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Abstract— The communication channels used to convey infor-
mation between the components of wireless networked control
systems (WNCSs) are subject to packet losses due to time-
varying fading and interference. The WNCSs with missing
packets can be modeled as Markov jump linear systems with
one time-step delayed mode observations. While the problem
of the optimal linear quadratic regulation for such systems
has been already solved, we derive the necessary and suf-
ficient conditions for stabilizability. We also show, with an
example considering a communication channel model based
on WirelessHART (a on-the-market wireless communication
standard specifically designed for process automation), that
such conditions are essential to the analysis of WNCSs where
packet losses are modeled with Bernoulli random variables
representing the expected value of the real random process
governing the channel.

I. INTRODUCTION

From the automatic control perspective, the wireless com-
munication channels are the means to convey informa-
tion between sensors, actuators, and computational units of
wireless networked control systems. These communication
channels are frequently subject to time-varying fading and
interference, which may lead to packet losses.

In the wireless networked control system (WNCS) lit-
erature the packet dropouts have been modeled either as
stochastic or deterministic phenomena [1]. The proposed
deterministic models specify packet losses in terms of time
averages or in terms of worst case bounds on the number
of consecutive dropouts (see e.g. [2]). For what concerns
stochastic models, a vast amount of research assumes mem-
oryless packet drops, so that dropouts are realizations of a
Bernoulli process ([3], [4], [5]). Other works consider more
general correlated (bursty) packet losses and use a transition
probability matrix (TPM) of a finite-state stationary Markov
chain (MC, see e.g. the finite-state Markov modelling of
Rayleigh, Rician and Nakagami fading channels in [6] and
references therein) to describe the stochastic process that
rules packet dropouts (see [3], [7], [8]). In these works
networked control systems with missing packets are modeled
as time-homogeneous Markov jump linear systems (MJLSs,
[9]), with one time-step delayed mode observations.
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While the problem of the optimal linear quadratic regu-
lation for such systems has been apparently solved [8], the
existing solution does not consider the aspects of stabiliz-
ability. As the main contribution of this article we derive
the necessary and sufficient conditions for stabilizability of
WNCSs modeled as MJLSs with one time-step delayed
mode observations. In addition to this, we provide an ex-
ample considering a communication channel model based
on WirelessHART (a on-the-market wireless communication
standard specifically designed for process automation) and
show that the stationary MJLS model derived from the ac-
curate Markov channel representation of the communication
channel permits to discover and overcome the challenging
subtleties arising from bursty behavior. We also show that
our stabilizability conditions are essential to the analysis of
WNCSs that consider Bernoulli dropouts, when the Bernoulli
random variables represent the expected value of the real
random process governing the packet losses.

Notation and preliminaries. In the following, N0 denotes
the set of non-negative integers, while F indicates the set
of either real or complex numbers. The absolute value of
a number is denoted by | · |. We recall that every finite-
dimensional normed space over F is a Banach space [10],
and denote the Banach space of all bounded linear operators
of Banach space X into Banach space Y, by B(X,Y), and set
B(X,X),B(X). The identity matrix of size n is indicated by
In. The operation of transposition is denoted by apostrophe,
the complex conjugation by overbar, while the conjugate
transposition is indicated by superscript ∗, the real part of the
elements of the complex matrix by <(·). We denote by ρ(·)
the spectral radius of a square matrix (or a bounded linear
operator), i.e., the largest absolute value of its eigenvalues,
and by ‖·‖ either any vector norm or any matrix norm. Since
for finite-dimensional linear spaces all norms are equivalent
[11, Theorem 4.27] from a topological viewpoint, as vector
norms we use variants of vector p-norms. For what concerns
the matrix norms, we use `1 and `2 norms [12, p. 341], that
treat nr×nc matrices as vectors of size nrnc, and use one
of the related p-norms. The definition of `1 and `2 norms is
based on the operation of vectorization of a matrix, vec(·),
which is further used in the definition of the operator vec2(·),
to be applied to any block matrix, e.g. Φ =

[
Φij
]N
i,j=1

, as if
its blocks Φij of size nr×nc were the simple elements:

vec2(Φ), [vec(Φ11), . . . , vec(ΦN1), vec(Φ12), . . . , vec(ΦNN)]′.

The linear operator vec2(·) is a uniform homeomorphisms,
its inverse operator vec−2(·) is uniformly continuous [13],
and any bounded linear operator in B

(
FNnr×Nnc

)
can be
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represented in B
(
FN

2nrnc
)

trough vec2(·). Then, 	 indicates
the operation of matrix augmentation, i.e., the horizontal
concatenation of two matrices with the same number of
rows. We denote by ⊗ the Kronecker product defined in the
usual way, see e.g. [14], and by ⊕ the direct sum. Notably,
the direct sum of a sequence of square matrices (Φi)

N
i=1

produces a block diagonal matrix, having its elements, Φi,
on the main diagonal blocks. Then, trace (·) indicates the
trace of a square matrix. For two Hermitian matrices of the
same dimensions, Φ1 and Φ2 , Φ1 �Φ2 (respectively Φ1 �Φ2 )
means that Φ1 −Φ2 is positive semi-definite (respectively
positive definite). Finally, E(·) stands for the mathematical
expectation of the underlying scalar valued random variables.

II. COMMUNICATION CHANNEL MODEL

The challenges in analysis and co-design of WNCSs are
best explained by considering wireless industrial control
protocols. In this paper we focus on a networking protocol
specifically developed for wireless industrial automation, i.e.
WirelessHART [15], which is based upon the physical layer
of IEEE 802.15.4-2006. Since interleaving and forward error
correction techniques appear only in the IEEE 802.15.4-2015
version of the standard, even one erroneous bit leads to
a corrupted WirelessHART data packet. According to the
IEEE standard [16, p. 268], the bit error ratio (BER, Rb)
depends only on the signal-to-noise-plus-interference ratio
(SNIR), that may be expressed by the sum of weighted log-
normal processes. Such model admits an accurate log-normal
approximation based on moment matching method [17]. In
the following we will indicate this approximation as analytic
model. Notably, using a logarithmic scale for the values of
SNIR, denoted by Γ, gives a normally distributed probability
density function with mean µ and variance σ2, Γ ∼ N

(
µ, σ2

)
.

For notational convenience, we will indicate by γ the power
value corresponding to SNIR Γ, i.e. Γ,10 log10 (γ) [dB].

An analytic model may be used to create a finite-state
Markov channel model [6] that captures the essence of
time-varying channel behavior by associating a binary sym-
metric channel to each state of an ergodic discrete-time
MC. Clearly, the approximation becomes more accurate as
the number of MC states becomes larger. Conversely, the
coarsest approximation of the channel behavior looks at only
one state and may completely neglect second-order statistics.
It considers the packet error probability to follow a Bernoulli
distribution. This simple model has been widely adopted in
the WNCSs literature. In Section IV we will show that when
the derived (strong) stabilizability conditions are satisfied,
the linear quadratic regulation with Bernoulli dropouts [3]
provides a mode-independent solution to the optimal infinite-
horizon state feedback control problem over a more rigorous
representation of the wireless communication channel. Here,
we show a link between the stochastic and deterministic
models by deriving worst case bounds on the number of
consecutive dropouts.

