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Abstract— A sensor fault-tolerant estimation methodology for
a class of nonlinear systems is addressed in this paper. The
main idea of existing sensor fault-tolerant observers in the
literature is the detection and reconfiguration of observers by
using available healthy sensors. However, based on that idea,
a transient time is required for the observers to return to a
normal state which may not be practical in many missions.
The main contribution of the current study is to develop an
estimation strategy such that the effect of faults in sensors is
rejected without any abnormal transient behavior under some
conditions based on the availability of healthy sensors. By devel-
oping a robust nonlinear observer exploiting the measurement
of a sufficient set of redundant sensors, it is feasible to reject
bounded faults in the sensors such that a desired performance
for state estimation is achieved. Simulation results verify the
accuracy of the proposed estimation methodology.

Index Terms— Fault toleration, observers, sensor fault, sensor
redundancy.

I. INTRODUCTION

In recent decades, fault-tolerant control and estimation
strategies have been extensively developed to enhance the
maintainability and reliability of dynamical systems, es-
pecially for safety-critical scenarios. The overall system
stability is kept, and acceptable performance during and after
the occurrence of some certain types of faults is guaranteed
[1]–[4]. A proper fault-tolerant strategy mainly depends on
the part of a system which is faulty and also depends on
the application. One of the challenging problems in this
area of research is the estimation of unmeasurable states
of dynamical systems when sensors are subject to unknown
faults. Indeed, a fault in a sensor is similar to change in the
measured quantity by the sensor, and this issue may not be
compensated by standard observers. Therefore, the problem
of sensor fault-tolerant estimation has been the main topic
of several studies [5], [6].

The main approach to sensor fault-tolerant estimation is
using more sensors than strictly needed. In this condition,
detection of faulty sensors and then reconfiguration of ob-
servers by using available healthy sensors are applicable. For
instance, in [7] and [8], based on the detection of faulty
sensors, fault-tolerant observers with application to satellites
attitude estimation were developed. In [9], by comparing the
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performance of available sensors based on fault detection
and isolation, measurements without faults were selected as
the input of a reduced-order observer to estimate the states
of a reconstructed system. In [6], detection, isolation, and
reconfiguration of faulty sensor networks for wind turbines
monitoring were studied. In [10] and [11], a fault-tolerant
sensor reconciliation strategy using redundant sensors was
proposed. In [5] and [12], based on the estimation of the
quantities of faults in sensors, a switching sensor fault-
tolerant estimation strategy was proposed. Moreover, in [13],
the compensation of the effect of faults in observers by
estimating the quantities of the faults was considered.

Given the issues as mentioned above, the main idea of the
sensor fault-tolerant estimation strategies existing in the lit-
erature is the reconfiguration of observers by using available
healthy redundant sensors or estimation of the quantities of
faults. Such strategies have some advantages such as active
fault detection, considering unknown input observers, etc.
However, they need a transient time for the detection or
estimation and also a transient time for the estimated states
to return to acceptable values after reconfiguration of the
observer. Based on application, the transient divergence of
observers may not be acceptable, especially in dynamical
systems with fast behaviors such as vehicles. Therefore,
developing an estimation strategy robust to the effect of faults
in sensors is an open problem worthy of being investigated.

In this paper, a sensor fault-tolerant estimation strategy
for a class of nonlinear systems is proposed. The main
contribution of the proposed strategy is that without detection
of faulty sensors or estimation of the quantities of faults, the
consistent estimation of the system states in the presence of
faults in sensors is guaranteed. By exploiting the redundancy
of the sensors in the proposed observer, it is shown that
if the number of healthy sensors is strictly larger than the
number of faulty ones, the estimated states are insensitive
to the faults, and the convergence of the estimation error
vector to zero can be guaranteed. The obtained results are
also extendable to the case when all the sensors are subject to
measurement errors due to faults, biases, or noises. In such a
case, the uniformly ultimate boundedness of the estimation
error with the rejection of some possible faults with large
magnitudes is guaranteed.

Throughout the paper, the following notations are consid-
ered. R is the set of real numbers. R>0 and R≥0 denote the
sets of positive and nonnegative real numbers, respectively.
In denotes an n × n identity matrix, and 0n is an n × 1
zeros vector. ‖ · ‖ is the standard Euclidian norm. sgn(·)
is the sign function. ceil(·) is the ceiling function where
for x ∈ R, ceil(x) gives the smallest integer greater than



or equal to x. λmin(·) denotes the minimum eigenvalue
of a real symmetric matrix. s(t) is a step function. For a
square matrix M , let M � 0 or M � 0 if it is symmetric
positive definite or symmetric positive semi-definite, and
diag(m1,m2, . . . ,mn) is a block diagonal matrix composed
of the matrices m1,m2, . . . ,mn.

