastic model to characterize platoon sizes, headways between formed pla-
toons, and time increment due to platooning. We are able to analytically compute the distribu-
tion of platoon size and the expected values of between-platoon headways and time increment
(Propositions 1–3). Our results imply that platoon sizes, between-platoon headways, and time
increments all increase with the headway threshold for platooning. Our results are also quantita-
tively consistent with the empirical prediction from the Simulation of Urban MObility (SUMO),
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a widely used tool for traffic simulation [14].
Characterization of the platooning process helps us understand the relation between the

headway threshold for platooning and the system-wide cost, which is the sum of three parts:
(i) traverse time in the merging zone, (ii) fuel consumption in the merging zone, and (iii) fuel
consumption over the cruising zone, i.e. the highway section beyond the merging zone. By
analyzing our stochastic model, we are able to analytically characterize these three costs by
studying the behavior of between-platoon headways, platoon sizes, and increment of between-
vehicle headways induced by platooning. These quantities are also relevant for studying the
interaction between HDV platoons and background traffic sharing common highway segments
[15].

Based on these results, we formulate a simple optimization problem for determining the
optimal headway threshold for platooning under a variety of scenarios. In general, the coordi-
nator may specify the platooning process flexibly: leading vehicles can be decelerated, following
vehicles can be accelerated, or a mixture of acceleration/deceleration can be applied. In this
paper, we follow [5] and only consider acceleration; i.e. platoons are formed by following vehi-
cles’ catching up. Nevertheless, our results can be readily extended to the deceleration or the
mixed cases. By solving the optimization problem, we find that the optimal platooning strategy
parametrized by the headway threshold strongly depends on the length of the highway section: if
the highway is long enough, then higher threshold and longer platoons are favorable; otherwise,
short platoons or even no platooning is favorable. Beyond this intuitive insight, our model can
quantitatively support online coordinated platooning.

The rest of this paper is organized as follows. In Section 2, we introduce the stochastic
model. In Section 3, we derive key properties of the platooning process and compare our results
to empirical results from the SUMO. In Section 4, we formulate and solve an optimization
problem for coordinated platooning. In Section 5, we summarize the conclusions and propose
several directions for future work.

2 Modeling platooning process

Consider a highway segment subject to upstream HDV arrivals. Without loss of generality, we
assume zero initial condition. Let S0 = 0 and Sk be the time at which the kth vehicle enters the
highway. The inter-arrival times Xk = Sk − Sk−1, k = 1, 2, . . . are independent and identically
distributed random variables (rv s), which follow the exponential distribution with parameter
λ. Practically, λ is the average arrival rate of vehicles. Platooning is completed over a merging
zone following the entrance to the highway, and the vehicles travel in platoons over the rest part
of the highway; see Fig. 2.

Figure 2: Between-vehicle headway Xk, platoon size Yn, and between-platoon headway Zn.

Let r be the headway threshold for platooning. That is, if Xk ≤ r, then the (k − 1)th
and the kth vehicles merge into a platoon. If the (k − 1)th vehicle is already in a platoon,
then the kth vehicle merges into that platoon. Since we focus on the system-level control of
platooning, the impacts of velocity and distance during merging can be ignored. After the
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merging process, we assume that the headways between vehicles within a platoon are very small
and approximate as 0 to simplify calculation; this assumption is valid if the within-platoon
headway is significantly smaller than the original headways (i.e. Xk). When a following vehicle
merges with a leading vehicle or a leading platoon, there are multiple ways to coordinate their
movements: (i) acceleration – the following vehicle accelerates while the leading vehicle/platoon
maintains its original speed; (ii) deceleration – the leading vehicle/platoon decelerates while
the following vehicle maintains its original speed; (iii) cooperation – the leading vehicle/platoon
decelerates while the following vehicle accelerates. In this article, we only consider case (i).
Nevertheless, our approach applies to cases (ii) and (iii) as well.

We use Yn ∈ {1, 2, . . .} to denote the number of vehicles in the nth platoon, and Zn to
denote the headway between the (n− 1)th and the nth platoons. The time for the kth vehicle
to traverse the merging zone consists of two parts, viz. the nominal traverse time t0, which is
identical for all vehicles, and the increment −Tk ≤ 0 due to acceleration for merging. Hence, the
time at which the kth vehicle leaves the merging zone is Sk + t0−Tk; see Fig. 3. Our subsequent
analysis will focus on Yn, Zn, and Tk, which are three important quantities that characterize the
platoons formed in the merging zone. Throughout this article, we assume that the process is in
steady state. That is, the between-platoon headyway Zn is a rv taking value from [0,∞).