Analytic model. The reference scenario is given by a
certain number of coexisting and independent WirelessHART
networks. For simplicity, here we assume that there are only

two networks, and the transmitted signals are affected by
path loss [16, p. 274], (log-normal) shadowing, and additive
white noise introduced by the channel. Since in industrial
setting highly absorbing environments eliminate multipath
propagation [18], the multipath-induced fading is neglected.
The considered modulation scheme is offset quadrature
phase-shift keying direct-sequence spread spectrum, and it is
supported by a coherent demodulation. To convey the control
system data, WirelessHART uses Publish data messages [15,
p. 248], where the minimum update period is 0.1 s, time slot
period Ts is 0.01 s, and the frame length LF for e.g. four
relevant state variables is 26 octets. From [16, p. 268] and the
absence of the forward error correction, the packet error rate
(PER, Rp) is related to SNIR through BER, where γ∈(0,∞),
and Rb(γ) ∈ [0, 0.5], Rp(γ) ∈ [0, 1] are both monotonically
non-increasing: Rp(γ) =1−(1−Rb(γ))LF , where

Rb(γ) =
1

30

16∑
i=2

(−1)i
(

16

i

)
e(20γ 1−i

i ).

So, for LF = 208, we have that Rp<2.22 · 10−16 ∀γ�≥3.882

(that is, Γ� ≥ 5.89 dB), and Rp < 3.17 · 10−10 (i.e, a rate of
less than 1 data packet lost in a year of continuous operation
with the sampling time Ts) ∀γ?≥2.859 (i.e., Γ?≥4.56 dB).

Since in practical applications the probability of packet
error burst of length LB is negligible when it is smaller
than a specified threshold ε, which may be as small as the
machine epsilon, the highest number of consecutive dropouts
LB(ε) may be obtained as follows. As Γ ∼ N

(
µ, σ2

)
, its

cumulative distribution function FΓ(ε) gives the probability
of a single packet loss, while FΓ(ε)LB is the probability of
LB consecutive packet losses, so

LB(ε)=ceil

 ln(ε)

ln
(

1
2

(
1+erf

(
Γ(ε)−µ
σ
√

2

)))
, (1)

where ceil(·), ln(·) and erf(·) are the ceiling, natural loga-
rithm, and error functions, respectively.

As an illustrative example, consider ε?=3.17·10−10, so that
Γ(ε?) = Γ? = 4.56 dB, on a wireless communication channel
with µ̂= 10.15 dB and σ̂= 4.85 dB. Then, LB(ε?) = 11. For
ε�=2.22 · 10−16 and the same channel characterized by µ̂, σ̂,
we have instead that Γ(ε�)=Γ�=5.89dB, so that LB(ε�)=22.

Since the probability density function fΓ(·) of the model is
known, and Rp is a continuous function defined on the range
of Γ, by the law of the unconscious statistician, the expected
value of the PER can be obtained as

∫ +∞
−∞ Rp(10

α
10 )fΓ(α) dα,

and its variance can be derived in a similar fashion. On the
channel Γ̂ ∼ N

(
µ̂, σ̂2

)
having µ̂= 10.15 dB and σ̂= 4.85 dB,

E(Rp(Γ̂))=0.008, while the PER variance equals to 0.006.
Finite-state abstractions. The analytic model of a channel

is defined on continuous state-space. However, there are sev-
eral application scenarios (e.g. modeling channel error bursts,
decoding in channels with memory, adaptive transmission)
where using a finite number of channel states can be more
advantageous [6]. The coarsest abstraction of the analytic
model collapses the infinite-dimensional state-space into one
state with a representative PER (given by its expected value),
which may be seen as a probability of the packet loss event



in the Bernoulli distribution. In more accurate finite-state
Markov channel abstraction the range of SNIR is divided
into several consecutive regions. A region i is mapped into a
state si of the related MC and is delimited by two thresholds
αi and αi+1. The steady state probability of the state si is the
probability that the SNIR is between the thresholds of the re-
gion, i.e. pi=

∫ αi+1

αi
fΓ(α)dα, while the PER associated to the

same state is given by its expected value within the respective
region, that is Ri

p = 1
pi

∫ αi+1

αi
Rp(10

α
10 )fΓ(α) dα. The TPM

may be then obtained by integrating the joint probability
density function of the SNIR [6] over two consecutive packet
transmissions and over the desired regions. In the literature
on finite-state Markov channel abstractions there are different
methods of partitioning of the range of SNIR [6], [19]. For
simplicity of the presentation, in this paper we choose Γ(ε)

as the only threshold. Γ(ε) divides the range of SNIR in two
intervals. In this way we obtain a Markov channel with just
two operational modes, where only one mode of operation
has nonzero packet error probability. This model is known
as Gilbert channel [6]. It is the easiest nontrivial example of
channel models with memory.

III. OPTIMAL CONTROL SCHEMES

Consider a linear stochastic system with intermittent con-
trol packets due to the lossy communication channel [3]

xk+1 =Axk+Buak+wk, with uak=νku
c
k, (2)

where, xk ∈ Fnx is a system state, uak ∈ Fnu is the control
input to the actuator, A and B are state and input matrices of
appropriate size, respectively, uck∈Fnu is the desired control
input computed by the controller, wk ∈ Fnx is a Gaussian
white process noise with zero mean and covariance matrix
Σw. The process noise wk is assumed to be independent
from the initial state x0 and from the stochastic variable
νk, which models the packet loss between the controller and
the actuator: if the packet is correctly delivered then uak=uck,
otherwise if it is lost then the actuator does nothing, i.e.,
uak=0. This compensation scheme is summarized by (2).

In the following, we assume full state observation with no
measurement noise, and no observation packet loss, so the
optimal control must necessarily be a static state feedback
and no filter is necessary. In such setting, we will compare
the performance of the optimal state feedback controller
under TCP-like protocols [3] (treating νk as independent
and identically distributed (i.i.d.) Bernoulli random variables,
with information set available to the controller defined as
Fk ,

{
xk,νk−1

}
, where xk = (xt)

k
t=0, and νk = (νt)

k
t=0,

and optimal linear quadratic regulator for MJLS, in the
presence of one time-step delayed mode observations [8],
which considers νk as a random variable governed by the
Markov channel derived from the model of Section II.

