
Graph Temporal Logic Inference for Classification and

Identification

Zhe Xu, Alexander J Nettekoven, A. Agung Julius, Ufuk Topcu ∗

March 26, 2019

Abstract

Inferring spatial-temporal properties from data is important for many complex sys-
tems, such as additive manufacturing systems, swarm robotic systems and biological
networks. Such systems can often be modeled as a labeled graph where labels on the
nodes and edges represent relevant measurements such as temperatures and distances.
We introduce graph temporal logic (GTL) which can express properties such as “when-
ever a node’s label is above 10, for the next 3 time units there are always at least two
neighboring nodes with an edge label of at most 2 where the node labels are above 5”.
This paper is a first attempt to infer spatial (graph) temporal logic formulas from data
for classification and identification. For classification, we infer a GTL formula that
classifies two sets of graph temporal trajectories with minimal misclassification rate.
For identification, we infer a GTL formula that is informative and is satisfied by the
graph temporal trajectories in the dataset with high probability. The informativeness
of a GTL formula is measured by the information gain with respect to given prior
knowledge represented by a prior probability distribution. We implement the proposed
approach to classify the graph patterns of tensile specimens built from selective laser
sintering (SLS) process with varying strengths, and to identify informative spatial-
temporal patterns from experimental data of the SLS cooldown process and simulation
data of a swarm of robots.

1 Introduction

Inferring spatial-temporal properties from data is important in many applications (e.g., addi-
tive manufacturing processes, swarm robotics and biological networks). Consider a powder
bed of selective laser sintering (i.e., SLS, one type of additive manufacturing) processes
[1] modeled as a labeled graph (as shown in Fig. 1). Each subregion of the powder bed
is considered a node of the graph and edges exist between nodes (subregions) within cer-
tain distance. Given the time-varying temperature labels at each node and the distance

∗Zhe Xu is with the Institute for Computational Engineering and Sciences (ICES), University of Texas,
Austin, Austin, TX 78712, Alexander Nettekoven is with the Walker Department of Mechanical Engineering
at the University of Texas at Austin, Austin, TX 78712, A. Agung Julius is with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, Ufuk Topcu is with
the Department of Aerospace Engineering and Engineering Mechanics, and the Institute for Computational
Engineering and Sciences (ICES), University of Texas, Austin, Austin, TX 78712, e-mail: zhexu@utexas.edu,
nettekoven@utexas.edu, juliua2@rpi.edu, utopcu@utexas.edu.

1

ar
X

iv
:1

90
3.

09
71

4v
1

 [
cs

.L
O

]
 2

2
M

ar
 2

01
9

labels on each edge of the graph, we intend to infer knowledge that can characterize the
spatial-temporal patterns that emerge in this process.

The representation of the inferred knowledge should be both interpretable to humans
and amenable to rigorous mathematical analysis. Variants of temporal logic and spatial logic
can express temporal and spatial patterns in a form that resembles natural language [2].
Furthermore, such expressions are suitable for verification and controller synthesis. Over
the past decade, there has been a growing interest in inferring temporal logic formulas from
system trajectories [2, 3, 4, 5, 6, 7, 8, 9]. However, to the best of our knowledge, there has
been no work on inferring spatial or spatial temporal logic formulas from data.

Two different categories exist for inferring such spatial or temporal logics from data:
classification and identification. Given two sets of data, the classification problem is about
constructing spatial temporal logic formulas that can classify these two sets of data with
minimal misclassification rate. The identification problem is about identifying spatial tem-
poral logic formulas that best fit one set of data.

For identification, one measure of the quality of the inferred formula is its informative-
ness, i.e., the extent to which the inferred formula deviates from prior knowledge. In the
example as shown in Fig. 1, suppose that we are given two candidate formulas: one reads
as “for every node, either it is red or it is not red” and the other one reads as “for every
blue node, there exist at least two red nodes among the neighbors of its neighbors with edge
labels of at least 2”. While both formulas are consistent with the labeled graph, the first
formula is actually a tautology and holds for any labeled graph. In comparison, the second
formula describes a specific pattern existing in this labeled graph, hence it is considered to
be more informative than the first formula.

2 2

2
223

1

1

2

2 4
3

2
121

3
3

2

2

3

2

3

3

Figure 1: The powder bed of SLS process recorded with an infrared camera (a) [1] and a
swarm of mobile robots (b) [10] can be both modeled as a labeled graph (c), where the colors
indicate node labels (e.g., temperature, probabilistic density) and the numbers indicate edge
labels (e.g., distance).

In this paper, we first introduce parametric graph temporal logic (pGTL), which is an

2

extension of parametric linear temporal logic and focuses on the spatial-temporal properties
of the labels on a graph. A pGTL formula has free parameters in the predicates and
operators. A graph temporal logic (GTL) formula is then induced by a pGTL formula by
assigning real values to the parameters of the pGTL formula. We study the following two
problems of inferring GTL formulas from spatial-temporal data over a graph:

• Inferring GTL formulas for classification:
We infer a GTL formula that best classifies two sets of graph-temporal trajectories
(formalized in Sec. 2).

• Inferring informative GTL formulas for identification:
We infer a GTL formula that is consistent with a set of graph-temporal trajectories and
provides a high information gain (formalized in Sec. 4) over a given prior probability
distribution.

In Sec. 5.1, we implement the classification method to infer GTL formulas that can classify
the graph patterns of tensile specimens built from selective laser sintering (SLS) process
with varying strengths. In Sec. 5.2 and 5.3, we implement the identification method to
infer informative GTL formulas from experimental data of the SLS cooldown process and
simulation data of a swarm of robots, respectively.
Related Work. There exist several spatial (graph) temporal logics in the literature, such as
spatial-temporal logic (SpaTeL) in [11] and signal spatio-temporal logic (SSTL) in [12]. Our
proposed GTL is different from both SpaTeL and SSTL as GTL focuses on the propositions
on the node labels and edge labels of a graph, and whether there exist certain number of
neighbors that satisfy the node propositions with the connecting edges satisfying the edge
propositions. GTL is also different from the logics of graphs in [13, 14] as they consider
logical statements about the structure of the graphs and the changes in the structure, while
we consider logical statements about (possibly time-varying) labels that are defined on
graphs with fixed structure.

Our approach of inferring GTL formulas from data is closely related to inferring temporal
logic formulas from data. The work in [2, 5, 8] focus on inferring temporal logic formulas
for classifying two sets of trajectories, while the work in [3, 6, 9, 15] focus on identifying
temporal logic formulas from system trajectories.