The organization of this paper is as follows. In Section
II, the motivation of the study is provided. The problem is
formulated in Section III. The proposed estimation strategy
is presented in Section IV. Simulation results are given in
Section V. Finally, conclusions reside in Section VI.

II. MOTIVATION

Classical state observers such as Luenberger observers
and Kalman filters suffer from sensitivity to various sources
of uncertainties such as model uncertainties, faults, etc.
To reject the effect of uncertainties in state estimation of
dynamical systems, robust observers have been developed
in the literature. For example, nonlinear robust observers
are designed based on the worst case of the uncertainties
(see the concept of sliding-mode observers in [14]–[18]).
Accordingly, state estimation in the presence of uncertainties
was guaranteed. However, the robustifying terms are func-
tions of output measurement and only can reject uncertainties
such as model uncertainties and external disturbances. In
other words, under those approaches, the correct performance
of the mentioned robust terms for uncertainties rejection
relies on the accuracy of measurements, and any error in
measurement degrades the performance of the estimator.

Based on the above-given arguments, the existing robust
observers in the literature are typically sensitive to sensor
faults. Thus, to tolerate the effect of sensor faults in state
estimation, the idea of using redundant sensors and recon-
figuration of the observers after occurrence of faults has been
considered [5]–[12], [19]. Although such approaches are less
conservative compared with robust estimation approaches,
they need a transient time for reconfiguration and recovery
of the observer after the occurrence of a fault, which limits
the efficiency of those approaches in practice. Based on this
motivation, developing an estimation strategy robust to faults
in sensors is worth investigation and is the main topic of this
preliminary paper.

In the next section, formulation of the studied nonlinear
system and sensor faults with some related definitions and
assumptions are presented.

III. PROBLEM STATEMENT

Consider a class of nonlinear systems in the form

ẋ(t) = Ax(t) +Bu(t) + f(x),

yi(t) = Cx(t) + δi(t, y), i ∈ {1, 2, . . . , r},
(1)

where x(t) ∈ Rn represents the state vector, u(t) ∈ Rm is
the input vector, and f(x) ∈ Rn is a nonlinear function of
the states. We assume that r packs of sensors as redundancy
are utilized such that yi(t) ∈ Rp denotes the ith pack of the
measurement outputs (each pack individually contains nec-
essary sensors guaranteeing the observability of the system).

The vector function δi(t, y) : R≥0 × Rp → Rp is unknown
and denotes a generic uncertainty term in the ith pack of
the outputs. Note that δi(t, y) models any type of additive
errors in the sensors such as noise, bias, and possible faults.
Moreover, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are the
state matrix, input matrix, and output matrix, respectively.

Assumption 1: The matrix A is constructed such that the
pair (C,A) is observable.

Assumption 2: By decomposing the fault vector
δi(t, y), i ∈ {1, 2, . . . , r}, as

δi(t, y) =
[
δi1(t, y) δi2(t, y) . . . δip(t, y)

]>
,

each entry of δi(t, y) is supposed to be unknown but bounded
as

|δik(t, y)| ≤ βk(t, y), i ∈ {1, . . . , r}, k ∈ {1, . . . , p}, (2)

where βk(t, y) ∈ R≥0 is a known function.
Assumption 3: We assume that x belongs to a domain D,

such that f(x) is locally Lipschitz as follows [20]–[22]:

‖f(x1)− f(x2)‖ ≤ γ‖x1 − x2‖,∀x1, x2 ∈ D, (3)

where γ ∈ R>0.
We consider two distinct models of faults for the available

sensors defined as follows. First, let us give the following
definitions.

Definition 1: By decomposing yi(t), i ∈ {1, 2, . . . , r}, as

yi(t) =
[
yi1(t) yi2(t) . . . yip(t)

]>
,

the set of the sensors measuring yik(t), i ∈ {1, 2, . . . , r}, k ∈
{1, 2, . . . , p}, is defined to be partially faulty if the
dominant redundant sensors have no faults, i.e., for all
k ∈ {1, 2, . . . , p}, more than ceil

(
r−1
2

)
number of

{δ1k(t, y), δ2k(t, y), . . . , δrk(t, y)} are zero for t ≥ 0.
Otherwise, the set of the sensors measuring yik(t), i ∈
{1, 2, . . . , r}, k ∈ {1, 2, . . . , p}, is defined to be mostly
faulty.

