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Abstract— The Koopman operator was recently shown to
be a useful method for nonlinear system identification and
controller design. However, the scalability of current data-
driven approaches is limited by the selection of feature maps.
In this paper, we present a new data-driven framework for
learning feature maps of the Koopman operator by introducing
a novel separation method. The approach provides a flexible
interface between diverse machine learning algorithms and
well-developed linear subspace identification methods, as well
as demonstrating a connection between the Koopman operator
and observability. The proposed data-driven approach is tested
by learning stable nonlinear dynamics generating hand-written
characters, as well as a bilinear DC motor model.

I. INTRODUCTION

The Koopman operator enables the evolution of a nonlin-
ear dynamic system to be represented via linear dynamics,
albeit of an infinite dimension. It has been used extensively
for the analysis of complex dynamic systems in fields such as
fluid mechanics [26] and molecular physics [36] and in recent
years it has been proposed as an approach that allows for
some linear design tools to be used for nonlinear controller
design [17, 19, 30, 35].

Central to this interest is the Dynamic Mode Decomposi-
tion (DMD) [27] algorithm and its extensions (e.g. [34, 4]),
which are data-driven methods that allow the identification of
the Koopman operator from data. In general, an embedding
(or lifting), in which a dictionary of feature maps mapping
the original state to a higher dimensional feature space,
plays a central role in all applications of the Koopman
operator in control engineering. This dictionary of feature
maps is normally assumed as prior knowledge, however,
as the dimension of the system increases, the number of
feature maps that need to be considered tends to increase
exponentially. Even though there are methods which learn the
feature maps, e.g., [21, 31], the learned maps are normally
less interpretable.

The aforementioned difficulty in defining feature maps
is the key motivation of this work, in which we propose
a novel data-driven method relating Koopman operators to
subspace identification methods. Specifically, a novel sepa-
ration method is applied to divide the original optimization
problem into two sub-problems where the system dynamics
is first learned by subspace identification methods and then
the feature maps are learned. A key benefit of this approach is
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Polytechnique Féderale de Lausanne, Switzerland. {yingzhao.lian,
colin.jones}@epfl.ch

that the learning of feature maps allows for the full flexibility
of machine learning techniques.

In the following sections, we will first introduce Koopman
operator theory and the separation method in Section II.
The subspace identification methods and Gaussian process
regression will be introduced in Section III to learn the
Koopman operator and the feature maps. Section IV will
elaborate the connection between the Koopman operator and
observability. Finally, the proposed approach is tested by
learning stable nonlinear dynamics of hand-written char-
acters and by modeling bilinear DC motor dynamics in
Section V.

The major contributions of this paper are summarized as
follows:
• Demonstrate the relation between the Koopman oper-

ator and subspace identification approaches with the
proposed separation method.

• The proposed method provides a flexible interface con-
necting subspace identification methods and diverse
machine learning techniques. Meanwhile, it also im-
proves the scalability of data-driven Koopman operator
algorithms by selecting optimal feature maps.

• Show the connection between the Koopman operator
and observability, which provides a novel viewpoint of
regularization of Koopman operator algorithms.

II. LEARNING THE KOOPMAN OPERATOR: THE
SEPARATION METHOD

For the sake of simplicity, we will explain the separation
method with an autonomous dynamic system. The incorpo-
ration of control inputs into the framework will be discussed
in Section III-B

A. Koopman Operator
We consider an autonomous, discrete-time nonlinear dy-

namical system

x+ = F (x) (1)

where F : M → M is the system update equation and
M ⊆ Rn is the state space. Our goal in this section is
to demonstrate how the Koopman operator can be used to
develop an infinite-dimensional linear dynamic system that
can be used to compute the state evolution of this system.

Given the function space F consisting of all functions
mapping M → R, called ‘observables’, the Koopman
operator [14, 15] applied to the observable f ∈ F is defined
as

Kf = f ◦ F



The Koopman operator defines a new dynamical system
in the function space F that governs the evolution of the
observables.