Linear quadratic regulation with Bernoulli dropouts.
The optimal state-feedback controller accounting for the
i.i.d. packet losses following a Bernoulli distribution, with
Pr(νk=1) = ν̂ for all k, minimizes the performance index
Jb = limt→∞

1
t
E(
∑t
k=0(x∗kQxk+ub∗k Ru

b
k) | Fk), where Q� 0

and R � 0 are the state weighting and control weighting

matrices, respectively. The optimal controller is given by
ubk = −(R+B∗Xb

∞B)−1(B∗Xb
∞A)xk = Kbxk, where Xb

∞ is
the unique positive semi-definite solution of the modified
algebraic Riccati equation (MARE, [3]) Xb

∞ = A∗Xb
∞A−

ν̂(A∗Xb
∞B)(R+B∗Xb

∞B)−1(B∗Xb
∞A)+Q. If (A,B) is control-

lable, and (A,Q) is observable, the solution Xb
∞ is stabilizing

if and only if ν̂ > νc (see [3] together with [20]), where νc
is the critical arrival probability, that satisfies the following
analytical bound: νc ≤ pmax, with pmax , 1−Πi|λui (A)|−2,
where λui (A) are unstable eigenvalues of A. Notably, when B
is rank 1, νc=pmax. The optimal controller attains the optimal
value of the performance index, i.e., Jb?=trace

(
Xb
∞Σw

)
.

MJLS with one time-step delayed mode observations.
When the finite-state Markov channel representation of the
communication channel is available, to each state si of
the MC (characterising the evolution of the channel) is
associated a discrete memoryless channel. The networked
control system using such communication channel can be
modelled as Markov jump system in the following manner.

Consider the stochastic basis (Ω,G, (Gk),Pr), where Ω is
the sample space, G is the σ-algebra of (Borel) measurable
events, (Gk) is the related filtration, and Pr is the probability
measure. Then, the communication channel state is the output
of the discrete-time MC Θ : N0 ×Ω → S defined on the
probability space, that takes values in a finite set S,{si}Ni=1.
∀k∈N0 the transition probability between the channel’s states
is defined as pij = Pr{θk+1 = sj | θk = si} ≥ 0,

∑N
j=1 pij = 1.

The associated TPM is a stochastic N×N matrix with entries
pij , i.e.,

[
pij
]N
i,j=1

. The probability of the successful packet
delivery and packet loss are now conditioned to the state of
the communication channel, i.e. respectively

Pr(νk=1 | θk=si)= ν̂i, Pr(νk=0 | θk=si)=1−ν̂i. (3)

We observe that the networks based on IEEE 802.15.4
compatible hardware provide a SNIR estimation procedure,
which is performed during link quality indicator measure-
ment [16, p. 65]. The estimated value of the SNIR falls into
one of the regions in which the range of SNIR is partitioned.
In this way the corresponding state si of the Markov channel
is unequivocally determined, and ν̂i=1−Ri

p.
We present the systems in terms of the Markov framework

[9] via the augmented state (xk, (θk, νk)), where νk accounts
for two possible operational modes, i.e., in closed loop, when
νk = 1, and in open loop, if νk = 0, while θk describes
the channel evolution. Since the probability of a particular
operational mode depends on the state of the communication
channel, we denote the aggregated state (θk, νk) by νθk ,
which is a 2N-ary random quantity.

The operational modes are observed by controller via
acknowledgements, which are available only after the current
decision on the gain to apply has been made and sent
through the channel, because the actual success of the
transmission is not known in advance. We assume that
the acknowledgments, and also the communication channel
states (measured through SNIR), are not received at the
controller instantaneously, but become available before the
next decision on the control to apply. So, we are dealing



with one time-step delayed mode observations, as presented
in [8], and the informational set available to the controller is
Gk=

{
xk,νk−1

θ

}
, with xk=(xt)

k
t=0, and νkθ =(θt, νt)

k
t=0. The

state space representation of the system is

xk+1 =Axk+νθkBuk+wk, (4)

where the Gaussian process noise wk (having the zero mean
and covariance matrix Σw) is assumed to be independent
from the initial condition (x0, νθ0) and from the Markov
process νθk for all values of discrete time k. We make
the assumption that the MC Θ is ergodic, with the steady
state distribution pi defined as limk→∞ Pr(θk=si), so the
aggregated Markov process νθk is also ergodic.

The optimal mode-dependent infinite-horizon state feed-
back controller is obtained from the solution of the following
coupled algebraic Riccati equations (CAREs), that are con-
structed via the general procedure described in [8], after few
manipulations that take into account the particular structure
(4) of the considered MJLS:

Xc
∞,i=Ai−CiB−1

i C
∗
i , Xc

∞,i=Xc∗
∞,i�0, (5)

Ai=A∗
(∑N

j=1
pijX

c
∞,j

)
A+Q, Ci=A∗

(∑N

j=1
pij ν̂jX

c
∞,j

)
B,

Bi=
∑N

j=1
pij ν̂j

(
B∗Xc

∞,jB+R
)
.

The optimal mode-dependent state feedback controller
is given by uk = Kc

θk−1
xk, where Kc

i = B−1
i C

∗
i . The

performance index optimized by this controller is Jc =

lim supt→∞
1
t
E(
∑t
k=0(x∗kQxk+u∗kRuk) | Gk), which, for the

optimal control law, equals to Jc? =
∑N
i=1 pitrace(Xc

∞,iΣw).
Clearly, the necessary condition for the existence of the
stabilizing solution Xc

∞,i, ∀i≤N , to the CAREs (5) is the
(mean square) stabilizability of the system (4). However,
for the best of our knowledge, such conditions have not
been derived yet, since e.g. the well-known stabilizability
conditions of the MJLSs with the instantaneous perfect
observation of the operational mode [9, pp. 57 – 58] clearly
do not account for the one-step delayed observation of the
channel’s state, as will be illustrated on a numerical example
in Section V. In the next subsection we derive the necessary
and sufficient conditions for the mean square stabilizability
of the system (4).

IV. STABILIZABILITY ANALYSIS

Consider first the system (4) without process noise, i.e.,

xk+1 =
(
A+νθkBKθk−1

)
xk, (6)

where Kθk−1 is a mode-dependent state-feedback controller
with one time-step delayed operational mode observation,
according to the informational set Gk. To account for the
dependence on Kθk−1 in the behavior of the continuous
state xk, we augment the system’s state with the memory
of the previous state of the communication channel, i.e.,
the new aggregated state is (xk, νθk , θk−1), or, equivalently,
(xk, νk, (θk, θk−1)), where the last term underlines the simi-
larity with the MCs with memory of order 2, see [21] for
additional details on MCs with memory. The introduced

memory is, however, fictitious, since the aggregated MC
obeys to the Markov property of the memoryless chain Θ:

Pr(θk+1 =sj , θk=si |θk 6=si, θk−1 =s`) = 0, ∀s`∈S, (7)
Pr (θk+1 =sj , θk=si |θk=si, θk−1 =s`) =

Pr(θk+1 =sj |θk=si) = pij , ∀s`∈S, (8)

where the first equality in (8) is due to the fact that the inter-
section of a set with itself is the set itself, so the joint prob-
ability Pr(θk=si, θk=si, θk−1 =s`) = Pr(θk=si, θk−1 =s`),
which implies that Pr(θk=si |θk=si, θk−1 =s`) = 1, by the
definition of the conditional probability. Taken together with
the chain rule of probability, the last equality implies the first
equality in (8). The second equality in (8) is clearly obtained
from the direct application the Markov property.

