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Abstract

In this paper, we discuss the compatibility between the rotating-wave and the adiabatic ap-
proximations for controlled quantum systems. Although the paper focuses on applications to
two-level quantum systems, the main results apply in higher dimension. Under some suitable hy-
potheses on the time scales, the two approximations can be combined. As a natural consequence
of this, it is possible to design control laws achieving transitions of states between two energy
levels of the Hamiltonian that are robust with respect to inhomogeneities of the amplitude of the
control input.

1 INTRODUCTION

An important issue of quantum control is to design explicit control laws for the problem of the single
input bilinear Schrödinger equation, that is

i
dψ

dt
= (H0 + uH1)ψ (1)

where ψ belongs to the unit sphere in a Hilbert space H. H0 is a self adjoint operator representing a
drift term called free Hamiltonian, H1 is a self-adjoint operator representing the control coupling and
u : [0, T ]→ R, T > 0. Important theoretical results of controllability have been proved with different
techniques (see [2, 4, 6] and references therein). For the problem with two or more inputs, adiabatic
methods are a nowadays classical way to get an explicit expression of the controls and can be used
under geometric conditions on the spectrum of the controlled Hamiltonian (see [3, 8, 18] and references
therein). They rely on the adiabatic theorem and its generalisations. The adiabatic theorem states in
its simplest form that under a separation condition on the energy levels of the controled Hamiltonian,
the occupation probabilities of the energy levels are approximately conserved when the controls are
slowly varying. However, these methods are effective for inputs of dimension at least 2. Our aim
is then to extend a single-input bilinear Schrödinger equation into a two-inputs bilinear Schrödinger
equation in the same spirit as the Lie-extensions obtained by Sussmann and Liu in [20] and [22], then
to apply the well-known adiabatic techniques to the extended system. The first step of this procedure
is well known by physicists and it is called the rotating-wave approximation (RWA, for short). It is
a decoupling approximation to get rid of highly oscillating terms when the system is driven by a real
control. This approximation is based on a first-order averaging procedure (see [21, 22, 20, 9] for more
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informations about averaging of dynamical systems). This approximation is known to work well for
a small detuning from the resonance frequency and a small amplitude. For a review of the RWA
and its limitations see [11] and [12, 13, 14]. In [10], the mathematical framework has been set for
infinite-dimensional quantum systems, formalizing what physicists call Generalized Rabi oscillations
and showing that the RWA is valid for a large class of quantum systems. The adiabatic and RWA
involve different time scales, and it is natural to ask whether or not they can be used in cascade. The
aim of this article is to show the validity of such an approximation under a certain condition on the
time scales involved in the dynamics, using an averaging procedure. Then the well-known results of
adiabatic theory (see [8, 7, 23]) can be applied in order to get transitions between the eigenstates of
the free Hamiltonian. It leads us to design a control law achieving the inversion of a Spin-1

2 particule
that is robust with respect to inhomogeneities of the amplitude of the control input (see [24]). Then
we can deduce an ensemble controllability result in the sense developed in [19, 5]. As a byproduct of
the use of a control oscillating with a small frequency detuning, the proposed method is not expected
to be robust with respect to inhomogeneities of the resonance frequencies.

2 NOTATIONS

Denote by U(n) the Lie group of unitary n×n matrices and by u(n) its Lie algebra. For z ∈ C, denote
by z̄ its complex conjugate. For a complex valued matrix A, denote by Ajk its (j, k) ∈ {1, . . . , n}2
coefficient and by A∗ its adjoint matrix.

3 GENERAL FRAMEWORK AND MAIN RESULTS

3.1 Problem formulation

3.1.1 Rotating frame

Consider v, φ ∈ C∞([0, 1],R) such that φ(0) = 0, E > 0, and ψ0 ∈ C2. Denote by ψ : [0, 1]→ C2 the
solution of the equation

i
dψ(t)

dt
=

(
E w(t)
w̄(t) −E

)
ψ(t), ψ(0) = ψ0, (2)

where w(t) = v(t)ei(2Et+φ(t)). Define η(t) = U(t)ψ(t) where

U(t) =

e−i(Et+φ(t)
2

)
0

0 e
i
(
Et+

φ(t)
2

)


Then η(t) satisfies

i
dη(t)

dt
=

(
−φ′(t)

2 v(t)

v(t) φ′(t)
2

)
η(t), η(0) = ψ0. (3)

We say that the dynamics are expressed in the rotating frame of speed E+ φ′(t)
2 . Such an equation can

be controlled using several approaches, namely via the well-known Rabi oscillations and the adiabatic
approach presented below (see [24] for a comparison between the two approaches).
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3.1.2 Adiabatic control in the rotating frame

In order to design an adiabatic control strategy for Equation (3), let us add a parameter ε in the
control w and introduce wε(t) = v(εt)ei(2Et+

φ(εt)
ε

). Consider the corresponding solution of (3) with
initial condition ψ0, that is,

i
dηε(t)

dt
=

(
−φ′(εt)

2 v(εt)

v(εt) φ′(εt)
2

)
ηε(t), ηε(0) = ψ0.