As the Koopman operator is an operator on a function
space, K is in general infinite-dimensional, but critically it is
linear even when the dynamics F are non-linear and as such,
we call an observable φ ∈ F an eigenfunction associated
with the eigenvalue λ ∈ C if Kφ = λφ. From this we can
see that the eigenfunctions (or linear combinations of the
eigenfunctions) evolve linearly along the trajectories of our
nonlinear system (1)

φ(x+) = φ(F (x)) = Kφ(x) = λφ(x) . (2)

Instead of tracking the state x of our system, we track
the evolution of a set of observables f along the state
trajectories. Specifically, given an observable in the span
of the eigenfunctions f =

∑
vk(f)φk, where the weights

vk(f) are called the Koopman modes of f , we notice that
the evaluation of the observable at the current f(x) is a
linear function of the Koopman eigenfunctions evaluated at
the current state

f(x) =
∑

ck(f)φk(x)

Note that the development here was done for scalar-valued
observables for simplicity, but is easily extended to vector-
valued functions. The vector form is assumed in the rest of
the paper.

Finite Approximation

As the method developed here is learning the Koopman
operator from a finite amount of data, a finite approximation
is taken. We define a finite set of observables, called the
‘performance outputs’, {fi} ⊂ F , which define the states
and/or outputs of interest for the dynamic system being
identified. We assume that the identity function I(x) = x is
contained in the set of performance outputs, which implies
that the states of the system is a linear combination of the
eigenfunctions.

We assume that there is a finite number of eigenfunctions,
written in matrix form as Φ =

[
φ1 φ2 . . .

]T
. As the

problem is now finite, we can write the Koopman operator
as a matrix K = K and the evolution of the eigenfunctions
along the system trajectory as

Φ(x+) = KΦ(x)

The observables, or performance outputs, are then a linear
function of Φ(x)

f(x) = V Φ(x)

where f :=
[
f1 f2 . . .

]T
and V is a matrix of Koopman

modes.

B. Separation Method

We assume the availability of a set of measurements of
the observables / performance outputs of the system along
system trajectories {xi, yi}, where yi = f(xi) are the perfor-
mance outputs. We pose a least-squares optimization problem
to fit the Koopman modes, eigenvalues and eigenfunctions

min
K,V,Φ

∑
i

‖yi − V Φ(xi)‖2 + ‖Φ(xi)−KΦ(xi−1)‖2 (3)

s.t. Φ ∈ F

If the eigenfunctions Φ are assumed to be in the span
of a finite dictionary of known basis functions Ψ =
[ψ1, ψ2, . . . , ψn]T , then (3) can be formulated as a convex
least-squares problem, which can be easily solved to find
the Koopman modes and eigenvalues V and K. This is
the extended dynamic mode decomposition (EDMD) [34]1

approach, which has been shown to be effective if a good
dictionary of functions Ψ is available. However, unlike the
optimization problem defined in EDMD and [17] where
the Koopman mode and Koopman operator are learned
separately with a fixed dictionary of feature maps, we here
demonstrate that all three can be learned from data.

Assumption 1: There is a class of universal approximator
U such that for ∀f ∈ F and ∀ε > 0, ∃ψ ∈ U such that
||f − ψ||∞ < ε, where || · ||∞ denotes infinity norm.

Assumption 1 implies that F is dense in U . We note
that Gaussian process regression and infinitely-wide neural
networks are examples of such classes of functions.

Optimization problem (3) is equivalent to the following
optimization problem almost everywhere

min
K,V,{x̂},Ψ

∑
i

‖yi − V x̂i‖2 + ‖x̂i −Kx̂i−1‖2 (4)

s.t. x̂i = Ψ(xi) for all xi
Ψ ∈ U

This optimization problem admits a relaxation2 as:

min
K,V,{x̂},Ψ∈U

∑
i

1︷ ︸︸ ︷
||yi − V x̂i||2 + ||x̂i −Kx̂i−1||2 (5)

+

2︷ ︸︸ ︷
||x̂i −Ψ(xi)||2

As indicated in the assumption, the second component of
this optimization problem admits an arbitrarily small error
and therefore this relaxation is arbitrarily close. Hence,
the optimization problems can now be separated into two
problems, which can then be solved accordingly.