Definition 2: If |δ1k(t, y)|, |δ2k(t, y)|, . . . , |δrk(t, y)| are
sorted from large to small and forming a vector δ̃k(t, y)
for every k ∈ {1, 2, . . . , p}, the ceil( r

2 )th element
of δ̃k(t, y) is defined as the medium fault quantity of
δ1k(t, y), δ2k(t, y), . . . , δrk(t, y) denoted by δmk(t, y). Note
that the medium fault quantity is not the average one.

Considering the two defined models for sensor faults, the
objective is to exploit the output redundancy and design a
robust nonlinear observer for the nonlinear system described
in (1) such that

1) In the case of partially faulty sensors, the observer
is insensitive to sensor faults and the estimated state
vector converges to the real one as follows:

lim
t→∞

(x̂(t)− x(t)) = 0n.

2) In the case of mostly faulty sensors, the estimation
error is ultimately bounded such that as t→∞,

‖x̂(t)− x(t)‖ ≤ ρ

where ρ ∈ R>0 is the ultimate bound of the estimation



error that depends on δmk(t, y), k ∈ {1, 2, . . . , p}.
The main results are presented in the next section.

IV. SENSOR FAULT-TOLERANT OBSERVER: DESIGN AND
ANALYSIS

In this section, the proposed sensor fault tolerant observer
for the nonlinear system (1) is presented. Based on (1), the
proposed robust observer is given by

˙̂x(t) =Ax̂(t) +Bu(t) + f(x̂)

+ P−1C>K (Cx̂(t)− y1(t)− ν(t)) ,

ν(t) =χ

r∑
i=1

sgn
(
K(Cx̂(t)− yi(t))

) (4)

where x̂(t) represents the estimated value of x(t), y1(t) is
an arbitrary output choice from the r packs of outputs, and
P ∈ Rn×n � 0. Moreover, K ∈ Rp×p and χ ∈ Rp×p

are diagonal matrices: K = diag(K1,K2, . . . ,Kp) and χ =
diag(χ1, χ2, . . . , χp) which are designed later. The results
are given in the following theorem.

Theorem 1: Consider the nonlinear system described in
(1) and the observer given in (4), and assume that the set
of the available sensors are partially faulty as defined in
Definition 1. Then, the estimation error e(t) = x̂(t) − x(t)
converges to zero if the gains χi, i ∈ {1, 2, . . . , p}, are
chosen as χk ≥ βk(t, y), and for arbitrary scalars a and
b ensuring ab = γ, there exist P and K satisfying the
following linear matrix inequality (LMI):[

−A>P − PA− 2C>KC − a2In bP
bP In

]
� 0. (5)

Proof: Considering the nonlinear system described in
(1) and based on the observer design in (4), since

y1(t) = Cx(t) + δ1(t, y),

the differential equation describing e(t) = x̂(t) − x(t) can
be written as follows:

ė(t) =(A+ P−1C>KC)e(t)− P−1C>Kδ1(t, y)

− P−1C>Kχ
r∑

i=1

sgn(KCe(t)−Kδi(t, y))

+ f(x̂)− f(x).

(6)

To analyze the evolution of e(t) along (6), we consider the
following Lyapunov candidate:

V (t) = e(t)>Pe(t). (7)

The time derivation of V (t) along (6) yields

V̇ (t) =e(t)>
(

(A+ P−1C>KC)>P

+ P (A+ P−1C>KC)
)
e(t)− 2(KCe(t))>(

δ1(t, y) + χ

r∑
i=1

sgn(KCe(t)−Kδi(t, y))

)
+ 2e(t)>P (f(x̂)− f(x)) .

(8)

From (3) and since e(t) = x̂(t)− x(t), it follows that

2e(t)>P (f(x̂)− f(x)) ≤ 2γ ‖Pe(t)‖ ‖e(t)‖ .

Since γ = ab, one gets

2γ ‖Pe(t)‖ ‖e(t)‖ =2a ‖e(t)‖ b ‖Pe(t)‖
≤a2e(t)>e(t) + b2e(t)>P 2e(t).

(9)

By considering (8) and (9), it follows that

V̇ (t) ≤e(t)>
(
A>P + PA+ 2C>KC

+ a2In + b2P 2
)
e(t)− 2(KCe(t))>(

δ1(t, y) + χ

r∑
i=1

sgn(KCe(t)−Kδi(t, y))

)
.