The joint probability of being in an augmented Markov
state (θk, θk−1) evolves according to (7) and (8), so, after
denoting Pr(θk+1 =j, θk= i) by π

(k+1)
ij , one has that

π
(k+1)
ij =

∑N

`=1
π

(k)
`i pij . (9)

The joint probability π(k)
`i may be defined through the indi-

cator function 1{θk=i,θk−1=`}, that indicates the membership
(or non-membership) of a given element in the set, as

E
(
1{θk=i,θk−1=`}

)
=π

(k)
`i . (10)

The indicator function 1{θk=i,θk−1=`} allows us obtain-
ing recursive difference equations for the first and second
moments of the system’s state, which are fundamental in
deriving our result on stabilizability. Specifically, we define

m
(k)
`i ,E

(
xk1{θk=i,θk−1=`}

)
, m(k),

[
m

(k)
`i

]N
`,i=1

, (11)

M
(k)
`i ,E

(
xkx

∗
k1{θk=i,θk−1=`}

)
, M(k),

[
M

(k)
`i

]N
`,i=1

, (12)

so that the first and second moments of xk are

E(xk)=
∑N

`=1

∑N

i=1
m

(k)
`i , E(xkx

∗
k)=

∑N

`=1

∑N

i=1
M

(k)
`i . (13)

Proposition 1: Consider the system (6). For all k ∈ N0,
1≤`, i, j≤N , one has that

m
(k+1)
ij =

(
A
∑N

`=1
m

(k)
`i +B

∑N

`=1
K`m

(k)
`i ν̂i

)
pij , (14)

M
(k+1)
ij =

(
A
∑N

`=1
M

(k)
`i A

∗+B
∑N

`=1
K`M

(k)
`i K

∗
`B
∗ν̂i+

2<

(
A
∑N

`=1
M

(k)
`i K

∗
`B
∗ν̂i

))
pij . (15)

Proof: See Appendix.
In the spirit of [9], Proposition 1 allows us to define the

operators L(·), [Lij(·)]Ni,j=1 and T (·), [T`i(·)]N`,i=1, both in
B
(
FNnx×Nnx

)
, as follows. ∀S=[Sij ]

N
i,j=1, T=[Tij ]

N
i,j=1, both

in ∈FNnx×Nnx , we specify the inner product as

〈S; T〉,
∑N

i=1

∑N

j=1
trace

(
S∗ijTij

)
, (16)

while the components of operators L(·), T (·), are defined by

Lij(S),

(
A
∑N

`=1
S`iA

∗+B
∑N

`=1
K`S`iK

∗
`B
∗ν̂i+

A
∑N

`=1
S`iK

∗
`B
∗ν̂i+B

∑N

`=1
K`S`iA

∗ν̂i

)
pij , (17)

T`i(S),A∗
∑N

j=1
pijSijA+K∗`B

∗
∑N

j=1
pijSijBK`ν̂i+

K∗`B
∗
∑N

j=1
pijSijAν̂i+A

∗
∑N

j=1
pijSijK`ν̂i. (18)



Remark 1: Clearly, we have that (L(S))∗=L(S∗), and it is
immediate to verify (starting from (16), applying (17), (18),
linearity of the trace operator and its invariance under the
cyclic permutations) that T (·) is the adjoint operator of L(·),
i.e., L∗=T . This is a generalization of [9, Prop. 3.2, p. 33].
Furthermore, it is evident from their definitions (17), (18)
that L(·) and T (·) are Hermitian and positive operators.

Define ∆P1,

 N

	

j=1

(
N⊕
i=1

pij

)′, ∆Pν̂,

 N

	

j=1

(
N⊕
i=1

ν̂ipij

)′.
Then, the matrix forms of (14) and of (15) can be written

respectively as
vec2

(
m(k+1)

)
=Ψvec2

(
m(k)

)
, (19)

Ψ=∆Pν̂ ⊗

 N

	

j=1

(BKj)

+ ∆P1 ⊗

 N

	
j=1

A

,
vec2

(
M(k+1)

)
=Λvec2

(
M(k)

)
, (20)

Λ=∆Pν̂ ⊗

 N

	

j=1

(((
B̄K̄j

)
⊗(BKj)

)
+2<

((
B̄K̄j

)
⊗A
))+

∆P1 ⊗

 N

	

j=1

(
Ā⊗A

). (21)

Proposition 2: If ρ(Λ)<1 then ρ(Ψ)<1.
Proof: See Appendix.

From (15) and (17), it is immediate to verify that M(k+1) =

L(M(k)), and ∀S = [Sij ]
N
i,j=1 ∈ FNnx×Nnx , Sij � 0, by (17),

and (18) together with Remark 1, we have that vec2(L(S))=

Λvec2(S), vec2(T (S)) = Λ∗vec2(S). Thus, we have also that
ρ(T )=ρ(L)=ρ(Λ).

Definition 1: A system (4) is mean square stabilizable if
for any initial condition (x̂0, θ0) there exist a mode-dependent
state-feedback controller K , (Ki)

N
i=1 with one time-step

delayed operational mode observation, such that the system
(4) is mean square stable.

In order to apply the usual definition of the mean square
stability [9, pp. 36–37] to the system (4), we denote the
operational modes of the system (6) by ϕk , (νθk , θk−1),
which is a 2N2-ary random quantity. Then, (4) becomes

xk+1 =Aϕkxk+wk, (22)

where Aϕk , A+νθkBKθk−1 , so considering each possible
value of ϕk, we obtain also A ,(Ai)

2N2

i=1 . Then, we can recall
the usual definition of mean square stability of MJLSs:

Definition 2: An MJLS (22) is mean square stable if for
any initial condition (x̂0, ϕ̂0) there exist equilibrium points
xe and Me (independent from initial conditions x̂0 and ϕ̂0),
such that

lim
k→∞

‖E(xk)−xe‖=0, lim
k→∞

‖E(xkx
∗
k)−Me‖=0. (23)

It is worth mentioning [9, p. 37, Remark 3.10] that in
noiseless case, i.e., when wk=0 in (22), the conditions (23)
defining mean square stability become

lim
k→∞

E(xk) = 0, lim
k→∞

E(xkx
∗
k) = 0 (24)

Proposition 3: The system (6), i.e., (22) with wk = 0 for
all k∈N0, is mean square stable if and only if ρ(Λ)<1.