In the variable τ = εt ∈ [0, 1], the reparameterized trajectory η̃ε(τ) = ηε(τ/ε) satisfies

i
dη̃ε(τ)

dτ
=

1

ε

(
−φ′(τ)

2 v(τ)

v(τ) φ′(τ)
2

)
η̃ε(τ), η̃ε(0) = ψ0. (4)

Let v and φ be chosen so that the curve (v, φ′) : [0, 1]→ R2 connects (0,−1) to (0, 1) intersecting
the vertical axis only at its endpoints. Then, by standard adiabatic approximation, if ψ0 = (1, 0),
then η̃ε(1) converges, up to phases, to (0, 1) as ε → 0. In the literature, this control strategy, called
chirped adiabatic pulse, is now very classical. Its robustness properties have been mathematically
studied in [3].

3.1.3 Rotating wave approximation

In many applications only one real control is available. A classical strategy to duplicate the control
input is the so-called rotating wave approximation (RWA) that works as follows. Let ϕε̃ : [0, 1/ε̃]→ C2

be the solution of (2) where w is replaced by the control uε̃(t) = 2ε̃v(ε̃t) cos(2Et+ φ(ε̃t)). Let

Uε̃(t) =

e−i(Et+φ(ε̃t)
2

)
0

0 e
+i
(
Et+

φ(ε̃t)
2

)
 .

The RWA then states that τ 7→ Uε̃(τ/ε̃)ϕε̃(τ/ε̃) converges uniformly, as ε̃→ 0, to the solution of

i
dη(t)

dt
=

(
−φ′(t)

2 v(t)

v(t) φ′(t)
2

)
η(t), η(0) = ψ0. (5)

Notice that the limit equation (5) coincides with (3), which is the original equation (2) with complex
controls in the rotating frame. We have already described how to control (3) via adiabatic theory. It
is not clear, however, if the RWA and the adiabatic approximations can be combined.

For this purpose, we introduce uε1,ε2(t) = 2ε1v(ε1ε2t) cos(2Et+ 1
ε2
φ(ε1ε2t)), where ε1 and ε2 play

the role of ε̃ and ε, respectively. In order to establish in which regime the two approximations can be
combined, we set ε1 = εα, ε2 = ε where α ∈ R and uε = uεα,ε. Consider the Cauchy problem

i
dψε(t)

dt
=

(
E uε(t)
uε(t) −E

)
ψε(t), ψε(0) = ψ0. (6)

Define Ψε(t) = Uε(t)ψε(t) where Uε(t) =

e−i
(
Et+

φ(εα+1t)
2ε

)
0

0 e
+i

(
Et+

φ(εα+1t)
2ε

)
. In the variable

τ = εα+1t ∈ [0, 1], the reparameterized trajectory Ψ̃ε(τ) = Ψε(τ/ε) satisfies,

dΨ̃ε(τ)

dτ
=

(
1

ε
A(τ) +Bε(τ)

)
Ψ̃ε(τ), Ψ̃ε(0) = ψ0, (7)
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where A(τ) = −i
(
−φ′(τ)/2 v(τ)
v(τ) φ′(τ)/2

)
and Bε(τ) = −i

ε

(
0 v(τ)ei(

4Eτ
εα+1 +

2φ(τ)
ε

)

v(τ)e−i(
4Eτ
εα+1 +

2φ(τ)
ε

) 0

)
.

The dynamics of Ψ̃ are characterized by the sum of the term that we had in Equation (4), that
corresponds to the dynamics for the complex control case in the rotating frame, and of an oscillating
term Bε(τ). The RWA consists in neglecting the term Bε. We are going to show that this can be
mathematically justified if α > 1. Numerical simulations suggest that the situation is different when
the condition is not satisfied.