2 Parametric Graph Temporal Logic and Graph Tem-
poral Logic

In this section, we introduce parametric graph temporal logic (pGTL) and graph temporal
logic (GTL).

2.1 Node and Edge Propositions

Let G = (V,E) be an undirected graph, where V is a finite set of nodes and E is a finite
set of edges. We use X to denote a (possibly infinite) set of node labels and Y to denote
a (possibly infinite) set of edge labels. We use s(e) = {v1, v2} to denote the fact that the
edge e ∈ E connects v1 ∈ V and v2 ∈ V . T = {1, 2, . . . } is a discrete set of time indices. A
graph with node labels and edge labels is also called a labeled graph.

3

Definition 1 A graph-temporal trajectory on a graph G is a tuple g = (x, y), where x :
V × T → X assigns a node label for each node v ∈ V at each time index k ∈ T, and
y : E × T→ Y assigns an edge label for each node e ∈ E at each time index k ∈ T.

We use x(v, k) to denote the label of node v at time index k and y(e, k) to denote the
label of edge e at time index k.

Definition 2 An atomic node proposition is a predicate on X , i.e., a Boolean valued map
from X . An edge proposition is a predicate on Y.

We use π to denote an atomic node proposition, and O(π) to denote the subset of X for
which π is true. We use ρ to denote an edge proposition, and O(ρ) to denote the subset of
Y for which ρ is true.

We define that a graph-temporal trajectory g = (x, y) satisfies an atomic node propo-
sition π at a node v and at a time index k, denoted as (g, v, k) |= π, if and only if
x(v, k) ∈ O(π). Similarly, we define that a graph-temporal trajectory g = (x, y) satis-
fies an edge proposition ρ at an edge e and at a time index k, denoted as (g, e, k) |= ρ, if
and only if y(e, k) ∈ O(ρ).

v1 v2 v3

v4 v5 v6

e1 e2

e3

e4

e5

e7
e6

e8

1

1

1

2 1

1

2

2

2
2

02 1

0

Figure 2: An example of a graph-temporal trajectory on an undirected graph, with the red
numbers indicating node labels, and the blue numbers indicating edge labels, all at a fixed
time index k.

Example 1 For the graph in Fig. 2, the node and edge labels are from a graph-temporal
trajectory g by fixing a time index k. The atomic node proposition π = (x ≤ 0) is satisfied
by g at v3 and v6 at time index k. The edge proposition ρ = (y ≥ 2) is satisfied by g at e1,
e4, e6 and e8 at time index k.

Definition 3 Given a graph-temporal trajectory g = (x, y) on a graph G, a subset V ′ ⊆ V
of nodes and an edge proposition ρ, we define the neighbor operation ©ρ : 2V ×T→ 2V ×T
as

©ρ (V ′, k) =(
{v|∃v′ ∈ V ′,∃e ∈ E, s(e) = {v′, v}, (g, e, k) |= ρ}, k

)
.

Intuitively, ©ρ(V
′, k) consists of nodes that can be reached from V ′ through an edge where

the edge proposition ρ is satisfied by g at time index k. Note that neighbor operations can
be applied successively.

Example 2 For the graph-temporal trajectory g on the graph G at time index k in Fig. 2,

©y≤1({v4}, k) =
(
{v1, v5}, k

)
,

©y≤1©y≤1 ({v4}, k) =©y≤1

(
{v1, v5}, k

)
=
(
{v2, v4}, k

)
.

4

2.2 pGTL Formulas and GTL formulas

We define the syntax of a parametric graph temporal logic (pGTL) formula ϕ recursively as

ϕ := π | ∃N (©ρn · · ·©ρ1)ϕ | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ♦∼iϕ,

where n and N are positive integers, π is an atomic node proposition, ρi (i = 1, . . . , n) are
edge propositions, ∃N (©ρn · · ·©ρ1)ϕ reads as “there exists at leastN nodes under the neigh-
bor operation ©ρn · · ·©ρ1 that satisfy ϕ ”, ¬ and ∧ stand for negation and conjunction re-
spectively, U is a temporal operator representing “until”, ♦∼i is a parametrized temporal op-
erator representing “parametrized eventually”, where ∼∈ {≥,≤} and i ∈ T is a temporal pa-
rameter. We can also derive ∨ (disjunction), ♦ (eventually), � (always), �∼i (parametrized
always), U∼i (parametrized until) and ⇒ (implication) from the above-mentioned opera-
tors [16]. We can also derive the parametrized temporal operators ♦≥i1,≤i2 and �≥i1,≤i2
(i1 < i2, i1, i2 ∈ T) as ♦≥i1,≤i2φ = ♦≥i1φ ∧ ♦≤i2φ and �≥i1,≤i2φ = �≥i1φ ∧�≤i2φ.

The satisfaction relation (g, v, k) |= ϕ for a graph-temporal trajectory g at node v at
time index k with respect to a pGTL formula ϕ is defined recursively as follows:

(g, v, k) |= π iff x(v, k) ∈ O(π)

(g, v, k) |= ∃N (©ρn · · ·©ρ1)ϕ iff ∃v1, . . . , vN (vi 6= vj fori 6= j), s.t.

∀i, (vi, k) ∈ ©ρn · · · ©ρ1 (v, k) and (g, vi, k) |= ϕ

(g, v, k) |= ¬ϕ iff (g, v, k) 6|= ϕ

(g, v, k) |= ϕ1 ∧ ϕ2 iff (g, v, k) |= ϕ1 and (g, v, k) |= ϕ2

(g, v, k) |= ϕ1Uϕ2 iff ∃k′ ≥ k, s.t. (g, v, k′) |= ϕ2,

(g, v, k′′) |= ϕ1,∀k′′ ∈ [k, k′]

(g, v, k) |= ♦∼iϕ iff ∃k′ ∼ k + i, s.t. (g, v, k′) |= ϕ

Intuitively, ∃N (©ρn · · ·©ρ1)ϕ is satisfied by a graph-temporal trajectory g at a node v ∈ V
and at a time index k if there exist at least N nodes in (©ρn · · ·©ρ1)(v, k) where ϕ is
satisfied by g at time index k. Note that, by definition, if (©ρn · · ·©ρ1)(v, k) consists of
fewer than N nodes, then ∃N (©ρn · · ·©ρ1)ϕ is false.