Proof: See Appendix.

Proposition 4: Consider the system (6). Then ρ(Λ)<1 if
and only if for any Z =[Zij ]

N
i,j=1 ∈F

Nnx×Nnx , Zij � 0, there
exists a unique Y=[Yij ]

N
i,j=1∈F

Nnx×Nnx , Yij�0, such that
Y−L(Y)=Z. (25)

Proof: See Appendix.
Proposition 5: Consider the system (22), where wk is a

Gaussian white process noise with zero mean and covariance
matrix Σw, assumed to be independent from the initial state
x0 and the stochastic variables νk, θk and θk−1, ∀k ∈ N0.
Then, for all 1≤`, i, j≤N , one has that (14) still holds, and

M
(k+1)
ij =

(
A
∑N

`=1
M

(k)
`i A

∗+B
∑N

`=1
K`M

(k)
`i K

∗
`B
∗ν̂i+

2<

(
A
∑N

`=1
M

(k)
`i K

∗
`B
∗ν̂i

))
pij + Σw

∑N

`=1
π

(k)
`i pij . (26)

Proof: See Appendix.
After noting that the last addend in (26) can be written as

Σw
N∑̀
=1

(
π

(k)
`i ⊗Inx

)
Inxpij , we define Π(k),

[
π

(k)
`i ⊗Inx

]N
`,i=1

, so

that the matrix form of (26) is given by

vec2
(
M(k+1)

)
=Λvec2

(
M(k)

)
+Υvec2

(
Π(k)

)
, (27)

Υ=∆P1 ⊗

 N

	

j=1

(Inx⊗Σw)

. (28)

Theorem 1: Consider the system (22), where wk is Gaus-
sian white process noise with zero mean and covariance
matrix Σw, assumed to be independent from the initial state
x0 and the stochastic variables νk, θk and θk−1, ∀k∈N0. Also
assume that MC Θ representing the evolution of the Markov
channel is ergodic. Then the system is mean square stable if
and only if ρ(Λ)<1. Proof: See Appendix.

Theorem 2: A system (4) is mean square stabilizable if
and only if there are V1 =

[
V1`i

]N
`,i=1

, V2 =
[
V2`i

]N
`,i=1

, and
V3 =

[
V3`i

]N
`,i=1

, L =
[
Li
]N
i=1

, where V1`i ∈ Fnx×nx , V1`i � 0,
V2`i∈Fnx×nu , V3`i∈Fnu×nu , V3`i�0, and Li∈Fnu×nx , such
that ∀i, j, one has that
N∑
`=1

pij(AV1̀ iA
∗+AV2`iB

∗ν̂i+BV
∗

2`iA
∗ν̂i+BV3`iB

∗ν̂i)−V1ij≺0,[
V1ij V2ij

V ∗
2ij LiV2ij

]
�0, (29a)

V3ij�LiV2ij (29b)
Proof: See Appendix.

Mode-independent control. If Xc
∞,i = X̂c

∞, ∀i ≤ N , the
solution to the CAREs (5) is mode-independent. Although
mode-independent control is obviously more conservative
than mode-dependent, it is very appealing in several sce-
narios, since it avoids the necessity to implement the online
measurements of the Markov channel state.

Theorem 3: Let ν̂ =
∑N
i=1 piν̂i. Then, the solution to

the MARE provides the mode-independent solution to the
CAREs. Proof: See Appendix.
So, the performance index for mode-independent solution
to CAREs (5) is given exactly by Jb? . We stress that the
mode-independent solution to CARE implicitly requires the
system (4) to be strongly mean square stabilizable, i.e., to
satisfy requirement (29). In the next section we show on a
numerical example that when a networked control system is



stabilizable, the controllers based on the mode-dependent and
mode-independent solutions to CAREs are stabilizing, and
the difference between their performance indices is small,
while when the system is not stabilizable, the controllers
obviously cannot stabilize the system, even when ν̂ > νc.

V. NUMERICAL EXAMPLE

Consider the inverted pendulum on a cart as in [22]. The
cart’s mass is 0.5kg, while the pendulum has mass of 0.2kg,
and inertia about its mass center of 0.006kg·m2; the distance
from the pivot to the pendulum’s mass center is 0.3m, the
coefficient of friction for cart is 0.1. The state variables are
the cart’s position coordinate x and pendulum’s angle from
vertical φ, together with respective first derivatives. We aim
to design a controller that stabilizes the pendulum in up-
right position, corresponding to unstable equilibrium point
x? = 0 m, φ? = 0 rad, so the system state is defined by x =[
δx, δẋ, δφ, δφ̇

]′, where δx(t)=x(t)−x?, and δφ(t)=φ(t)−φ?.
The initial state x0 =

[
0, 0, π

10
, 0
]′. The state space model

of the system is linearized around the unstable equilibrium
point and discretized with sampling period Ts = 0.01 s (see
Section II; the lagging effect associated with a zero-order
hold discretisation is neglected). The weighting matrices
are Q =

⊕
(5000, 0, 100, 0), R = 1, while the process noise

is characterized by the covariance matrix Σw = vv∗, v =[
0.030, 0.100, 0.010, 0.150

]′. The state matrix A is unstable,
since it has an eigenvalue 1.058, but it is easy to verify that
R�0, Q�0, and the pairs (A,B) and (A,Q) are controllable,
so the closed-loop system is asymptotically stable, if νk =1

∀k. Note that the critical probability νc for the networked
control over Bernoulli channel for this system is 0.106.

Consider the WirelessHART channel with two users char-
acterized by the same channel hopping sequence (which is
the worst possible scenario that also accounts for malicious
behaviors such as deliberate jamming), typical value of
transmitter and interferer power, 0dBm, the distance between
the receiver and transmitter of interest of 10 m, and the
distance between the receiver and interferer of di m.

To account for strongly stabilizable scenario, let the dis-
tance to interferer be d̂i = 14 m. This produces the models
described in Section II, Γ̂ ∼ N

(
µ̂, σ̂2

)
, with µ̂ = 10.15 dB,

σ̂= 4.85 dB, for which E(Rp(Γ̂)) = 1− ν̂ = 0.008, so that for
ε?=3.17 · 10−10 we get L̂B(ε?)=11. The same values of LB

and average PER are achieved by a Gilbert channel having
Γ? as the threshold that partitions the range of SNIR. The
related MJLS is strongly mean square stabilizable, since the
optimal linear quadratic regulation with Bernoulli dropouts
has ρ(Λ̂b) = 0.909 (and Ĵb? = 316.663). The mode-dependent
optimal Markovian controller with one time-step delayed
mode observations has ρ(Λ̂c) = 0.909 and Ĵc? = 316.619. So,
the mode-independent solution is very appealing in this case.