3.2 Main results

In order to obtain the asymptotic analysis announced in the previous section, we show a result of
approximation of adiabatic trajectories for general n-level systems under the form of Equation (7).
Then we deduce results in the particular case of two-level systems with a drift term.

3.2.1 Adiabatic approximation result

Definition 3.1. For A ∈ C∞([0, 1], u(n)), denote by j 7→ λj(τ) the nondecreasing sequence of eigen-
values of iA(τ). We say that A satisfies a gap condition if and only if there exists C > 0 such
that

∀j 6= k, ∀τ ∈ [0, 1], |λj(τ)− λk(τ)| > C. (GAP)

Definition 3.2. Let α be a nonzero real number. Define by S(α) the set of families (Bε)ε>0 of
functions in C∞([0, 1], u(n)) such that

• (Bε(τ))jj = 0 for every j = 1, . . . , n and every τ ∈ [0, 1],

• for every k > j there exist βjk ∈ R \ {0} and vjk, hjk ∈ C∞([0, 1],R) such that (Bε(τ))jk =

− i
εvjk(τ)ei(

βjkτ

εα+1 +
hjk(τ)

ε
) for every τ ∈ [0, 1].

Theorem 3.3. Consider A ∈ C∞([0, 1], u(n)) and (Bε)ε>0 ∈ S(α) with α > 1. Assume that A(·) sat-
isfies (GAP). Set X0 ∈ Cn independent of ε. Let Xε be the solution of dXε(τ)

dτ =
(

1
εA(τ) +Bε(τ)

)
Xε(τ)

such that Xε(0) = X0 and X̂ε be the solution of dX̂ε(τ)
dτ = 1

εA(τ)X̂ε(τ) such that X̂ε(0) = X0. Then
there exists c > 0 independent of τ, ε such that for every τ ∈ [0, 1], ‖Xε(τ)− X̂ε(τ)‖ ≤ cεmin(1,α−1).

3.2.2 Application to two-level systems

We consider v, φ ∈ C∞([0, 1],R) such that φ(0) = 0 and E > 0. We consider now Equation (6) where
uε(t) = 2εαv(εα+1t) cos(2Et+ 1

εφ(εα+1t)). In the fast time scale τ = εα+1t ∈ [0, 1], Equation (6) can
be rewritten as

i
dψε(τ)

dτ
=

(
E

εα+1 uε(τ)

uε(τ) − E
εα+1

)
ψε(τ) (8)

for τ ∈ [0, 1] where by a slight abuse of notation, we write uε(τ) = 2
ε v(τ) cos( 2Eτ

εα+1 + 1
εφ(τ)). Set

ψ0 ∈ C2 independent of ε. Let ψε(·) be the solution of Equation (8) such that ψε(0) = ψ0. Similarly,
let ψ̂ε be the solution of

i
dψ̂ε(τ)

dτ
=

(
E

εα+1 wε(τ)

w̄ε(τ) − E
εα+1

)
ψ̂ε(τ), ψ̂ε(0) = ψ0 (9)

for τ ∈ [0, 1] and wε(τ) = 1
ε v(τ)ei(

2Eτ
εα+1 + 1

ε
φ(τ)).
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Theorem 3.4. Assume that α > 1. Consider v, φ in C∞([0, 1],R) such that φ(0) = 0 and v2 + φ′2

4

is bounded from below by C > 0. Then the solution ψε of Equation (8) satisfies ‖ψε(τ) − ψ̂ε(τ)‖ <
cεmin(1,α−1) where c > 0 is independent of (τ, ε).

Theorem 3.4 will be used in Section 5 to design control laws for two-level systems using the key
fact that ψ̂ε(τ) follows an adiabatic evolution up to a change of frame.

4 APPROXIMATION RESULTS

4.1 Variation formula

We recall here without proof a classical formula which will be useful to neglect highly oscillating parts
of the dynamics.

Proposition 4.1 (Variation formula [1]). Consider

dx(τ)

dτ
= (A(τ) +B(τ))x(τ), x(τ) ∈ Cn, (10)

where A,B be in C∞([0, 1], u(n)). Denote the flow at time τ of dx(τ)
dτ = A(τ)x(τ) by Pτ ∈ U(n) and

the flow at time τ of dx(τ)
dτ = P−1

τ B(τ)Pτx(τ) by Wτ ∈ U(n). Then the flow of (10) at time τ is equal
to PτWτ .

4.2 Regularity of the eigenstates

We recall here a well-known regularity result.