Problem 1 is solved first

min
K,V,{x̂}

∑
i

||yi − V x̂i||2 + ||x̂i −Kx̂i−1||2 (6)

1If the basis functions are identity functions of previous measurements,
then it is a DMD approach

2Relaxation means that every feasible solution in optimization (5) admits
a feasible solution in optimization (4) by enforcing x̂i = Ψ(xi)



which produces a lifted state sequence x̂i, as well as the
matrices defining the linear dynamics K and V .

Problem 2 is then solved in order to find a mapping from
the true system state xi to the lifted system state x̂i at
the sampled points. The optimization is a classic regression
problem.

min
Ψ∈U

∑
i

‖x̂i −Ψ(xi)‖2 (7)

In general, the key of this separation method is that regard-
less of the optimal state sequence generated in Problem (6),
the optimal value of Problem (7) will be arbitrarily close
to zero as a result of Assumption 1. As a result, the loss
contributed by sub-optimization Problem (6) dominates the
loss from sub-optimization Problem (7), such that Prob-
lem (7) is negligible in the original optimization Problem (5).
Therefore, without loss of generality, we are able to apply
any flexible regression algorithm that meets this requirement.

In this paper, the sub-optimization Problem (7) will be
solved by Gaussian process regression which has zero loss
and provides an exact interpolation3.

It is worthwhile noting that EDMD is a special case
of the proposed method when the dictionary of feature
maps consists of infinite basis functions equipped with a
reproducing Hilbert kernel space (RHKS) [28]. This will give
rise to a kernel linear regression, which has been proven to be
the same as the mean function of Gaussian process regression
used in this paper. [13]

III. RECONSTRUCTION OF THE KOOPMAN OPERATOR

In this section, we will solve the two sub-optimization
problems (6) and (7). We will use the subspace identification
method to solve Problem (6) and Gaussian Process regression
to solve Problem (7). The relevant techniques for solving
the corresponding problems are introduced below and we
will conclude this section by bringing all the components
together.

A. Subspace Identification

Subspace identification is a class of system identification
methods that identify linear state space models of the form4:

xk+1 = Axk +Buk + wk (8)
yk = Cxk +Duk + vk ,

where yk ∈ Rny , xk ∈ Rnx , uk ∈ Rnu , wk ∈ Rnx and vk ∈
Rny are the system outputs, states, control inputs, system
noise and measurement noise. Most subspace identification
methods fall in the unifying framework proposed by Van
Overschee and De Moor [32]. In general, these algorithms
obtain the Kalman filter states from input-output data, and
then the state space model is computed by optimization with
respect the special structure in the filtering matrices. The key

3Exact interpolation is guaranteed if the measurement noise is assumed
to be zero (Section III-C), however, this could lead to overfitting in practice,
therefore, a non-zero measurement noise is used in our implementation.

4See, e.g., [33] or [23] for an overview of subspace identification
techniques.

component of most of the subspace identification methods is
the estimation of the extended observability matrix:

Γf =


C
CA

...
CAf−1

 . (9)

In this work, we use the sequential PARSIM algorithm
[24].

B. Subspace Identification Based Observable Dynamics

Problem (6) is minimizing the mean squared error of the
noise terms wk and vk in the following model

x̂k+1 = Kx̂k + wk
yk = V x̂k + vk

, (10)

which indicates that we can apply a sub-space identification
method to identify the corresponding matrices K, V and the
states {x̂}. Based on this observation, we can incorporate
control inputs as in general subspace identification methods,
where the dynamics are taken to be affine with respect to
control input u. This is a heuristic used in [17], and has
been shown to provide good performance when modelling
systems with control inputs.

The corresponding observable dynamics are

x̂k+1 = Kx̂k +Buk
yk = V x̂k +Duk .

(11)

To determine the order of the system, dubbed nf , which is
also the number of eigenfunctions, one might choose dif-
ferent methods, such as cross validation [10] or complexity
criteria [1]. We are able to choose different weightings in
Problem (6) to achieve an optimal realization up to order
nf [11], which is also the optimal finite approximation of
observable dynamics up to order nf . Because Problem (7)
admits an arbitrary small loss, the learnt feature maps are
therefore optimal features maps governing the optimal real-
ization up to order nf .