If the interferer closes the distance to ďi = 3.50 m, the
analytic model becomes Γ̌ having µ̌=−5.22 dB, σ̌=4.87 dB,
E(Rp(Γ̌)) = 0.767, and ĽB(ε?) = 975. The Gilbert channel
is still able to track this behavior. In this case, the related
MJLS is mean square stabilizable, but not strongly mean

Fig. 1. Traces of the system’s state that are generated under the Markovian
control law over WirelessHART channel Γ̂ having d̂i=14 m.

square stabilizable, since the optimal state feedback con-
troller under TCP-like protocols has ρ(Λ̌b)=1.001, and J̌b?=

1186124.787, while the mode-dependent optimal Markovian
controller with one time-step delayed mode observations still
has ρ(Λ̌c)=0.964, and J̌c? =497.512.

If the interferer reaches the distance d̃i=2.63 m, then the
analytic model becomes Γ̃ having µ̃=−7.70 dB, σ̃=4.87 dB,
E(Rp(Γ̃)) = 0.891, L̃B(ε?) = 3719. According to the classical
stabilizability conditions neglecting the one-time step mode
observation delay [9, pp. 57 – 58], the system is stabilizable
(with the associated spectral radius of 0.999), while in reality
it is not: a tentative application of the optimal Markovian
controller gives ρ(Λ̃c)=1.058 and J̃c? =502942.379. Notably,
1−E(Rp(Γ̃))=0.109> 0.106=νc: an abstraction of Γ̃ with a
Bernoulli channel would produce the misleading results.

Figures 1 – 6 depict statistical results for simulations of
the trajectories generated by inverted pendulum on a cart,
with a remote controller implementing either Bernoulli, or
Markovian control, and sending the data over WirelessHART
channels Γ̂, Γ̌ and Γ̃, respectively. In all cases, 10000
randomly generated admissible evolutions (of length 1200)
of the Gilbert channel are emanating from the first mode of
operation (i.e. the mode having a certain nonzero probability
of packet loss). The same evolutions of a Gilbert channel
were used for each pair of Markovian and Bernoulli con-
trollers. Since both control strategies do not consider any
constraints on the system’s states or control inputs, all the
physics-related constraints were neglected. It is evident that
Figures 1, 2, and 3 show a stable system’s behavior, while the
behavior illustrated in Figures 4, 5, and 5 is clearly unstable.
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APPENDIX

A. Proof of Proposition 1

For (14), considering (3), (6) – (11), by the low of total
probability, one has that

m
(k+1)
ij =E

(
xk+11{θk+1=j, θk=i}

)
=

(
A
N∑
`=1

m
(k)
`i +B

N∑
`=1

K`m
(k)
`i ν̂i

)
pij .

Similarly, for (15), by the low of total probability, consid-
ering again (3), (6) – (10), and (12), one has that

M
(k+1)
ij =E

(
xk+1x

∗
k+11{θk+1=j, θk=i}

)
=

=

(
A
N∑
`=1

M
(k)
`iA
∗
+B

N∑
`=1

K`M
(k)
`i K

∗
`B
∗
ν̂i+2<

(
A
N∑
`=1

M
(k)
`i K

∗
`B
∗
ν̂i

))
pij ,

since from its definition (12), M
(k)
`i �0. �

B. Proof of Proposition 2

We will follow the line of reasoning of the proof of a
similar implication found in [9, Prop. 3.6, p. 35], which deals
with classical MJLSs, having the operation modes observable
instantaneously. Let {ẽi}nxi=1, {êi}N

2nx
i=1 and {ěi}N

2n2
x

i=1 be the
canonical orthonormal basis for the linear spaces Fnx , FN

2nx

and FN
2n2
x , respectively. Fix arbitrarily ζ∈{i}nxi=1, l∈{i}Ni=1,

and ι ∈ {i}Ni=1. Consider the system (6), with the initial
conditions θ−1 = l, θ0 = ι, and x0 = ẽζ . Then, the only element
m

(0)
`i different from the vector of all zeros is m

(0)
lι = ẽζ ,

and vec2
(
m(0)

)
= êκ, where κ = ζ + nx(l−1+N (ι−1)).

Similarly, one has that the only element M
(0)
`i different from

the null matrix is M
(0)
lι = ẽζ ẽ

∗
ζ , and vec2

(
M(0)

)
= ěκ , where

κ= ζ+nx(ζ−1)+n2
x(l−1+N (ι−1)). Now, on one hand one

has from the repeated application of (19) that ‖m(k)‖22 =∥∥Ψkêκ
∥∥2

2
. On the other hand, from (11), by the triangle

inequality, linearity of the expected value and of the trace,
and by the definition of the trace, one has that∥∥∥m(k)

∥∥∥2

2
=
∑N

`=1

∑N

i=1

∥∥∥m
(k)
`i

∥∥∥2

2
≤
∑N

`=1

∑N

i=1

∥∥∥M
(k)
`i

∥∥∥
1

=
∥∥∥Λk ěκ∥∥∥

1
.

Now, the hypothesis ρ(Λ) < 1 ⇒ limk→∞Λk = 0. Thus,
limk→∞

∥∥Ψkêκ
∥∥2

2
=0. Since ζ, l and ι were chosen arbitrarily,

it follows that the previous expression holds ∀κ ∈ {i}N
2nx

i=1 .
Hence, limk→∞

∥∥Ψkv
∥∥2

2
=0, ∀v∈FN

2nx , which implies that
limk→∞Ψk=0, and proves the thesis, ρ(Ψ)<1. �

C. Proof of Proposition 3

For finite-dimensional linear spaces all norms are equiv-
alent [11, Theorem 4.27], so one can choose any particular
norm in (23). We first prove that ρ(Λ)<1 implies the mean
square stability of the system (6). From the definition of the
`1 norm, triangle inequality and (13), one finds that∥∥∥M(k)

∥∥∥
1
=
∑N

`=1

∑N

i=1

∥∥∥M
(k)
`i

∥∥∥
1
≥
∥∥∥∑N

`=1

∑N

i=1
M

(k)
`i

∥∥∥
1
=
∥∥E(xkx∗k)∥∥1.

By induction from (20) and the definition of the `1 norm,
‖M(k)‖1 = ‖vec2(M(k))‖1 = ‖Λkvec2(M(0))‖1. Since ρ(Λ)< 1

implies that limk→∞Λk=0, so that limk→∞ ‖M(k)‖1=0, and,
consequently, limk→∞ ‖E (xkx

∗
k)−0‖1=0.

By following exactly the same line of reasoning, from
Proposition 2, the definition of the `1 norm, triangle in-
equality, (13), and the repeated application of (19), one finds
that ‖m(k)‖1 = ‖E(xk)‖1, ‖m(k)‖1 = ‖Ψkvec2(m(0))‖1 and
ρ(Λ) < 1⇒ limk→∞ ‖E(xk)−0‖1 = 0 ∀xk, and the first part
of the proof is concluded.