Furthermore, note that the actual headway between the kth and the (k− 1)th vehicles when
the kth vehicle enters the highway may be different from Xk due to acceleration of the (k−1)th
vehicle. We assume that the decision on whether to merge only depends on the original headway
Xk, regardless of the actual headway when the kth vehicle enters the highway. This assumption
is valid if the radius of the communication zone is significantly larger than E[Xk]; in this case,
the coordinator has an almost global knowledge of the movement of every vehicle that would be
involved.

3 Analyzing platoon characteristics

When operating platoons on the highway, we need to identify some essential characteristics,
including platoon size, headway between platoons and time increment of platooning. In this
section, we present related propositions under the assumed arrival and platooning processes.
Note that all the results consider the processes in the steady state. We also compare the model-
predicted results with empirical results obtained from a micro-simulation model.

3.1 Analysis based on stochastic model

First, we derive the distribution of the number of vehicles in a platoon:

Figure 3: Time increment Tk due to acceleration for platooning.
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Proposition 1 (Platoon size) In the steady state, the number of vehicles in a platoon Y
follows the probability mass function (PMF):

pY (y) = e−λr(1− e−λr)y−1 y = 1, 2, 3, · · ·

Proof We assume the index of the first vehicle in the nth platoon is Dn, and the platoon
size is Yn. Since Dn is independent of XDn , we replace Dn with dn to simplify notations. Then
the index list in platoon n is dn, dn+ 1, dn+ 2, · · · , dn+ (Yn−1). The vehicle index list is shown
in Fig. 4. We can make sure that the inter-arrival time Xdn+1 > r, which enables platoon n and
platoon n+ 1 to be two different clusters of vehicles. The probability of platoon size being y is

Pr {Yn = y} = Pr
{
Xdn+1 > r,Xdn+1 ≤ r,Xdn+2 ≤ r,

· · · , Xdn+(y−1) ≤ r
}

= Pr
{
Xdn+1 > r

}
Pr {Xdn+1 ≤ r}

Pr {Xdn+2 ≤ r} · · ·Pr
{
Xdn+(y−1) ≤ r

}
.

Figure 4: Illustration of platoons

If we assume the probability of merging is p, we can show that:

Pr {Yn = y} = (1− p)py−1.

We can see that the platoon size follows a geometric distribution.
In our case, we use Poisson process to model the vehicle arrival scenario, and the probability

of merging is 1− e−λr. Then the distribution of platoon size is shown as follows:

Pr {Yn = y} = e−λr(1− e−λr)y−1.

�
Next, we compute the expected headway between two platoons:

Proposition 2 (Headway between platoons) The expectation of headway Z between pla-
toons is:

E[Z] =
eλr

λ
.

Proof The headway changes in acceleration and deceleration cases are symmetrical. We then
use the acceleration process to model the headway distribution. In the acceleration case, the
following vehicle accelerates while the leading vehicle maintains its original speed. Let Zn be
the headway between the first vehicle in platoon n and the last vehicle in platoon n − 1. Zn
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increases with the number of vehicles in platoon n − 1. The cumulative distribution function
(CDF) of Zn is

FZn(z) =

∞∑
y=1

Pr {Zn ≤ z|Yn−1 = y}Pr {Yn−1 = y} .

We use the same notations in Proposition 1, then the vehicle index list in platoon n − 1 is
dn−1, dn−1+1, dn−1+2, · · · , dn−1+(Yn−1−1). Since the intra-platoon headway h0 is significantly
smaller than the original headways (i.e. Xdn), we can simplify calculation by assuming h0 ≈ 0.
Then Zn can be expressed as

Zn = Xdn +Xdn−1+1 + · · ·+Xdn−1+(Yn−1−1).

We can calculate the expectation of between platoon headways by the law of total expecta-
tion:

E[Zn] =

∞∑
y=1

Pr {Yn−1 = y}
(

E[Xdn |Yn−1 = y]+

E[Xdn−1+1|Yn−1 = y] + · · ·+

E[Xdn−1+(y−1)|Yn−1 = y]
)
.

We have shown that:

Pr {Yn−1 = y} = Pr
{
Xdn > r,Xdn−1+1 ≤ r,

· · · , Xdn−1+(y−1) ≤ r
}
.

Inter-arrival time Xdn , Xdn−1+1, · · · , Xdn−1+(y−1) are independent and identical distributed.
We can simplify the calculation of expectation by

E[Zn] =
∞∑
y=1

Pr {Yn−1 = y}
(

E[Xdn |Xdn > r]+

E[Xdn−1+1|Xdn−1+1 ≤ r] + · · ·+

E[Xdn−1+(y−1)|Xdn−1+(y−1) ≤ r]
)

=

∞∑
y=1

Pr {Yn−1 = y}
(

E[Xdn |Xdn > r]+

(y − 1)E[Xdn |Xdn ≤ r]
)
.