Lemma 4.2. Let A ∈ C∞([0, 1], u(n)) satisfy (GAP). Then the eigenvectors and the eigenvalues of
iA(τ) can be chosen C∞ with respect to τ .

4.3 Averaging of quantum systems

Theorem 4.3. Consider A and (Aε)ε>0 in C∞([0, 1], u(n)) and assume that Aε(τ) is uniformly
bounded w.r.t. (τ, ε). Denote the flow of the equation dx(τ)

dτ = A(τ)x(τ) at time τ by Pτ ∈ U(n) and
the flow of the equation dx(τ)

dτ = Aε(τ)x(τ) at time τ by P ετ ∈ U(n). If
∫ τ

0 Aε(s)ds =
∫ τ

0 A(s)ds+O(ε),
then P ετ = Pτ +O(ε), both estimates being uniform w.r.t. τ ∈ [0, 1].

We state Theorem 4.3 without proof because it is a particular case of next result, Theorem 4.4. In
the following, we do not assume the boundedness of Aε with respect to ε. We refer to [15, 16, 17, 20, 22]
for more informations on the case of averaging of a general class of dynamical systems with non-
bounded and highly oscillatory inputs. Our result provides an estimate of the error in the special
case of quantum systems.

Theorem 4.4. Consider A and (Bε)ε>0 in C∞([0, 1], u(n)). Assume that
∫ τ

0 Bε(s)ds = O(ε) and∫ τ
0 |Bε(s)|

∣∣∫ s
0 Bε(x)dx

∣∣ ds = O(εk) uniformly w.r.t. τ ∈ [0, 1], with k > 0. Set Aε = A+ Bε. Denote
the flow of the equation dx(τ)

dτ = A(τ)x(τ) at time τ by Pτ ∈ U(n) and the flow of the equation
dx(τ)
dτ = Aε(τ)x(τ) at time τ by P ετ ∈ U(n). Then we have P ετ = Pτ + O(εmin(k,1)), uniformly w.r.t.
τ ∈ [0, 1].

Proof. Under the hypotheses of the theorem, there exists K > 0 such that for every τ ∈ [0, 1],
|
∫ τ

0 Bε(s)ds| < Kε. Let Qετ be the flow associated with Bε. We have Qετ = Id +
∫ τ

0 Bε(s)Q
ε
sds,
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where Id is the identity n × n matrix. By integration by parts, Qετ = Id +
(∫ τ

0 Bε(s)ds
)
Qετ −∫ τ

0 (
∫ s

0 Bε(θ)dθ)Bε(s)Q
ε
sds. Moreover, Qετ is bounded uniformly w.r.t. (τ, ε), since it evolves in U(n).

By the triangular inequality, we get

|Qετ − Id| ≤
∣∣∣∣∫ τ

0
Bε(s)ds

∣∣∣∣ |Qετ |+ ∫ τ

0

∣∣∣∣∫ s

0
Bε(θ)dθ

∣∣∣∣ |Bε(s)Qεs| ds
≤C1ε+ C2ε

k,

where C1, C2 are positive constants which do not depend on (ε, τ). Hence, we deduce that Qετ =
Id + O(εq) uniformly w.r.t. τ ∈ [0, 1], where q = min(k, 1). The variation formula (Proposition 4.1)
provides P ετ = QετW

ε
τ , where W ε

τ ∈ U(n) is the flow of the equation dx(τ)
dτ = (Qετ )−1A(τ)Qετx(τ) at

time τ . By the previous estimate, we have (Qετ )−1A(τ)Qετ = A(τ) +O(εq) uniformly w.r.t. τ ∈ [0, 1].
By Gronwall’s Lemma, we get that W ε

τ = Pτ +O(εq) and we can conclude.

4.4 Perturbation of an adiabatic trajectory

ConsiderA,Bε ∈ C∞([0, 1], u(n)). Fix ψ0 ∈ Cn. LetXε be the solution of dXε(τ)
dτ =

(
1
εA(τ) +Bε(τ)

)
Xε(τ)

such that Xε(0) = X0 and let X̂ε be the solution of dX̂ε(τ)
dτ = 1

εA(τ)X̂ε(τ) such that X̂ε(0) = X0, that
we call the adiabatic trajectory associated with A. The goal of this section is to understand under
which conditions on Bε(·) we have

‖Xε(τ)− X̂ε(τ)‖ → 0 (T)

uniformly with respect to τ ∈ [0, 1]. By the variation formula (Proposition 4.1), one can show that
if the flow of dx(τ)

dτ = Bε(τ)x(τ), x(τ) ∈ Cn, is equal to Id + O(εk) uniformly w.r.t. τ ∈ [0, 1] with
k > 1, then Property (T) is satisfied. However this condition is too conservative for our needs.
We restrict our study to the class of perturbations (Bε)ε>0 ∈ S(α) introduced in the Definition 3.2.
We give below a a sufficient condition on α such that Property (T) is satisfied for every A satisfying
Condition (GAP) and every (Bε)ε>0 ∈ S(α) (Proposition 4.9). Based on such a result we then provide
a proof of Theorem 3.3.