So, it remains to prove the sufficiency, i.e., the conditions
in (23) imply that ρ(Λ) < 1. By hypothesis, one has that
limk→∞ ‖E(xkx

∗
k)−Me‖= 0 for all initial condition (x̂0, θ0).

By taking x̂0 = 0, one finds that Me must necessarily be
equal to zero, and limk→∞ E(xkx

∗
k) = 0. Then, from (13),

it follows that limk→∞
∑N
`=1

∑N
i=1 M

(k)
`i = 0, with M

(k)
`i � 0,

∀k, `, i. Thus, from (12), one has that limk→∞M(k) =0. Since
the linear mapping vec2(·) is uniform homeomorphic (see e.g.
[13] for additional details), the convergent behaviour of M(k)

is preserved by vec2
(
M(k)

)
. So, from the repeated application

of (20), one obtains that limk→∞Λkvec2
(
M(0)

)
=0. This last

statement is true ∀M(0) if and only if (from now on, iff)
limk→∞Λk=0, i.e., iff ρ(Λ)<1. �

D. Proof of Proposition 4

The proof of necessity follows the same steps of the proof
of [9, Theorem 3.19, p. 41], if one considers the system
described by the following recursive equation T(k+1) =

T(T(k)), T(0)∈FNnx×Nnx , and T(0)�0. An interested reader
may also refer to [23, Lemmas 47, 54, pp. 214 – 216] for
additional details on the proof for the simple linear case
(without jumps). The proof of sufficiency instead is obtained
by following the line of reasoning of the aforementioned [23,
Lemma 54, pp. 215 – 216], and [24, Lemma 1]. �

E. Proof of Proposition 5

By hypothesis on the process noise, ∀k ∈ N0, one has
that E(wk) = 0 and E(wkw

∗
k) = Σw, and the first statement

is obtained by the same line of reasoning of the first part of
the proof of Proposition 1, after taking into account that wk
is independent from θk and θk−1.

The expression (26) is derived in similar fashion from the
law of total probability, the aforementioned hypothesis, (3),
(7) – (10), (12), and (22), observing that M

(k)
`i �0. �

F. Proof of Theorem 1

We prove first that ρ(Λ)<1 implies that under the stated
assumptions the system (22) is mean square stable.

Let E
(
1{θk=i}

)
,χ(k)

i be the probability mass function of
the MC Θ. By the definition of the conditional probability,
π

(k)
`i = p`iχ

(k−1)
` . So, χ(k)

i =
∑N
`=1 π

(k)
`i . By hypothesis, Θ

is ergodic, i.e., for any given initial probability distribu-
tion

{
χ̂

(0)
i

}N
i=1

, there exists a limit probability distribution{
χ̂

(∞)
i

}N
i=1

which does not depend on
{
χ̂

(0)
i

}N
i=1

, such that∑N
i=1 pijχ̂

(∞)
i = χ̂

(∞)
j ,

∑N
i=1 χ̂

(∞)
i = 1 and |χ(k)

i − χ̂
(∞)
i | ≤ ηεk,

for some η≥0 and 0<ε<1 (cf. [9, p. 48]). Let π̂(∞)
`i =p`iχ̂

(∞)
` ,

Π̂(∞)=
[
π̂

(∞)
`i ⊗Inx

]N
`,i=1

. Then, from the ergodic assumption,∑N
`=1 π̂

(∞)
`i = χ̂

(∞)
i ,

∑N
`=1

∑N
i=1 π̂

(∞)
`i = 1, and, since by its

definition p`i≥0, we have that p`i
∣∣∣χ(k)
` − χ̂

(∞)
`

∣∣∣≤p`iηεk,∣∣∣π(k+1)
`i − π̂(∞)

`i

∣∣∣≤p`iηεk, η≥0, 0<ε<1. (30)

We know from Proposition 5 that the first and the second
moments of the system’s state evolve according to (19) and
(27), respectively. By Proposition 2, ρ(Λ) < 1 ⇒ ρ(Ψ) <

1. Thus, lim
k→∞

Ψk = 0, and lim
k→∞

‖E (xk)−xe‖ = 0, where



xe = 0, for all initial conditions (x̂0, θ0). Now, in order to
show that also lim

k→∞
‖E (xkx

∗
k)−Me‖= 0, we will prove that

(Zk)∞k=0, with Zk = Υvec2
(
Π(k)

)
, is a Cauchy summable

sequence, i.e., it is a Cauchy sequence in a complete
normed space FN

2n2
x , and

∞∑
k=0

sup
τ≥0
‖Zk+τ−Zk‖<∞, so that

vec2
(
M(k)

)
from (27) is also Cauchy summable, and for any

initial condition vec2
(
M(0)

)
, by [9, Proposition 2.9, p. 20]

lim
k→∞

vec2
(
M(k)

)
=
(
IN2n2

x
−Λ

)−1

Υ lim
k→∞

vec2
(
Π(k)

)
. Since for

a finite-dimensional linear spaces all norms are equivalent,
we will use `1 norm to prove first that the elements of the
sequence (Zk)∞k=0 become arbitrarily close to each other as
the sequence progresses, i.e., (Zk)∞k=0 is a Cauchy sequence.
Formally, ∀t, k, from the definition of the `1-norm, triangle
inequality, additivity of the linear mapping vec2(·), and (30)

‖Zt −Zk‖1 =
∥∥∥Υ(vec

2
(
Π

(t)−Π̂
(∞)
)

+ vec
2
(
Π̂

(∞)−Π
(k)
))∥∥∥

1
≤ (31)∥∥Υ∥∥

1

(∥∥∥Π(t)−Π̂
(∞)

∥∥∥
1
+
∥∥∥Π̂(∞)−Π

(k)
∥∥∥
1

)
≤N2

nx
∥∥Υ∥∥

1
η
(
ε
t−1

+ε
k−1

)
,

for some η≥ 0, 0 <ε< 1, proving that (Zk)∞k=0 is a Cauchy
sequence, with lim

k→∞
Zk = Υvec

(
Π̂(∞)

)
. Also, for t = k+ τ ,

(31) implies that
∞∑
k=0

sup
τ≥0
‖Zk+τ−Zk‖1 ≤ 2N2nxη

ε(1−ε)

∥∥Υ∥∥
1
<∞.

where the last equality is obtained from the formula of the
sum of a geometric series. This proves that the sequence
(Zk)∞k=0 is Cauchy summable. Thus, by [9, Proposition 2.9,
p. 20], if ρ(Λ) < 1, then also vec2

(
M(k)

)
from (27) is a

Cauchy summable sequence, and for any initial condition
vec2(M(0)), lim

k→∞
vec2(M(k)) = (IN2n2

x
−Λ)−1Υvec2

(
Π̂(∞)

)
.