In our Poisson arrival scenario, we can show that:

E[Xdn |Xdn > r] =

∫∞
r xλe−λxdx

e−λr
=

1

λ
+ r,

E[Xdn |Xdn ≤ r] =

∫ r
0 xλe

−λxdx

1− e−λr
=

1

λ
− r

eλr − 1
.

Then we can derive the expectation of between platoon headway as
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E[Zn] =

∞∑
y=1

e−λr(1− e−λr)y−1
[(

1

λ
+ r

)
+

(y − 1)

(
1

λ
− r

eλr − 1

)]

=
eλr

λ
.

�
Finally, we compute the expected time increment experienced by one vehicle due to platoon-

ing:

Proposition 3 (Time reduction of platooning) Also, the travel time cost of platooning in
acceleration and deceleration cases are symmetrical. In the acceleration process, time increment
is negative. We use positive time reduction to represent benefits of platooning. The expectation
of time reduction T is

E[T ] =
1

λ
eλr − r − 1

λ
.

Proof In this case, we assume the vehicle before kth vehicle to be k− 1 and the vehicle after
kth vehicle to be k+ 1. Vehicle k−1 belongs to platoon n−1. Before kth vehicle’s arriving, the
number of vehicle in platoon n− 1 is a rv M taking value from {1, 2, . . .}. Also, the cumulative
distribution function of Tk depends on M . We can show that

Pr {Tk ≤ t} =

∞∑
m=1

Pr {Tk ≤ t|M = m}Pr {M = m} .

If Xk ≤ r, vehicle k merges with vehicle k− 1. The size of platoon n− 1 becomes M + 1. If
Xk > r, there is no cost of platooning. We can calculate the expectation of Tk by

E[Tk] =
∞∑
m=1

E[Tk|M = m] Pr {M = m} .

Since we assume h0 ≈ 0, we can simplify the expression of Tk as

Tk = Xk +Xk−1 +Xk−2 + · · ·+Xk−m+2.

We can use the technique in Proposition 2 to divide the expectation into independent parts.
Then the expectation of time reduction is:

E[Tk] =

∞∑
m=1

Pr {M = m}
(

E[Xk|M = m]+

E[Xk−1|M = m] + · · ·+ E[Xk−m+2|M = m]
)

=
∞∑
m=1

Pr {M = m}
(

(m− 1)E[Xk|Xk ≤ r]
)
.

7



We apply the expectation equation to our Poisson arrival process, then the expectation
equation is

E[Tk] =
∞∑
m=1

e−λr(1− e−λr)m−1(m− 1)(
1

λ
− r

eλr − 1
)

=
1

λ
eλr − r − 1

λ
.

�

3.2 Comparison with micro-simulation model

To validate the results obtained from the stochastic model, we use the Simulation of Urban
MObility (SUMO [14]) to validate our results. This tool is designed for microscopic traffic
simulation. In accordance with our platooning policy characterized by r, the following vehicle
merges with leading vehicle if inter-arrival time is less than given threshold. We use a PID
controller to manage the movement of vehicles inside a platoon.

In our experiment, the highway length is 10.0 km, and the simulation time step is 0.1 s. In
the validation of between platoon headway proposition, we use the headway between the first
vehicle in following platoon and the last vehicle in leading platoon. For the calculation of vehicle
time reduction, we subtract travel duration from travel time with free flow speed. In our setting,
the free flow travel time is 414.0 s. We have simulated 1000 vehicles’ arrival for each threshold
r in SUMO. The vehicle arrival in each simulation is a Poisson process.

In the SUMO simulation, a modified Krauß car-following model [16] is designed to manage
vehicle behaviors. Compared with simulation only using Poisson process to generate vehicle
departure, the car-following model would affect headway between platoons and time increment
of platooning. In our experiment, the leading vehicle utilizes the car-following model to adjust
its acceleration, which causes speed variations for vehicles.

Fig. 5 shows the comparison between SUMO simulation and values in propositions under
different arrival rates. In the figure of platoon size, the PMF drops dramatically with platoon
size. In between platoon headway and time reduction figures, both values increase along with
platooning threshold. Although our stochastic model does not consider the microscopic details
in SUMO, its prediction is fairly consistent with SUMO results.

4 Optimizing platooning threshold r

In this part, we analyze the effect of threshold r on the total cost of platooning. The value of r
affects the feasibility of forming platoons. We analyze this in an economic perspective.

The benefits of platooning include two parts: reducing travel time and fuel consumption. We
take the acceleration process for example. During the process of platooning, the time reduction
increases while fuel consumption increases. After the merging process, vehicles in the platoon
have less aerodynamic drag and thus experience less fuel consumption [5]. We divide the total
cost of platooning TCk into three parts: time reduction Tk, increased fuel ∆F1 during merging
and fuel reduction ∆F2 after merging. The expected total cost can be expressed as:

E[TCk] = −w1E[Tk] + w2E[∆F1]− w2E[∆F2].
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Figure 5: Compassion between SUMO simulation and Proposition values.

in which, w1 is value of time (VOT) and w2 is fuel price. We should notice that the total cost
TCk is the incremental total cost instead of absolute value.