We also define that a graph-temporal trajectory g satisfies a pGTL formula ϕ at a node
v, denoted as (g, v) |= ϕ, if g satisfies ϕ at node v at time index 1.

Definition 4 We define a graph temporal logic (GTL) formula ϕθ as a pGTL formula ϕ
with fixed parameter valuation θ.

Example 3 For the pGTL formula ϕ = ∃N ©y≤a (x ≥ b), we can induce a GTL formula
ϕθ = ∃2 ©y≤1 (x ≥ 1) with θ([N, a, b]) = [2, 1, 1]. For the graph-temporal trajectory g on
the graph shown in Fig. 2, the set of nodes where ϕθ is satisfied by g at time index k are
{v4, v5}.

2.3 Subtypes of pGTL and GTL Formulas

Graph-temporal trajectories of finite time length are sufficient to satisfy (resp. violate)
syntactically co-safe (resp. safe) pGTL formulas, which are defined as follows.

5

Definition 5 The syntax of the syntactically co-safe pGTL formula is defined recursively
as

ϕ :=> | π | ¬π | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♦ϕ | ϕ1Uϕ2 | ♦∼iϕ
| �≤iϕ | ϕ1U∼iϕ2 | ∃N (©ρn · · ·©ρ1)ϕ.

Definition 6 The syntax of the syntactically safe pGTL formula is defined as

ϕ :=⊥ | π | ¬π | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦≤iϕ | �∼iϕ
| ϕ1U≤iϕ2 | ∃N (©ρn · · ·©ρ1)ϕ.

We further introduce type-I and type-II pGTL formulas.
(1) A type-I pGTL formula ϕ is defined as

ϕ := ∃N (©ρn · · ·©ρ1)π | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ♦∼iϕ.

(2) A type-II pGTL formula ϕ is defined recursively as

ϕ := ∃N (©ρn · · ·©ρ1)φ,

where φ is defined recursively as

φ := π | ¬φ | φ ∧ φ | φUφ | ♦∼iφ.

The subtypes of GTL Formulas can be defined similarly with fixed parameter valuations.
A pGTL formula can be neither a type-I pGTL formula nor a type-II pGTL formula. A
pGTL formula could also be of more than one subtypes. For example, if a pGTL formula
is both a type-I pGTL formula and a syntactically co-safe pGTL formula, then it is called
a type-I syntactically co-safe pGTL formula.

Definition 7 A deterministic finite automaton (DFA) is a tuple A = (Q, q0,Σ, δ, Acc)
where Q = {q0, q1, . . . , qK−1} is a finite set of states, q0 is the initial state, Σ is the al-
phabet, δ : Q × Σ → Q is the transition relation and Acc ⊆ 2Q is a finite set of accepting
states [17].

We useAP I andAP II to denote the sets of atomic predicates in the form of ∃N (©ρn · · ·©ρ1)π
and π, respectively. At a node v and over AP I (resp. AP II), the word generated by a graph-
temporal trajectory g = (x, y) is a sequence Lv

(
x(·, 1), y(·, 1)

)
, . . . ,Lv

(
x(·, L), y(·, L)

)
, where

Lv : X × Y → 2AP
I

(resp. 2AP
II

) is a labeling function assigning a subset of atomic pred-
icates in API (resp. APII) that hold true at node v to each

(
x(·, k), y(·, k)

)
, k ∈ [1, L]. If

a pGTL formula ϕ is a type-I pGTL formula and it is syntactically co-safe (resp. safe),
then we can build a DFA Aϕθ,v (resp. A¬ϕθ,v) over AP I that accepts precisely the words
generated by graph-temporal trajectories that satisfy (resp. violate) the GTL formula ϕθ
at node v for any θ. If a pGTL formula ϕ = ∃N (©ρn · · ·©ρ1)φ is a type-II pGTL formula
and it is syntactically co-safe (resp. safe), we can build a DFA Aφθ,v (resp. A¬φθ,v) over
AP II that accepts precisely the words generated by graph-temporal trajectories that satisfy
(resp. violate) φθ′ at node v for any θ′ [17].

In the following sections of the paper, we only focus on type I/type II syntactically
co-safe/syntactically safe pGTL (GTL) formulas and we simply call them pGTL (GTL)
formulas for conciseness. We define that a syntactically co-safe GTL formula ϕθ is violated
by a graph-temporal trajectory g of finite time length L at a node v if ϕθ is not satisfied
by g at node v; and a syntactically safe GTL formula ϕθ is satisfied by a graph-temporal
trajectory g of finite time length L at a node v if ϕθ is not violated by g at node v.

6

3 Graph Temporal Logic Inference for Classification

In this section, we present the problem formulation and solution to infer GTL formulas for
classification.

Suppose that we are given a set DGL = {(gk, lk)}NDk=1 of labeled graph-temporal trajec-
tories of time length L on a graph G, where the classification labels lk = 1 and lk = −1
represent desired and undesired behaviors, respectively. For a GTL formula ϕθ, we define
the satisfaction signature ζϕθ (gk, v) of a graph-temporal trajectory gk at node v as follows:
ζϕθ (gk, v) = 1 if (gk, v) |= ϕθ; and ζϕθ (gk, v) = −1 if (gk, v) 6|= ϕθ. A labeled graph-temporal
trajectory (gk, lk) is misclassified by ϕθ at node v if ζϕθ (gk, v) 6= lk.

We define the nodal misclassification rate of ϕθ in DGL as

MR(DGL , ϕθ) =

∑
v∈V |{(gk, lk) ∈ DGL : ζϕθ (gk, v) 6= lk}|

|DGL ||V |
,

where |S| denotes the cardinality of a set S.
The size of a GTL formula ϕθ, denoted as η(ϕθ), is defined as the number of Boolean

connectives (i.e., conjunctions or disjunctions) in ϕθ. Note that logically equivalent formulas
may have different sizes.

Problem 1 Given a dataset DGL = {g1, . . . , gm}, a prior probability distribution FGL , a real
constant mth ∈ [0, 1) and an integer constant ηth ∈ (0,∞), construct a GTL formula ϕθ
that satisfies the following two constraints:

• classification constraint: MR(DGL , ϕθ) ≤ mth, i.e., the nodal misclassification rate
should not exceed mth;

• size constraint: η(ϕθ) ≤ ηth, i.e., the size of ϕθ should not exceed ηth.