Lemma 4.5. For every α > 0 and every a, h ∈ C∞([0, 1],R), we have
∫ τ

0 a(s)ei(
s

εα+1 +
h(s)
ε

)ds =
O(εα+1) uniformly with respect to τ ∈ [0, 1].

Proof. Integrating by parts, for every τ ∈ [0, 1],∫ τ

0
a(s)ei(

s
εα+1 +

h(s)
ε

)ds

= iεα+1

∫ τ

0
ei

s
εα+1

(
a′(s) + i

h′(s)

ε
a(s)

)
ei
h(s)
ε ds

+
[
−iεα+1ei

s
εα+1 a(s)ei

h(s)
ε

]τ
0

= −εα
∫ τ

0
h′(s)a(s)ei

s
εα+1 ei

h(s)
ε ds+O(εα+1).

Iterating the integration by parts on the integral term d 1
αemore times, we get

∫ τ
0 a(s)ei(

s
εα+1 +

h(s)
ε

)ds =
O(εα+1).

Definition 4.6. Let α > 0 and (Bε)ε>0 be in S(α). For every ε > 0, P ∈ C∞([0, 1], U(n)), and every
diagonal matrix Γ(τ) = diag(Γj(τ))nj=1 with Γj ∈ C∞([0, 1],R), j = 1, . . . , n, define

M(P,Γ, ε)(τ) = ei
Γ(τ)
ε P ∗(τ)Bε(τ)P (τ)e−i

Γ(τ)
ε , τ ∈ [0, 1].
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Lemma 4.7. Let α > 1. Consider (Bε)ε>0, P , Γ, andM as in Definition 4.6. Then
∫ τ

0 M(P,Γ, ε)(s)ds =
O(εα) and

∫ τ
0 |M(P,Γ, ε)(s)|

∣∣∫ s
0 M(P,Γ, ε)(x)dx

∣∣ ds = O(εα−1) uniformly w.r.t. τ ∈ [0, 1].

Proof. Define the following matrix Cε(τ) = 1
ε vj`(τ)ei(

βj`τ

εα+1 +
hj`(τ)

ε
)Ej` for fixed j, ` ∈ {1, . . . , n} where

Ej` is the matrix whose coefficient (j, `) is equal to 1 and others are equal to 0. By direct computations,
denoting (P (τ))kq = pkq(τ), we get

ei
Γ(s)
ε P ∗(s)Cε(s)P (s)e−i

Γ(s)
ε

=
vj`(τ)

ε

n∑
k,q=1

p`k(τ)p̄jq(τ)e
i
ε
(Γq(τ)−Γk(τ))ei(

βj`τ

εα+1 +
hj`(τ)

ε
)Eqk.

By Lemma 4.5, we get for every q, k ∈ {1, . . . , n},∫ τ

0
vj`(s)p`k(s)p̄jq(s)e

i
ε
(Γq(s)−Γk(s))ei(

βj`s

εα+1 +
hj`(s)

ε
)ds

is O(εα+1). Hence,
∫ τ

0 e
i
Γ(s)
ε P (s)Cε(s)P

∗(s)e−i
Γ(s)
ε ds = O(εα). We deduce by linearity that the result

is also true for Bε. The last claim follows noticing that M(P,Γ, ε)(τ) = O(1
ε ).

Lemma 4.8. Let α > 1. Consider (Bε)ε>0, P , Γ, and M as in Definition 4.6. Then the flow of
dx(τ)
dτ = M(P,Γ, ε)(τ)x(τ) is equal to Id +O(εα−1), uniformly w.r.t. τ ∈ [0, 1].

Proof. We apply Theorem 4.4 using the estimates from Lemma 4.7.

The next proposition, based on Lemma 4.8, shows that under the condition α > 1, an adiabatic
trajectory is robust with respect to perturbations of the dynamics by a term of the form (Bε)ε>0 ∈
S(α) for ε small.