The derivation of E[Tk] has been shown in Proposition 3. We will show the calculation of
fuel consumption in the following part.

In order to justify the effect of platooning in a qualitative way, we assume a scenario where
the highway includes merging zone and platoon cruising section (Fig. 1). Merging zone is much
smaller than normal cruising section. To simplify the modeling, we assume that the following
vehicle always accelerates during the merging zone. Let the distance of merging be D1 and
the cruising distance after platooning be D2. The average speed on highway is v. We consider
relative benefits of coordinated platooning and define the cost for vehicle k as Fk = αDkvk

2,
which represents added fuel consumption from air drag based on distance and velocity [5]. α is
the coefficient of additional fuel consumption on distance and velocity. We express the increased
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fuel ∆F1 as:

∆F1 = αD1

(
D1

D1/v − Tk

)2

− αD1v
2.

In real scenarios, Tk � D1/v. We can use the technique of linearization to approximate the
expectation of ∆F1,

E[∆F1] = αE[Tk]
∂∆F1

∂Tk

∣∣∣∣
Tk=0

= 2αv3E[Tk].

Following vehicles in a platoon save a fraction η ∈ (0, 1) of fuel consumption when cruising alone
[5]. Let θ represent the fuel efficiency, we can show that:

E[∆F2] = ηθD2 Pr {Xk ≤ r} = ηθD2(1− e−λr).

Summing up these three parts, total cost can be expressed as:

E[TCk] = −w1E[Tk] + 2αw2v
3E[Tk]− w2E[∆F2]

= (2αw2v
3 − w1)(

1

λ
eλr − r − 1

λ
)

− w2ηθD2(1− e−λr).

To minimize the total cost of platooning, we investigate the optimal value of r by:

∂E[TCk]

∂r
=

(2αw2v
3 − w1)

(
e2λr − eλr

)
−D2w2ηθλ

eλr
.

We analyze the results in two parts:

1. When 2αw2v
3 − w1 ≤ 0, we have ∂E[TCk]

∂r < 0. E[TCk] decreases as we have higher r;

2. When 2αw2v
3 − w1 > 0, we let ∂E[TCk]

∂r = 0. E[TCk] gets the optimal value when r =

1
λ ln

(
1
2 + 1

2

√
4D2w2ηθλ
2αw2v3−w1

+ 1
)

.

We use nominal values in Table 1 to justify the effect of r on total cost.
Intuitively, the total cost changes with cruising distance D2. We chose three different cruising

distances to present the effect of r on total cost. The results are shown in Fig. 6. From the
figure we can see that when the cruising distance is small (5.0 km), increased fuel consumption
∆F1 plays a major part. Optimal threshold r approximates 0 in this case. Total cost almost
increases with the value of r, which increases the accessibility of platooning. When forming
more platoons, the reduction of time increases. However, the fuel cost during merging increases
more rapidly. In this scenario, the value of total cost is positive, which means the benefits are
negative. We tend to have lower r to minimize the total cost.

When the cruising distance equals 30.0 km, the proportion of fuel cost reduction after merg-
ing increases. The total cost first decreases and then increases at a turning point. There exists
an optimal threshold of platooning as we have shown.

When the cruising distance increases to 80.0 km, the fuel cost reduction after merging weighs
more than two other parts. As the forming of platoons becomes more accessible, longer driving
distances represent higher fuel savings. We tend to increase the threshold to minimize total cost.
In this case, total cost is negative. We could have more benefits as the platoon operates on the
highway.
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Table 1: Nominal values in Poisson arrival process

Parameter Value

η 0.1
λ 0.02 veh/s
α 6.78× 10−7 L · s2/m3

θ 41.0 L/100km
v 55 miles/hour
w1 25.8 $/hour
w2 0.868 $/L

Figure 6: Effects of r on cost of platooning for various driving distances over the cruising zone.

5 Concluding remarks

In this paper, we have developed a threshold-based method of platooning. We presented three
platooning characteristics, including platoon size, expectation of headway between platoons and
time reduction due to platooning. Then we analyzed optimal platooning threshold to minimize
total incremental cost. The results show that the optimal platooning policy depends on the
length of highway section. If the highway section is long enough, higher threshold and longer
platoons are favorable; otherwise we should have shorter platoons.

This work can be extended in several directions. First, analysis of platoon characteristics
can consider more general distributions of arrival headways (e.g. normal distribution). Second,
deceleration and the mix of acceleration/deceleration can be analyzed. Third, more flexible
threshold (e.g. platoon size-sensitive) can be incorporated.
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