Most existing approaches for inferring temporal logic formulas for classification apply
readily to solve Problem 1. As an example, we use the pruning and growing approach
illustrated in [2]. We start from a set P of primitive pGTL formulas (also called templates),
i.e., pGTL formulas that do not contain conjunctions or disjunctions. We use particle swarm
optimization (PSO) [18] to compute the parameter valuation θ for each primitive pGTL
formula from P that minimizes the nodal misclassification rate MR(DGL , ϕθ). Other global
optimization methods such as simulated annealing [2] and Monte-carlo sampling [19] are also
valid candidates for such computations. If a GTL formula that satisfies the classification
constraint is not found, we only keep the pGTL formulas in P such that the misclassification
rates can be achieved below a threshold m̂th ∈ (mth, 1) (pruning). Then we infer a GTL
formula ϕθ in the form of ϕθ = ϕ1

θ1
∨ ϕ2

θ2
or ϕθ = ϕ1

θ1
∧ ϕ2

θ2
(growing), where ϕ1 and ϕ2

are chosen from the pGTL formulas kept in the first step. In this way, we keep increasing
the number of primitive pGTL formulas connected with conjunctions or disjunctions until
a GTL formula that satisfies the classification constraint is found, or the size constraint is
violated.

4 Graph Temporal Logic Inference for Identification

In this section, we present the problem formulation and solution to identify GTL formulas
from data.

7

4.1 Problem Formulation

We use BGL to denote the set of all possible graph-temporal trajectories with time-length L
on the graph G. We are given a dataset SGL = {g1, . . . , gm} ⊂ BGL as a collection of graph-
temporal trajectories. We use FGL : BGL → [0, 1] to denote a prior probability distribution
over BGL , and PFGL ,ϕθ,v to denote the probability of a GTL formula ϕθ being satisfied at

node v based on FGL , i.e.,

PFGL ,ϕθ,v = P{(g, v) |= ϕθ}, g ∼ FGL .

Assumption 1 We assume that every graph-temporal trajectory in BGL occurs with non-zero
probability based on FGL .

From Assumption 1, for any g ∈ BGL , if (g, v) |= ϕθ, then PFGL ,ϕθ,v > 0.

Definition 8 Given a prior probability distribution FGL , we define F̄ϕθ,vL : BGL → [0, 1] as
the posterior probability distribution given that the GTL formula ϕθ evaluates to true at
node v, which is expressed as

F̄ϕθ,vL (g) =

FGL (g)

PFG
L
,ϕθ,v

if (g, v) |= ϕθ,

0 if (g, v) 6|= ϕθ.

Remark 1 The expression of F̄ϕθ,vL can be directly derived using Bayes’ theorem.

Definition 9 We define

I(FGL , F̄
ϕθ,v
L) :=

1

L
·DKL(F̄ϕθ,vL ||FGL)

as the information gain when the prior probability distribution FGL is updated to the poste-
rior probability distribution F̄ϕθ,vL , where DKL(F̄ϕθ,vL ||FGL) is the Kullback-Leibler divergence
from FGL to F̄ϕθ,vL .

Remark 2 If ϕθ = >, then obviously PFGL ,ϕθ,v = 1 and I(FGL , F̄
ϕθ,v
L) = 0 for any node

v, i.e., tautologies provide no information gain. For completeness, we also define that the
information gain I(FGL , F̄

ϕθ,v
L) = 0 for any node v if PFGL ,ϕθ,v = 0. So if ϕθ = ⊥, then

PFGL ,ϕθ,v = 0 and I(FGL , F̄
ϕθ,v
L) = 0 for any node v, i.e., contradictions provide no informa-

tion gain.

Definition 10 We define χ(ϕθ,SGL) as the averaged proportion of nodes (in G) at which
the GTL formula ϕθ is satisfied in the dataset SGL , i.e.,

χ(ϕθ,SGL) =

∑
i |{v ∈ V | (gi, v) |= ϕθ}|

|V ||SGL |
.

Problem 2 Given a dataset SGL , a prior probability distribution FGL and a real constant
pth ∈ (0, 1], compute the parameter valuation θ for a pGTL formula ϕ (selected from a set P
of templates) that maximizes the average information gain at each node 1

|V |
∑
v∈V I(FGL , F̄

ϕθ,v
L)

while satisfying the coverage constraint: χ(ϕθ,SGL) ≥ pth, i.e., ϕθ is satisfied for at least pth

proportion of nodes in average in SGL .

8

Note that we focus on the parameter identification problem based on pGTL formulas
selected from a set of templates and thus the size constraint is not needed.

To solve Problem 2, it is computationally inefficient to use optimzation algorithms such
as PSO and compute the average information gain for each candidate GTL formula (see Sec.
4.2 for the time complexity). In Sec. 4.3, we prove that the optimal parameter valuation of a
GTL formula lies in the minimal satisfying set of parameter valuations. Thus we only need
to compute the average information gain for the GTL formulas with parameter valuation in
the (approximated) minimal satisfying set (see Sec. 4.4).

4.2 Computation of Information Gain of GTL Formulas

In this subsection, we present the algorithm for computing the average information gain for
GTL formulas.

Proposition 1 For a GTL formula ϕθ, if PFGL ,ϕθ,v > 0,

I(FGL , F̄
ϕθ,v
L) =

− log PFG
L
,ϕθ,v

L .

Proof 1 Straightforward from Definitions 8 and 9.

In the following, for computational efficiency we choose prior probability distributions
such that there exist no spatial or temporal dependencies for the labels on different nodes
and edges. Note that the proposed methodology readily applies to cases where such spatial
or temporal dependencies exist, e.g., when the prior distribution is governed by Markov
random fields (spatial dependence) or discrete-time Markov chains (temporal dependence),
but the computational complexity is significantly increased (see Sec. IV-B of [15] for an
example for parametric linear temporal logic).

Algorithm 1 is for computing the avearge information gain for GTL formulas. We first
explain how to compute the avearge information gain for a type-I syntactically co-safe GTL
formula ϕθ. We use pϕθ,vL (`, qk) to denote the probability of a graph-temporal trajectory of
time length L satisfying ϕθ at node v, conditioned on the fact that the state of the DFA
Aϕθ,v = (Qϕθ,v, qϕθ,v0 , 2AP

I

, δϕθ,v, Accϕθ,v) at time index ` (1 ≤ ` ≤ L) being the state qk.
We first initialize pϕθ,vL (L, qk) as (Line 9)

pϕθ,vL (L, qk) =

{
1 if qk ∈ Accϕθ,v;
0 otherwise.