Proposition 4.9. Consider A ∈ C∞([0, 1], u(n)) and (Bε)ε>0 ∈ S(α) with α > 1. Assume that
Condition (GAP) is satisfied. Select λj ∈ C∞([0, 1],R), j = 1, . . . , n, and P ∈ C∞([0, 1], U(n)) such
that, for j = 1, . . . , n, λj(τ) and the j-th column of P (τ) are, respectively, an eigenvalue of iA(τ) and
a corresponding eigenvector (the existence of C∞ eigenpairs being guaranteed by Lemma 4.2). Define
Λ(τ) = diag(λj(τ))nj=1, τ ∈ [0, 1]. Fix X0 ∈ Cn independent of ε. Let Xε be the solution of dXε(τ)

dτ =(
1
εA(τ) +Bε(τ)

)
Xε(τ) such that Xε(0) = X0. Set Υε(τ) = P (τ) exp

(−i
ε

∫ τ
0 Λ(s)ds

)
exp

(∫ τ
0 D(s)ds

)
P ∗(0)

where D is equal to the diagonal part of dP ∗

dτ P . Then ‖Xε(τ) − Υε(τ)X0‖ < cεmin(1,α−1) for some
constant c > 0 independent of τ ∈ [0, 1] and ε > 0.

Proof. Define Γ(τ) =
∫ τ

0 Λ(s)ds and Yε(τ) = exp
(
i
εΓ(τ)

)
P ∗(τ)Xε(τ). Then Yε satisfies the equation

dYε(τ)

dτ
= M(P,Γ, ε)(τ)Yε(τ)

+ exp

(
i

ε
Γ(τ)

)
dP ∗

dτ
(τ)P (τ) exp

(
− i
ε
Γ(τ)

)
Yε(τ),

(11)

where M(P,Γ, ε) is defined as in Definition 4.6. In order to simplify the notations, set Dε(τ) =

exp
(
i
εΓ(τ)

)
dP ∗

dτ (τ)P (τ) exp
(
− i
εΓ(τ)

)
and denote the flow at time τ of the equations dx(τ)

dτ = M(P,Γ, ε)(τ)x(τ)

and dx(τ)
dτ = (P ετ )−1Dε(τ)P ετx(τ) by P ετ and W ε

τ , respectively. By the variation formula (Proposi-
tion 4.1), we get that the flow at time τ of equation (11) is equal to Qετ = P ετW

ε
τ . By Lemma 4.8,

we have P ετ = Id + O(εα−1). Hence (P ετ )−1Dε(τ)P ετ = Dε(τ) + O(εα−1). Using the gap condition
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(GAP), we have the estimate
∫ τ

0 Dε(s)ds =
∫ τ

0 D(s)ds + O(ε) uniformly with respect to τ ∈ [0, 1].
Indeed, (Dε(τ))jl = qjl(τ)e

i
ε

∫ τ
0 (λj(s)−λl(s))ds, j, l ∈ {1, . . . , n}, where qjl is C∞. Hence we get the ex-

pected estimation by a direct estimation of the integral of the oscillating term e
i
ε

∫ τ
0 (λj(s)−λl(s))ds,

j, l ∈ {1, . . . , n}. Moreover, since Dε is bounded with respect to ε, Theorem 4.3 ensures that
W ε
τ = exp

(∫ τ
0 D(s)ds

)
+O(εmin(1,α−1)). It follows that

Qετ =
(
Id +O(εα−1)

)(
exp

(∫ τ

0
D(s)ds

)
+O(εmin(1,α−1))

)
= exp

(∫ τ

0
D(s)ds

)
+O(εmin(1,α−1)).

Proof. (Proof of Theorem 3.3) By an easy application of Theorem 4.3, we get the adiabatic estimate
∀τ ∈ [0, 1], ‖X̂ε(τ) − Υε(τ)X0‖ < Cε, where C > 0 is independent of τ, ε and Υε is defined as in
Proposition 4.9. The result is then obtained combining the previous inequality with the estimate of
Proposition 4.9 by triangular inequality.

4.5 1-parameter family case

Definition 4.10. For Aδ(τ) ∈ u(n) whose dependence on (τ, δ) ∈ [0, 1]× [a, b] is C∞, define Λδ(τ) =
diag(λδj(τ))j∈{1,...,n} where j 7→ λδj(τ) is the nondecreasing sequence of eigenvalues of iAδ(τ). We say
that A satisfies a uniform gap condition if there exists C > 0 such that

∀k 6= j,∀δ ∈ [a, b],∀τ ∈ [0, 1], |λδk(τ)− λδj(τ)| > C. (UGAP)

Using uniform estimates with respect to δ ∈ [a, b] in the proof of Proposition 4.9, we get the
following theorem.