There are also other approaches proposed to incorporate
control inputs into the Koopman operator, such as [22, 35].
Most consider control inputs as part of the states, which
fits our proposed approach seamlessly. However, we chose
the method used in [17], because it is the most compatible
with the well-developed controller design methods in linear
systems, especially model predictive control (MPC).

C. Gaussian Process

A Gaussian Process GP(µ, k) is an infinite-dimensional
distribution over the space of smooth real-valued functions
f : RN → R, specialized by a priori mean µ : RN → R
and covariance functions k : RN×N → R [25], which
is also called the kernel function. By definition, function
values at a finite set of inputs [x1, x2, x3 . . . , xn] follows
a multi-variate Gaussian distribution N (µX ,KXX), where
µX = [µ(x1), . . . , µ(xn)]T and KXX = [k(xi, xj)]

n
i,j=1.

In general, KA,B denotes the cross-covariance between set
A and B. If the measurement is contaminated by Gaussian



observation noise, p(y(x)|f(x)) ∼ N (f(x), σ2) with σ2 as
measurement noise variance, then the predictive distribution
at any point x∗ ∈ RN given data D = {xi, yi}ni=1 is

p(f(x∗)|D) ∼ GP(µf |D(x∗), kf |D(x∗, x∗))

µf |D(x∗) = µ(x∗) +Kx∗XK̂
−1
XXy

kf |D(x∗, x∗) = Kx∗x∗ −Kx∗XK̂
−1
XXK

T
x∗X

(12)

where K̂XX = KXX + σ2I and y = [y1, y2, . . . , yn]T .
This defines a scalar-valued regression, for vector-valued
regression, various methods have been proposed [3, 6, 20].
For simplicity, we will do vector-valued regression via a
scalar-valued regression in each dimension.

D. Gaussian Process based Feature Maps

From Problem (6), we estimated the value of observables
at states xi as x̂i = Ψ(xi). Take one observable ψk(·) from
the set Ψ for example, and the output of this function at xi
is equal to x̂i if there is no noise. Then, referring to (12),
the expectation of prediction at any x∗ ∈ Rnx is

µψk|X,X̂(x∗) = µ(x?) +Kx?XK
−1
XXX̂,

where X is the matrix stacking all the state measurements
xi and X̂ is the matrix stacking the corresponding x̂i. In
particular, we choose µ(·) ≡ 0 to make full use of the
flexibility of Gaussian process regression.

E. Discussion

With the solutions of both sub-optimization problems, we
get the matrices K,B,V , and D (system (11)) and feature
maps {ψj}

nf

j=1, where nf is the order of the observable
dynamics as well as the number of feature maps. The
interaction between state space dynamics and observable
dynamics(i.e. feature space dynamics) are summarized as
follows:

x̂ = ψ(x) state space to observables
x̂k+1 = Kx̂k +Buk observables dynamics
yk = V x̂k +Duk observables to state space

while the dynamics of the ground truth system (which is
unknown) is given by

xk+1 = F (xk, uk) state-space dynamics

From this we can see that if we know, or can estimate, the
state of the system x0, we can then simulate the future
evolution of the system observables (which includes the
future state xk) by first evaluating a nonlinear lifting function
ψ(x0), and then iterating a linear dynamic system.

In general, the learned feature maps are not necessarily
the eigenfunctions, however, by diagonalization of matrix
K, we can recover the eigenfunctions, eigenvalues and the
corresponding Koopman modes of the performance outputs
[7]. Moreover, it is noteworthy that the state x is a very
general concept, one could use previous control inputs or
even value function of the MPC controller as a state.

We conclude this section by listing the practical signifi-
cance of the proposed method.

• The proposed algorithm is fully data-driven in com-
parison requiring minimal a priori knowledge of the
systems.

• In comparison with EDMD, the proposed algorithms
provides a reduced order model with an optimal selec-
tion of feature maps. which improves the scalability in
terms of the dimension of the system.

• Due to linear dynamics in the feature space, the
proposed algorithm enables a linear controller design
scheme in the feature even for a nonlinear system.