We can compute pϕθ,vL (`, qk) recursively as (Line 11) p
ϕθ,v
L (`− 1, q0)

...
pϕθ,vL (`− 1, qK)

 =

 c
`
0,0 . . . c`0,K
...

...
...

c`K,0 . . . c`K,K

 p

ϕθ,v
L (`, q0)

...
pϕθ,vL (`, qK)

 ,
where c`j,k is the probability of transitioning from qj to qk at time index ` and c`j,k can be

calculated based on FGL (Line 11). Finally, we have PFGL ,ϕθ,v = pϕθ,vL (1, q0) (Line 12).
For type-I syntactically safe GTL formulas, by replacing each ϕθ in the above deductions

with ¬ϕθ, we can compute PFGL ,ϕθ,v = 1− p¬ϕθ,vL (1, q0) (Line 13).

9

For a type-II GTL formula ϕθ = ∃N (©ρn · · ·©ρ1)φθ′ , PFGL ,ϕθ,v can be computed as

(Line 17)

Nvϕθ∑
k=N

Nv
ϕθ

!

k!(Nv
ϕθ
− k)!

PkFGL ,φθ′ ,v(1− PFGL ,φθ′ ,v)
Nvϕθ
−k,

where Nv
ϕθ

= | ©ρn · · · ©ρ1 (v, 1)| is the number of nodes in the set ©ρn · · · ©ρ1 (v, 1), and
PFGL ,φθ′ ,v can be computed in a similar way for type-I GTL formulas.

With PFGL ,ϕθ,v, we can compute I(FGL , F̄
ϕθ,v
L) according to Proposition 1 (Line 18).

The time complexity of Algorithm 1 is O(|V |LK2), where |V | is the number of nodes in
the graph, L is the time length of graph-temporal trajectories, K is the number of states of
Aϕθ,v (for type-I formulas) or Aφθ′ ,v (for type-II formulas).

Algorithm 1: Avearge information gain computation for GTL formulas.

1 function ComputeIG(SGL = {g1, . . . , gm}, ϕθ,FGL)
2 if ϕθ is a type-I GTL formula then
3 ψ ← ϕθ

4 else if ϕθ is a type-II GTL formula then
5 For ϕθ = ∃N (©ρn · · ·©ρ1)φθ′ , ψ ← φθ′

6 for v ∈ V do
7 Obtain the DFA Aψ,v (resp. A¬ψ,v) if ψ is syntactically co-safe (resp.

syntactically safe)
8 for k = 0 to K do

9 Initialize pψ,vL (L, qk)

10 for ` = L to 2, j = 0 to K do

11 For each k ∈ [0,K], calculate c`j,k p
ψ,v
L (`− 1, qj)←

∑K
k=0 c

`
j,kp

ψ,v
L (`, qk)

12 β ← pψ,vL (1, q0) if ψ is syntactically co-safe

13 β ← 1− pψ,vL (1, q0) if ψ is syntactically safe
14 if ψ is a type-I GTL formula then
15 γv ← β

16 else if ψ is a type-II GTL formula then

17 γv ←
Nvψ∑
k=N

Nv
ψ!

k!(Nv
ψ − k)!

βk(1− β)N
v
ψ−k

18 return I = − 1
|V |L

∑
v∈V log(γv)

4.3 Minimal Satisfying Set of Parameter Valuations

In this subsection, we introduce some related definitions and lemmas, leading to the result
in Proposition 2.

Definition 11 The polarity %(p, ϕ) of a scalar parameter p for a pGTL formula ϕ is defined

10

recursively as

%(p,¬ϕ) =∼ %(p, ϕ), %(p, f(x) ≤ p) = +, %(p, f(x) ≥ p) = −,
%(p,♦≤pϕ) = + ◦ %(p, ϕ), %(p,♦≥pϕ) = − ◦ %(p, ϕ),

%(p, ϕUψ) = %(p, ϕ ∧ ψ) = %(p, ϕ) ◦ %(p, ψ),

%(p,∃N ©y≤p ϕ) = + ◦ %(p, ϕ),

%(p,∃N ©y≥p ϕ) = − ◦ %(p, ϕ),

%(p,∃p©ρ ϕ) = − ◦ %(p, ρ) ◦ %(p, ϕ),

%(p, ϕ) = U, iff p does not appear in ϕ,

where f is some real-valued function, the operations ∼ and ◦ are as defined in the following
table [3]

∼
U U
+ -
- +

M M

◦ U + - M
U U + - M
+ + + M M
- - M - M

M M M M M

In this table, U,+,− and M represent undefined, positive, negative and mixed polarities
respectively.

Intuitively, the polarity %(p, ϕ) of a scalar parameter p for a pGTL formula ϕ is positive,
if the pGTL formula ϕ is easier to be satisfied when p is increased; and it is negative, if it
is easier to be satisfied when p is decreased.

Definition 12 For a graph G, we say that θ dominates θ′ with respect to a pGTL formula
ϕ, denoted as θ ≺ϕ θ′, if and only if ϕθ ⇒ ϕθ′ holds true and ϕθ′ ⇒ ϕθ does not hold true
at any node v for GTL formulas ϕθ and ϕθ′ .

For example, for the six GTL formulas induced from the same pGTL formula ϕ in Fig.
3, we have ϕθ2 ≺ ϕθ1 , ϕθ3 ≺ ϕθ2 , ϕθ4 ≺ ϕθ2 , ϕθ5 ≺ ϕθ2 , ϕθ6 ≺ ϕθ3 and ϕθ6 ≺ ϕθ4 .

Figure 3: The domination relationships among six GTL formulas.

Lemma 1 For two parameter valuations θ = [θ1, . . . , θz] and θ′ = [θ′1, . . . , θ
′
z], θ ≺ϕ θ′ if

θ 6= θ′ and the followings hold for each i ∈ [1, z]:{
θi ≤ θ′i, if %(θi, ϕ) = +;

θi ≥ θ′i, if %(θi, ϕ) = −.

11

Proof 2 Straightforward from Definitions 11 and 12.

Lemma 2 For two parameter valuations θ and θ′, if θ ≺ϕ θ′ for a pGTL formula ϕ, then
I(FGL , F̄

ϕθ,v
L) > I(FGL , F̄

ϕθ′ ,v
L) for any v and FGL .