Theorem 4.11. Consider (Bε)ε>0 ∈ S(α) with α > 1. Let (Aδ(τ))δ∈[a,b] be a family of matrices
in u(n) whose dependence in (τ, δ) ∈ [0, 1] × [a, b] is C∞. Assume that A(τ) satisfies (UGAP). Fix
X0 ∈ Cn independent of ε. Let Xε(δ, τ) be the solution of dXε(τ)

dτ =
(

1
εA

δ(τ) + δBε(τ)
)
Xε(τ) such that

Xε(0) = X0 and X̂ε(δ, τ) be the solution of dX̂ε(τ)
dτ = 1

εA
δ(τ)X̂ε(τ) such that X̂ε(0) = X0. Then there

exists c > 0 independent of τ, δ, ε such that for every (τ, δ) ∈ [0, 1] × [a, b], ‖Xε(δ, τ) − X̂ε(δ, τ)‖ ≤
cεmin(1,α−1).

5 Control of two-level systems

We start this section proving Theorem 3.4.

Proof. (Proof of Theorem 3.4) Apply the unitary transformation Xε(τ) = Uε(τ)ψε(τ) where

Uε(τ) =

e−i( Eτ
εα+1 +

φ(τ)
2ε

)
0

0 e
i
(

Eτ
εα+1 +

φ(τ)
2ε

)
 .

ThenXε satisfies
dXε(τ)
dτ =

(
1
εA(τ) +Bε(τ)

)
Xε(τ),Xε(0) = ψ0, whereA(τ) = −i

(
−φ′(τ)/2 v(τ)
v(τ) φ′(τ)/2

)
and Bε(τ) = −i

ε

(
0 v(τ)ei(

4Eτ
εα+1 +

2φ(τ)
ε

)

v(τ)e−i(
4Eτ
εα+1 +

2φ(τ)
ε

) 0

)
. The condition v(τ)2 + φ′(τ)2

4 > C for ev-

ery τ ∈ [0, 1] implies that A satisfies Condition (GAP). Let X̂ε : [0, 1] → C2 be the solution of
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Figure 1: Fidelity |〈ψε(τ), e2〉|2 as a function of the time variable τ ∈ [0, 1] with ε = 0.01, α = 1.5,
and E = 1.

Figure 2: Squared norm of the difference between ψε and ψ̂ε as a function of the time variable τ ∈ [0, 1]
with ε = 0.01, α = 1.5, and E = 1.

dX̂ε(τ)
dτ = 1

εA(τ)X̂ε(τ), X̂ε(0) = ψ0. Theorem 3.3 then implies that ‖Xε(τ)− X̂ε(τ)‖ ≤ cεmin(1,α−1).
Noticing that ψ̃ε(τ) = U∗ε (τ)X̂ε(τ), we get the result.

5.1 Control strategy for two-level systems and simulations

Let v, φ ∈ C∞([0, 1],R) be such that v(0) = v(1) = 0, φ(0) = 0, φ′(0)φ′(1) < 0, and v(τ) 6= 0 for

τ ∈ (0, 1). Let e1 =

(
1
0

)
and e2 =

(
0
1

)
. By adiabatic approximation, the solution xε : [0, 1]→ C2 of

dxε(τ)

dτ
= − i

ε

(
−φ′(τ)/2 v(τ)
v(τ) φ′(τ)/2

)
xε(τ), xε(0) = e1,

satisfies ‖xε(1) − eiξεe2‖ ≤ Cε where C > 0 is independent of ε and ξε ∈ R. Consider the solution
ψε(τ) of Equation (8) such that ψ0 = e1 and corresponding to the controls (v, φ). Applying Theorem
3.4, we have ‖ψε(1)− eiθεe2‖ ≤ cεmin(1,α−1) where c > 0 is independent of ε and θε ∈ R.

On Figure 1, we have plotted the projection of the wave function onto e2 for v(τ) = sin(πτ), φ(τ) =
− 1
π sin(πτ), with ε = 0.01, α = 1.5 and E = 1 in the fast time scale, that is, as a function of τ ∈ [0, 1].