• Because of the proposed separation method, any su-
pervised regression algorithms satisfying Assumption 1
(e.g. neural networks) can be used for learning the fea-
ture maps. Therefore, the proposed algorithm provides
a flexible interface between linear control theory and
diverse supervised learning algorithms.

IV. CONNECTION BETWEEN KOOPMAN OPERATOR AND
OBSERVABILITY

In this section, we demonstrate the strong connection be-
tween the Koopman operator and observability by answering
the following question:

Why do we learn these eigenfunctions but not the others?

The eigenfunctions of the Koopman operator enjoy a special
algebraic structure, in particular, the eigenfunctions that
vanish nowhere form an Abelian group [7]. Specifically, if
φ1, φ2 are eigenfunctions with eigenvalues λ1, λ2 respec-
tively, then φ1φ2 is also an eigenfunction with eigenvalue
λ1λ2. Based on this observation, the eigenfunctions related
to an unstable mode or to a slow dynamic mode should
dominate the learning problem, which is also the reason
why Dynamic Mode Decomposition (DMD) tends to be
numerically ill-conditioned. In order to learn the family of
eigenfunctions, [16] proposed to construct a large family of
possible eigenfunctions. However, we argue that instead of
learning all the possible observable dynamics, we should
select the eigenfunctions that have strong relations with the
observables that are of special interest, which are termed
‘performance outputs’ in this paper. For example, if we
control the temperature of a room, then we should learn the
eigenfunctions that could properly reproduce the temperature
dynamics but not the others. We thereby propose to use a
well-developed concept in control science, observability, to
quantify/regularize and to select the possible eigenfunctions.

For the sake of simplicity, we elaborate on this idea with
a discrete-time, autonomous dynamical system. Assume that
{φk}Kk=1 is the set of eigenfunctions with corresponding
eigenvalues {λk}. Let f denote an observable that we focus
on, and let its Koopman mode corresponding to φk be vk,
then

Kif = V̂ ΛiΦ(x), (13)

where V̂ = [v1, v2, . . . , vK ], Λ = diag(λ1, λ2, . . . , λK) and
Φ(x) = [φ1(x), φ2(x), . . . , φK(x)]T . Given a sequence of
Ni evaluations yi = f(xi) of the observable f along the



state sequence {xi}, we have
y0

y1

...
yNi

 = Γ̂Φ(x0) =


V̂ Λ0

V̂ Λ1

...
V̂ ΛNi−1

Φ(x0). (14)

Since the value of the eigenfunctions are fixed for a fixed
x0, the dynamics of the observable is determined by Γ̂. This
matrix leads to two observations:

1) The matrix Γ̂ is exactly an extended observability
matrix appearing in equation (9).

2) The dynamics of an observable depends both on the
Koopman mode and the eigenvalues. Even though a
eigenfunction may have a large eigenvalue, if it has a
small Koopman mode with respect to the observable
f (i.e. this eigenfunction has lower observability in
f ), then the dynamics corresponding this eigenfunction
is less relevant to the outputs that we would like to
predict.

The observations above suggest an answer to the question
we posed at the beginning of this section. Because the
quality of the reconstruction of the performance outputs
are considered in the original optimization problem (3), the
eigenvalues learned from the proposed algorithms reflect a
balance between state evolution and performance outputs
reconstruction. The key piece of a subspace identification
method is exactly estimating the extended observability
matrix, from which the most observable components are
extracted by singular value decomposition (SVD).

We conclude this section by pointing out the major sig-
nificant differences between EDMD and our algorithm as
follows:

1) Our algorithm does not assume a dictionary of basis
functions is known explicitly, which results in a more
scalable approach and one that is less sensitive to
tuning parameters (the selection of the dictionary).

2) Our algorithm considers the evolution of the observ-
ables explicitly, and the corresponding learned feature
maps are optimal with respect to their observability.

Remark 1: We note that the DMD approach [26] starts
from a Krylov space and develops a matrix that is in ob-
servable canonical form, which also indicates a link between
observability and the identification of the Koopman operator.