Proof 3 As θ ≺ϕ θ′, we have ϕθ ⇒ ϕθ′ holds true and ϕθ′ ⇒ ϕθ does not hold true at any
node v. Thus, for any node v and any graph-temporal trajectory g ∈ BGL , if (g, v) |= ϕθ,
then (g, v) |= ϕθ′ . Besides, for any node v there exists at least one graph-temporal trajectory
ĝ ∈ BGL such that (ĝ, v) |= ϕθ′ and (ĝ, v) 6|= ϕθ. From Assumption 1, ĝ occurs with non-zero
probability based on FGL . Therefore, PFGL ,ϕθ,v < PFGL ,ϕθ′ ,v. Then according to Proposition

1, I(FGL , F̄
ϕθ,v
L) > I(FGL , F̄

ϕθ′ ,v
L) for any v and FGL .

For a pGTL formula ϕ, we denote by Θsat the set of parameter valuations θ such that
ϕθ satisfies the coverage constraint. We further denote Θunsat := Θ \Θsat.

Definition 13 A parameter valuation θ in Θsat is said to be minimal if there does not exist
a parameter valuation θ′ ∈ Θsat such that θ′ ≺ϕ θ. We define the minimal satisfying set Θs

as the set of minimal parameter valuations in Θsat.

Proposition 2 For a prior distribution FGL and Θs, if θ∗ = arg max
θ∈Θsat

1
|V |
∑
v∈V I(FGL , F̄

ϕθ,v
L),

then θ∗ ∈ Θs.

Proof 4 We prove Proposition 2 by contradiction. If θ∗ 6∈ Θs, then from Definition 13 there
exists θ ∈ Θsat such that θ 6= θ∗ and θ ≺ϕ θ∗. Then from Lemma 2 we have I(FGL , F̄

ϕθ,v
L) >

I(FGL , F̄
ϕθ∗ ,v
L) for any node v. Thus, we have

∑
v∈V I(FGL , F̄

ϕθ,v
L) >

∑
v∈V I(FGL , F̄

ϕθ∗ ,v
L).

But as θ∗ = arg max
θ∈Θsat

1
|V |
∑
v∈V I(FGL , F̄

ϕθ,v
L), we have

∑
v∈V I(FGL , F̄

ϕθ,v
L) ≤

∑
v∈V I(FGL , F̄

ϕθ∗ ,v
L).

Contradiction.

From Proposition 2, it can be seen that the optimal parameter valuation belongs to the
minimal satisfying set.

4.4 Information-Guided Identification of GTL Formulas

In this subsection, we present the algorithm for the information-guided identification of GTL
formulas.

For a pGTL formula ϕ, suppose that the parameter valuation θ = [θ1, . . . , θz] belongs to
a set Θ = [θmin

1 , θmax
1] × · · · × [θmin

z , θmax
z], where θmin

i ≤ θmax
i (i = 1, . . . , z). We define the

mapping Π : Θ→ [0, 1]z as follows: for each θ ∈ Θ, Π(θ) = ω = [ω1, . . . , ωz], where for each
i ∈ [1, z], we have

ωi =

{
(θi − θmin

i)/(θmax
i − θmin

i) if %(θi, ϕ) = +;

(θmax
i − θi)/(θmax

i − θmin
i) if %(θi, ϕ) = −.

In this way, we transform the set of parameter valuations Θ to the hypercube [0, 1]z, and for
each i the pGTL formula is easier to be satisfied if ωi is increased. Under this transformation,
we use Ωs to denote the set of parameter valuations transformed from the parameter valu-
ations in the minimal satisfying set Θs (we also call Ωs the transformed minimal satisfying
set).

12

Definition 14 The Hausdorff directed distance from a set S to a set S′ is defined as

d̂H(S, S′) = max
s∈S

min
s′∈S′

max
1≤i≤z

d(s′i, si),

where s = [s1, . . . , sz] ∈ S, the directed distance d(s′i, si) = si− s′i, if si > s′i; and d(s′i, si) =
0, if si ≤ s′i (i = 1, . . . , z).

For a pGTL formula ϕ, suppose that after several queries we obtain the sets Ω̂unsat
and Ω̂sat of parameter valuations, where for each ω ∈ Ω̂sat, ϕΠ−1(ω) satisfies the coverage

constraint; and for each ω ∈ Ω̂unsat, ϕΠ−1(ω) violates the coverage constraint (see Fig. 4).

We use Ω̂s to denote the set of minimal parameter valuations in Ω̂sat.

Definition 15 (ε-approximation [20]) A set of parameter valuations Ω̂s is an ε-approximation

of the set Ωs if d̂H(Ωs, Ω̂s) ≤ ε, where d̂H(Ωs, Ω̂s) is the Hausdorff directed distance from
Ωs to Ω̂s.

Proposition 3 [20] A set Ω̂s of parameter valuations is an ε-approximation of the trans-

formed minimal satisfying set Ωs if d̂H(knee(Ω̂unsat), Ω̂s) ≤ ε, where knee(Ω̂unsat) denotes
the set of knee points of Ω̂unsat (a point in the boundary of Ω̂unsat is called a knee point if by
subtracting a positive number from any of its coordinates we obtain a point in the interior
of Ω̂unsat).

The algorithm for the information-guided parametric identification of GTL formulas is
shown in Algorithm 2. The identification is performed in two steps. In the first step (Line
1 to Line 6), we approximate the minimal satisfying set Θs (transformed minimal satisfying
set Ωs) by iteratively querying the parameter space and updating the sets of parameter
valuations that satisfy and violate the coverage constraint, respectively. In the second
step (Line 7 to Line 10), we compute the parameter valuation that maximizes the avearge
information gain with the parameter valuations chosen from the approximated minimal
satisfying set.

We first initialize Ω̂sat and Ω̂s to be the vector of ones, and Ω̂unsat to be the vector
of zeros. We use r to denote the maximal directed distance from the set of knee points
knee(Ω̂unsat) to the set Ω̂s (Line 3), and ω to denote the knee point with the maximal
directed distance to the set Ω̂s (Line 4). After each query, we select the next query as
ω + r/2, which is guaranteed to lie neither in Ω̂sat nor in Ω̂unsat (we choose ω + r/2 in
the manner of binary search). Then we update Ω̂sat if ϕΠ−1(ω+r/2) satisfies the coverage

constraint, and update Ω̂unsat if it violates the coverage constraint [20] (Line 5). And the
same procedure repeats until an ε-approximation of Ωs is achieved. Finally, we identify the
GTL formula with the parameter valuation in the approximated minimal satisfying set that
provides the highest avearge information gain (Line 7 to Line 10).