Since vec2(·) is uniform homeomorphic, it follows that
lim
k→∞

M(k) = M(∞). Thus, together with (12) and (13), it

implies that limk→∞ ‖E(xkx
∗
k) −

N∑̀
=1

N∑
i=1

M
(∞)
`i ‖ = 0. Hence,

the system (22) is mean square stable. So, it remains to prove
the necessity, i.e., if the system (22) is mean square stable,
then ρ(Λ)<1. From (9), it is immediate to verify that

vec2
(
Π(k)

)
=Ξ vec2

(
Π(k−1)

)
, Ξ=∆P1⊗

 N

	

j=1

In2
x

, (32)

and from (27) we have that

vec
2
(
M

(k+1)
)

=Λ
k
vec

2
(
M

(0)
)

+
∑k−1

t=0
Λ
t
ΥΞ

k−t−1
vec

2
(
Π

(0)
)
, (33)

where, from (12), (21), (28) and (32), only the first addend
depends on the initial state x0. By hypothesis the system is
mean square stable, so, from (23) and (13), there exists Me

(depending only on the process noise characteristics) such
that lim

k→∞
E(xkx

∗
k) = Me for any E(x0x

∗
0) =

∑N
`=1

∑N
i=1 M

(0)
`i .

Since the linear mapping vec2(·) is uniform homeomorphic,
(33) implies that M(k+1) equals to

vec
−2
(
Λ
k
vec

2
(
M

(0)
))

+
∑k−1

t=0
vec
−2
(
Λ
t
ΥΞ

k−t−1
vec

2
(
Π

(0)
))
. (34)

For x̂0 =0, we have that the first addend in (34) produces
a null matrix, while the second addend produces a matrix,
denoted by W (k), that is partitioned into the blocks of size
nx-by-nx, such that W (k) =

[
W

(k)
`i

]N
`,i=1

, and

Me=limk→∞
∑N

`=1

∑N

i=1
W

(k)
`i . (35)

Therefore, for any initial condition (x̂0, ϕ̂0), i.e., for any
M(0), by the definition of the matrix addition as entry-
wise sum, it follows that limk→∞ E(xk+1x

∗
k+1)−Me = 0 =∑N

`=1

∑N
i=1(M

(k+1)
`i −W (k)

`i ), where M
(k)
`i � 0, ∀`, i, k. This

implies that ∀M(0), limk→∞ vec−2(Λkvec2(M(0)))=0, which
holds if and only limk→∞Λk=0, and thus iff ρ(Λ)<1. �

G. Proof of Theorem 2

Define V,
{

V1 =
[
V1`i

]N
`,i=1

,V2 =
[
V2`i

]N
`,i=1

,V3 =
[
V3`i

]N
`,i=1

,

L=
[
Li
]N
i=1

∣∣∣ V1`i∈F
nx×nx, V2`i∈F

nx×nu, V3`i∈F
nu×nu,

Li∈Fnu×nx, V1`i�0, V3`i�0, satisfy (29) ∀`, i
}
.

Since V1ij � 0, (29a) is equivalent to LiV2ij � V ∗2ijV
−1

1ij
V2ij

(by the Schur complement, see e.g. [9, Lemma 2.23, p. 28],
[25, Section A.5.5, pp. 650 – 651]). To prove the necessity,
we assume that the system (4) is mean square stabilizable.
Then, by Definition 1, there is a mode-dependent state-
feedback controller K = (Ki)

N
i=1 such that the system (22),

with Aϕk ,A+νθkBKθk−1 , is mean square stable. Then, by
Theorem 1, ρ(Λ)< 1, and by Proposition 4, ∃Y =[Yij ]

N
i,j=1,

Yij ∈Fnx×nx , Yij � 0, such that Yij−Lij(Y)� 0, ∀i, j, with
Lij(Y) defined by (17). After taking V1ij =Yij , V2ij =V1ijK

∗
i ,

V3ij = V ∗
2ijV

−1
1ij

V2ij , Li = Ki, it is easy to verify from
Yij−Lij(Y)�0 that (29) are satisfied and therefore the set V
is not empty. To prove the sufficiency, we assume that V is
non empty, so there are V1 ,V2 , V3 , and L that satisfy (29).
Let K = (Ki)

N
i=1, Ki ∈ Fnu×nx , be such that V2ij = V1ijK

∗
i .

By (29a), such K exists, and it may be obtained as K = L.
Then, from (17), (29), we have that Lij(V1)−V1ij equals to(
A
∑N

`=1
V
1̀ i
A
∗
+B
∑N

`=1
K V̀

1̀ i
K
∗
`B
∗
ν̂i+2<

(
A
∑N

`=1
V
1̀ i
K
∗
`B
∗
ν̂i

))
pij−V1ij=∑N

`=1
pij
(
AV

1̀ i
A
∗
+BV

3`i
B
∗
ν̂i+AV2`iB

∗
ν̂i+BV

∗
2`i
A
∗
ν̂i
)
−V

1ij
≺0.

So, by Proposition 4, we have that ρ(Λ)<1, and thus, by
Theorem 1, the system (22) is mean square stable. Then, by
Definition 1, the system (4) is mean square stabilizable, and
the proof is concluded. �

H. Proof of Theorem 3

By hypothesis, (pi)
N
i=1 is the stationary distribution of

the channel states, and ν̂ =
∑N
j=1 pj ν̂j . By definition of the

steady state distribution,
∑N
i=1 pi = 1, and pj =

∑N
i=1 pipij ,

so ν̂=
∑N
i=1 pi

∑N
j=1 pij ν̂j . Thus, the MARE can be written

as
∑N
i=1 pi

(
Xb
∞ −A∗Xb

∞A−Q +
∑N
j=1 pij ν̂j

(
A∗Xb

∞B
)(
R+

B∗Xb
∞B

)−1(
B∗Xb

∞A
))

= 0, holding ∀ (pi)
N
i=1 iff, ∀i≤N the

following expression is satisfied:

Xb
∞ = A∗Xb

∞A+Q−
(∑N

j=1
pij ν̂j

)
Y, (36)

where Y ,
(
A∗Xb

∞B
)(
R+B∗Xb

∞B
)−1(

B∗Xb
∞A

)
. Since pij and

ν̂j are known scalars,
∑N
j=1 pij ν̂j,ξi, with ξi again a known

scalar. So, we focus on the term ξiY . From the property of the
product of invertible matrix with a non-zero scalar, it follows
that ξiY =

(
ξiA
∗Xb
∞B

)(
ξi(R+B∗Xb

∞B)
)−1(

ξiB
∗Xb
∞A

)
. Thus,

we apply the definition of ξi and substitute the last expression
of ξiY in (36), obtaining exactly (5), where, as required by
the mode-independence, Xc

∞,i=Xb
∞, ∀i≤N . �
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