V. VALIDATION

In this section, we will run system identification on
two systems, including one autonomous system and one
system with control inputs. The Gaussian Process Regression
toolbox in MATLAB [18] is used for the GP regression
implementation. Both examples uses automatic relevance
deterministic (ARD) kernel, whose hyperparameters are op-
timized through maximal likelihood.

A. Learning Stable Hand-written Character Dynamics

Learning by demonstration is a technique that enables
robots to reproduce tasks by providing demonstrations [5].

Different approaches have been proposed to tackle this
problem [2, 37, 8], however, the global stability of the
learned dynamics is relatively hard to ensure. In [12], a
Gaussian mixture model (GMM) is applied to ensure the
global stability where the learned dynamical system admits
a Lyapunov function. This approach is not scalable because
GMM suffers from the curse of dimensionality. The method
proposed in this work gives a possible stable and scalable
solution.

We assume the desired task admits an autonomous,
discrete-time dynamical system such that the state x evolves
according to xk+1 = F (xk). By applying the Koopman
operator, there exists linear observable dynamics, such that
x̂k+1 = Ax̂k. The model identified has the form

x̂0 = ψ(x0) states space to observables
x̂k+1 = Ax̂k observables dynamics
xk = Cx̂k observables to state space

In order to ensure global stability of the system, we need
to ensure that the observable dynamics are globally stable,
which is true if and only if [29]

ATA � I, (15)

where I is the identity matrix and � stands for generalized
inequality with respect to the positive semi-definite cone.
Therefore, once we have the estimated extended observability
matrix Γf (9) from the subspace identification method, we
integrate the stability constraint and cast the optimization
problem as the following semi-definite programming (SDP)
problem:

min
A

∥∥∥∥Γf

[
A
−1T

]∥∥∥∥
F

s.t.
[
I AT

A I

]
� 0

where 1 is a vector of ones.
The effectiveness of this procedure is demonstrated via

the modelling of character dynamics, whose data comes
from [12]. A few demonstrations of hand-written characters
have been recorded and the proposed method is applied
to learn the trajectory of the dynamics such that we can
rewrite the character automatically. Figure 1 and Figure 2
show the learned dynamics of character r and N respectively,
from which we can observe that the prediction based on the
learned dynamics properly reproduce the desired character
from a different initial point. Moreover, the estimated vector
field also demonstrates that the end point is a global asymp-
totically stable attractor.

B. Bilinear Motor
In this section, we apply the proposed method to identify

the Koopman operator of a bilinear model of a DC motor
[9].

ẋ1 = −(Ra/La)x1 + (km/La)x2u+ ua/La

ẋ2 = −(B/J)x2 + (km/J)x1u− τl/J
y = x2



Estimated vector field
Demonstration
Prediction

Fig. 1. Learned 18th order dynamics of the character ‘r’

Estimated vector field
Demonstration
Prediction

Fig. 2. Learned 22th order dynamics of the character ‘N’

where x1 is the rotor current, x2 is the angular velocity and
the control input u is the stator current. The parameters are
La = 0.314, Ra = 12.345, km = 0.253, J = 0.00441,
B = 0.00732, τl = 1.47, and ua = 60. This model is also
used in [17], where 103 basis functions are used to model
the feature maps based on EDMD algorithm. However, using
the technique developed in this paper, only 30 feature maps
are needed to reproduce a good model, which demonstrates
a much higher scalability than the EDMD algorithm. The
validation of the model is shown in Figure 3, where also a
local linearization of the model is used for comparison.

We run tests with 100 randomly sampled initial states and
run a 1.5 second simulation with a random control input
sequence. The root mean square error (RMSE) for the model
proposed by this paper is 0.021 while the RMSE for the
model from [17] is 0.137 for the same initial states. In
conclusion, our proposed method has much higher scalability
and performance than current EDMD approaches.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2

−1

0

1

Time (s)

GP-based Koopman True System
EDMD-based Koopman Local Linearization at x0

Fig. 3. Comparison of the prediction given Koopman operator and the real
state evolution

VI. CONCLUSION

This paper has proposed a novel data-driven method for
learning feature maps of Koopman operator, which results
in a significant performance and scalability increase. In
addition, the method offers a flexible interface between sub-
space identification methods and diverse machine learning
techniques for this class of problems.
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