5 Case Studies

We illustrate our approaches on three studies, with Case Study 1 on the classification prob-
lem, and Case Study 2 and 3 on the identification problem. The data used in Case Study 1
and 2 are from the SLS 3D printer at UT Austin, recorded with FLIR 6701 MWIR stationary
Infrared camera.

13

b (normalized to [0, 1])

0
a (normalized to [0, 1])

Figure 4: Querying the parameter space for a pGTL formula ∃N ©y≤a (x ≤ b) (with a
and b dimensions shown). Green and red points correspond to parameter valuations of
GTL formulas that satisfy and violate the coverage constraint respectively, while the purple
points denote the knee points.

5.1 Case Study 1

The first case study is on classifying the graph patterns of ten tensile specimens built from
SLS process (see Fig. 5). The tensile specimens have varying strengths, where the five
stronger specimens labeled 1 have tensile strength above 46 MPa and the other five labeled
-1 have tensile strength below 34 MPa.

Figure 5: Infrared image of the rectangular cross-sections of the tensile specimens on the
surface of the SLS powder bed [1].

We partition the fill region of each tensile specimen into 20 subregions (1200×1200 µm2

for each subregion, with 210 layers), where each subregion is considered a node of a fully
connected graph. The edge label y represents the Euclidean distance between the nodes (1
unit represents 1200 µm). As different layers are sintered at evenly spaced time instants,
we use the layer indices to represent the time indices.

We use the following templates for type-I pGTL formulas (while other valid pGTL for-
mulas can be also added to the set of templates, we choose the following ones as they are
simple and sufficiently expressive for our applications):

PI = {�≥i1,≤i2∃N ©ρ π, ♦≥i1,≤i2∃N ©ρ π,

�≥i1,≤i2♦≤i3∃N ©ρ π, ♦≥i1,≤i2�≤i3∃N ©ρ π,

�(π1 ⇒ �≤i∃N ©ρ π2), �(π1 ⇒ ♦≤i∃N ©ρ π2)},

14

Algorithm 2: Information-guided parameter identification of GTL formulas.

1 Initialize Ω̂sat, Ω̂s, Ω̂unsat, Î ← 0

2 while d̂H(knee(Ω̂unsat), Ω̂s) > ε do

3 r ← max
ω∈knee(Ω̂unsat)

d(ω, Ω̂s)

4 ω ← arg max
ω∈knee(Ω̂unsat)

d(ω, Ω̂s), ω ← ω + r/2

5 Add ω to Ω̂sat if ϕΠ−1(ω) satisfies the coverage constraint and add ω to Ω̂unsat
otherwise

6 Update Ω̂s as the minimal satisfying set of Ω̂sat

7 for ω ∈ Ω̂s do
8 I ← ComputeIG(SGL , ϕΠ−1(ω),FGL)

9 if I > Î then

10 Î ← I, ω̂ ← ω

11 return ϕΠ−1(ω̂)

where π, π1 and π2 are atomic node propositions in the form of x ≥ c1 or x ≤ c1 (c1 ∈ R), ρ
is an edge proposition in the form of y ≤ c2 (c2 is a positive integer), N is a positive integer,
i1, i2, i3, i ∈ T and i1 < i2.

We use the following templates for type-II pGTL formulas:

PII = {∃N ©ρ �≥i1,≤i2π, ∃N ©ρ ♦≥i1,≤i2π,

∃N ©ρ �≥i1,≤i2♦≤i3π, ∃N ©ρ ♦≥i1,≤i2�≤i3π},

where π, ρ, N , i1, i2 and i3 are as described in PI.
We set mth = 0.02, ηth = 3 and m̂th = 0.1. Using the approach illustrated in Sec. 3, we

obtain the following GTL formula from PI and PII with zero nodal misclassification rate:

ϕ∗θ∗,1 =�
(
T ≥ 181.1⇒ �≤6∃8©y≤2 T ≤ 198.0

)
∧

�
(
T ≤ 204.0⇒ �≤2∃3©y≤1 T ≥ 181.8

)
,

which means “(for any node) whenever the temperature is at least 181.1 C◦, then for the
next 6 layers there are always at least 8 nodes within distance of 2 where the temperature
is at most 198.0 C◦; whenever it is at most 204.0 C◦, then for the next 2 layers there are
always at least 3 nodes within distance of 1 where the temperature is at least 181.8 C◦”.

ϕ∗θ∗,1 is validated with another set of ten tensile specimens (five labeled 1 with tensile
strength above 43 MPa and five labeled -1 with tensile strength below 37 MPa), with nodal
misclassification rate of 8.33%.

5.2 Case Study 2

The second case study is on identifying informative patterns from data of SLS cooldown
process (see Fig. 1 (a) in Sec. I). We record 16 graph temporal trajectories from 7× 7 grids
of the powder bed, where each of the 49 cells (400×400 µm2 for each cell) is considered a

15

node of a fully connected graph. The edge label y represents the Euclidean distance between
the nodes (1 unit represents 400 µm).

We set pth = 0.98 and ε = 0.05. Through Algorithm 2, we obtain the best type-I and
type-II GTL formulas from PI and PII as (with the average information gain of 0.1563 and
0.0013, respectively, both with coverage rate of 100%):

ϕI∗
θ∗,2 = �

(
T ≥ 183.4⇒ �≤3∃2©y≤1 T ≤ 182.8

)
,

ϕII∗
θ∗,2 = ∃4©y≤2 �≥3,≤8(T ≥ 178.7),

where ϕI∗
θ∗,2 means “(for any node) whenever the temperature is at least 183.4 C◦, then

for the next 3 time steps there are always at least 2 nodes within distance of 1 where the
temperature is at most 182.8 C◦”, and ϕII∗

θ∗,2 reads as “(for any node) there exists at least
4 nodes within distance of 2 where the temperature is always at least 178.7 C◦ from time
step 3 to 8” (each time step lasts for 33 milliseconds).

ϕI∗
θ∗,2 and ϕII∗

θ∗,2 are validated with another set of 16 graph temporal trajectories recorded
from another layer of the powder bed, both with coverage rate of 100%.

5.3 Case Study 3

The third case study is on identifying informative patterns from simulation data of a swarm
of robots. We partition the workspace into 9 subregions (as shown in Fig. 6), where each
subregion is considered a node of a fully connected graph. The edge label y represents the
Euclidean distance between the centroids of the subregions. The probabilistic densities of
the robots in the subregions are governed by a time-varying Markov chain [21].