The total time needed by our control strategy in the variable t = τ
εα+1 is T = 1

εα+1 . On Figure 2, we
have plotted the norm of the difference between ψε and the solution of Equation (9) with the same
initial condition and parameters as a function of τ ∈ [0, 1].
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5.2 Robustness of the control strategy with respect to amplitude of control in-
homogeneities

Let U be a connected open set of R containing 0.

Theorem 5.1. Let E ∈ R \ {0}. The equation

i
dψ

dt
=

(
E δu
δu −E

)
ψ (12)

is approximately ensemble controllable between the eigenstates of H0 =

(
E 0
0 −E

)
uniformly with

respect to δ ∈ [a, b] ⊂ (0,+∞) and u ∈ U , that is, for every ε > 0 there exist T > 0 and u ∈
L∞([0, T ], U) such that, for every δ ∈ [a, b], the solution ψ(δ, ·) : [0, T ] → C2 of Equation (12) with
initial condition ψ(δ, 0) = e1 satisfies ∀δ ∈ [a, b], ‖ψ(δ, T )− eiθδe2‖ < ε where θδ ∈ R.

Proof. Let α > 1 and v, φ ∈ C∞([0, 1],R) be such that v(0) = v(1) = 0, φ(0) = 0, φ′(0)φ′(1) < 0,
and v(τ) 6= 0 for τ ∈ (0, 1). Let us consider τ = εα+1t ∈ [0, 1] and uε(τ) = 2

ε v(τ) cos( 2Eτ
εα+1 + 1

εφ(τ)).
For each δ ∈ [a, b], let ψε(δ, τ) be the solution of

i
dψ(δ, τ)

dτ
=

(
E

εα+1 δuε(τ)

δuε(τ) − E
εα+1

)
ψ(δ, τ), ψε(δ, 0) = e1.

Apply the unitary transformationXε(δ, τ) = Uε(τ)ψε(δ, τ) where Uε(τ) =

e−i( Eτ
εα+1 +

φ(τ)
2ε

)
0

0 e
i
(

Eτ
εα+1 +

φ(τ)
2ε

)
.

Then Xε(δ, τ) satisfies

dXε(δ, τ)

dτ
=

(
1

ε
Aδ(τ) + δBε(τ)

)
Xε(δ, τ), Xε(δ, 0) = e1,

where Aδ(τ) = −i
(
−φ′(τ)/2 δv(τ)
δv(τ) φ′(τ)/2

)
and Bε(τ) = −i

ε

(
0 v(τ)ei(

4Eτ
εα+1 +

2φ(τ)
ε

)

v(τ)e−i(
4Eτ
εα+1 +

2φ(τ)
ε

) 0

)
.

By our choice of v and φ, Aδ(τ) is C∞ w.r.t (τ, δ) and satisfies (UGAP). Applying Theorem 4.11,
we get that ‖ψε(δ, 1)− eiθδ,εe2‖ ≤ Cεmin(1,α−1) where C > 0 is independent of δ, ε and θδ,ε ∈ R. The
result follows.

Consider the same (v, φ) as those chosen in Section 5.1. For each δ ∈ [0, 1], let ψε(δ, τ) be the
solution of (12) with initial condition ψ(δ, 0) = e1 and E = 1. We have plotted on Figure 3 the
fidelity, that is |〈ψε(δ, 1), e2〉|2 for a dispersion δ of the amplitude of the control in [0, 1]. On every
sub-interval [a, b] of [0, 1] with a > 0, the fidelity converges uniformly to the constant function δ 7→ 1
when ε→ 0.

Let now ψε(E, τ) be the solution of the equation

i
dψε(E, τ)

dτ
=

(
E

εα+1 uε(τ)

uε(τ) − E
εα+1

)
ψε(E, τ) (13)

where uε(τ) = 2
ε v(τ) cos( 2τ

εα+1 + 1
εφ(τ)), with initial condition ψ(E, 0) = e1 for every E ∈ [1

2 ,
3
2 ].

We have plotted on Figure 4 the fidelity for a dispersion of E in [1
2 ,

3
2 ]. As already mentioned

in the introduction, numerical simulations suggest that our method of control is not robust w.r.t.
inhomogeneities of the resonance frequency E.
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Figure 3: Fidelity |〈ψε(δ, 1), e2〉|2 as a function of the amplitude inhomogeneity δ, with ε = 0.01,
α = 1.5, and E = 1.

Figure 4: Fidelity |〈ψε(E, 1), e2〉|2 as a function of the drift term E, with ε = 0.01 and α = 1.5.
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