Figure 6: The swarm of 72 robots in the 9 sub-regions.

We randomly generate graph-temporal trajectories and randomly choose 10 from them
that satisfy the following constraint: whenever the probabilistic density of a subregion
reaches above 1/8, then for the next 2 time units there always exists at least one neighbor
subregion within distance of 1 with probabilistic density below 1/9. Then we infer a GTL
formula from the 10 graph-temporal trajectories using Algorithm 2.

We set pth = 0.98 and ε = 0.05. Through Algorithm 2, we obtain the best type-I and
type-II GTL formulas from PI and PII as (with the average information gain of 0.1 and

16

0.0043, respectively, both with coverage rate of 100%):

ϕI∗
θ∗,3 = �

(
x ≥ 0.1894⇒ �≤2∃1©y≤1 x ≤ 0.1137

)
,

ϕII∗
θ∗,3 = ∃2©y≤1 �≥4,≤6(x ≥ 0.0379),

where x is the probabilistic density in a subregion. It can be seen that ϕI∗
θ∗,3 is different but

similar with the set constraint.
ϕI∗
θ∗,3 and ϕII∗

θ∗,3 are validated with another set of 10 randomly generated graph temporal
trajectories that satisfy the set constraint, both with coverage rate of 100%.

6 Conclusion

We have introduced GTL and proposed the framework and algorithms to infer GTL formulas
from data for classification and identification. For future work, we will consider more efficient
methods for inferring more general forms of GTL formulas. In various network systems,
specifications can be expressed in GTL, hence verification and controller synthesis can be
also conducted with GTL specifications.

References

[1] S. Taylor, “Thermal history correlation with mechanical properties for polymer selective
laser sintering (SLS),” Master Thesis, The University of Texas at Austin, Austin, US,
2017.

[2] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and detection of anoma-
lous behavior,” IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1210–1222, Mar. 2017.

[3] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identification of temporal
properties,” in Proc. Second Int. Conf. Runtime Verification, Berlin, Heidelberg, 2012,
pp. 147–160.

[4] X. Jin, A. Donze, J. V. Deshmukh, and S. A. Seshia, “Mining requirements from closed-
loop control models,” in Proc. Int. Conf. Hybrid Syst.: Comput. and Control, 2013, pp.
43–52.

[5] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree ap-
proach to data classification using signal temporal logic,” in Proc. Int. Conf. Hybrid
Syst.: Comput. and Control. New York, NY, USA: ACM, 2016, pp. 1–10.

[6] Z. Xu and A. A. Julius, “Census signal temporal logic inference for multiagent group
behavior analysis,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp. 264–277, Jan.
2018.

[7] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric temporal logic proper-
ties in model-based design for cyber-physical systems,” International Journal on Soft-
ware Tools for Technology Transfer, 20.1 (2018): 79-93.

[8] D. Neider and I. Gavran, “Learning linear temporal properties,” Formal Methods in
Computer Aided Design (FMCAD), pp. 1–10, 2018.

17

[9] M. Vazquez-Chanlatte, S. Jha, A. Tiwari, M. K. Ho, and S. A. Seshia, “Learning task
specifications from demonstrations,” in NeurIPS, 2018.

[10] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt,
“The robotarium: A remotely accessible swarm robotics research testbed,” in IEEE
Inter. Conf. Robotics Automation (ICRA), May 2017, pp. 1699–1706.

[11] I. Haghighi, A. Jones, Z. Kong, E. Bartocci, R. Gros, and C. Belta, “Spatel: A novel
spatial-temporal logic and its applications to networked systems,” in HSCC’15. New
York, NY, USA: ACM, 2015, pp. 189–198.

[12] L. Bortolussi and L. Nenzi, “Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic,” in Proceedings of the 8th International
Conference on Performance Evaluation Methodologies and Tools, ser. VALUETOOLS
’14. ICST, Brussels, Belgium, Belgium: ICST, 2014, pp. 66–73.

[13] B. Courcelle, “On the expression of graph properties in some fragments of monadic
second-order logic,” in Descriptive Complexity and Finite Models: Proceedings of a
DIAMCS Workshop, chapter 2. American Mathematical Society, 1997, pp. 33–57.

[14] L. Cardelli, P. Gardner, and G. Ghelli, “A spatial logic for querying graphs,” in Au-
tomata, Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 597–610.

[15] Z. Xu, M. Ornik, A. A. Julius, and U. Topcu, “Information-guided temporal logic
inference with prior knowledge,” in Proc. Amer. Control Conf. (ACC), 2019. [Online].
Available: https://arxiv.org/abs/1811.08846

[16] S. Chakraborty and J.-P. Katoen, “Parametric LTL on Markov chains,” in Theoretical
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 207–221.

[17] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Form. Methods
Syst. Des., vol. 19, no. 3, pp. 291–314, Oct. 2001.

[18] Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and
resources,” in Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1,
May 2001, pp. 81–86 vol. 1.

[19] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, and G. J. Pappas,
“Monte-carlo techniques for falsification of temporal properties of non-linear hybrid
systems,” in Proc. HSCC’10. ACM, 2010, pp. 211–220.

[20] J. Legriel, C. Le Guernic, S. Cotton, and O. Maler, “Approximating the pareto front
of multi-criteria optimization problems,” in Tools and Algorithms for the Construction
and Analysis of Systems, J. Esparza and R. Majumdar, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 69–83.

[21] N. Demirer, M. E. Chamie, and B. Akmee, “Safe markov chains for on/off density
control with observed transitions,” IEEE Transactions on Automatic Control, vol. 63,
no. 5, pp. 1442–1449, May 2018.

18

https://arxiv.org/abs/1811.08846

	1 Introduction
	2 Parametric Graph Temporal Logic and Graph Temporal Logic
	2.1 Node and Edge Propositions
	2.2 pGTL Formulas and GTL formulas
	2.3 Subtypes of pGTL and GTL Formulas

	3 Graph Temporal Logic Inference for Classification
	4 Graph Temporal Logic Inference for Identification
	4.1 Problem Formulation
	4.2 Computation of Information Gain of GTL Formulas
	4.3 Minimal Satisfying Set of Parameter Valuations
	4.4 Information-Guided Identification of GTL Formulas

	5 Case Studies
	5.1 Case Study 1
	5.2 Case Study 2
	5.3 Case Study 3

	6 Conclusion