Considering that K is a diagonal matrix, and since the
sensors are partially faulty, it can be deduced that

r∑
i=1

sgn(KCe(t)−Kδi(t, y)) = α(t)sgn(KCe(t)) (10)

where α(t) ∈ Rp×p is a diagonal matrix, given by

α(t) = diag (α1(t), α2(t), . . . , αp(t)) (11)

in which

1 ≤ αk(t) ≤ r, k ∈ {1, 2, . . . , p}, (12)

because in the both sides of (10), the entries of the terms
Kδi(t, y), i ∈ {1, 2, . . . , r}, more than ceil

(
r−1
2

)
times keep

the sign of the entries of KCe(t). On the other hand, based
on the Schur complement [23], the LMI (5) implies that

A>P + PA+ 2C>KC + a2In + b2P 2 ≺ 0.

Now, by defining Q ∈ Rn×n � 0 such that

A>P + PA+ 2C>KC + a2In + b2P 2 = −Q, (13)

one gets

V̇ (t) ≤− e(t)>Qe(t)− 2(KCe(t))>(
δ1(t, y) + χα(t)sgn

(
KCe(t)

))
.

(14)

Since 1 ≤ αk(t) and χk ≥ βk(t, y), k ∈ {1, 2, . . . , p},
according to (2) it can be asserted that there is a diagonal
matrix ᾱ(t) ∈ Rp×p with nonnegative entries such that (14)
can be rewritten as

V̇ (t) ≤− e(t)>Qe(t)
− 2(KCe(t))>ᾱ(t)sgn(KCe(t)).

(15)

Since ᾱ(t) is diagonal with nonnegative entries, one gets

2(KCe(t))>ᾱ(t)sgn(KCe(t)) ≥ 0.

Therefore, from (15), it follows that V̇ (t) is negative definite,
which indicates that e(t) converges to zero, which completes
the proof.

Remark 1: It should be noted that the solvability of the
LMI (5) is a condition on Theorem 1 to guarantee a suc-
cessful state estimation. Depending on the domain D, if γ is



not very large, since the pair (C,A) is observable, the LMI
(5) has a solution for P and K (K can be chosen negative
definite).

According to Theorem 1, if for all k ∈
{1, 2, . . . , p}, more than ceil

(
r−1
2

)
number of

{δ1k(t, y), δ2k(t, y), . . . , δrk(t, y)} are strictly zero (the
partially faulty case), the convergence of the estimation
error to zero can be guaranteed. However, in practice, due
to various sources of uncertainties, some small errors are
not avoidable, and therefore that condition may not hold.
The following theorem shows that the proposed observer
in Theorem 1 guarantees the uniform ultimate boundedness
of the estimation error depending on the magnitude of
δmk(t, y), k ∈ {1, 2, . . . , p}.

Theorem 2: Consider the nonlinear system described in
(1) and the observer given in (4), and assume that the set
of the available sensors are mostly faulty. Moreover, let the
gains χi, i ∈ {1, 2, . . . , p}, be chosen as χk ≥ βk(t, y), and
for arbitrary scalars a and b ensuring ab = γ, there exist P
and K satisfying the LMI (5). Under these conditions, the
estimation error e(t) is uniformly ultimately bounded, such
that as t→∞,

‖e(t)‖ ≤

√
d(t)

λmin(Q)

in which Q is defined in (13) and

d(t) =r
√
p ‖χ‖ ‖K‖‖δm(t, y)‖ (16)

where

δm(t, y) =
[
δm1(t, y) δm2(t, y) . . . δmp(t, y)

]>
.

Proof: A part of the proof which is similar to that of
Theorem 1 is not repeated here. By considering a Lyapunov
candidate the same as (7) and following a procedure similar
to the proof of Theorem 1, one gets

V̇ (t) ≤− e(t)>Qe(t)− 2(KCe(t))>
(
δ1(t, y)

+ χ

r∑
i=1

sgn(KCe(t)−Kδi(t, y))

)
.

(17)

To analyze the sign of the second term of the right hand side
of the inequality (17), let us decompose Ce(t) as follows:

Ce(t) =
[
ξ1(t) ξ2(t) . . . ξp(t)

]>
.

In this condition, since δkm(t, y) is the ceil( r
2 )th element

of δ̃k(t, y) (according to Definition 2), for the worst case
|ξk(t)| > δkm(t, y), k ∈ {1, 2, . . . , p}, one can conclude that

r∑
i=1

sgn(KCe(t)−Kδi(t, y)) = α(t)sgn(KCe(t)),

where α(t) is given in (11) and (12). Accordingly, since
χk ≥ βk(t, y), k ∈ {1, 2, . . . , p}, one gets there is a diagonal
matrix ᾱ(t) with nonnegative entries such that (17) can be

rewritten as follows:

V̇ (t) ≤− e(t)>Qe(t)
− 2(KCe(t))>ᾱ(t)sgn(KCe(t))

(18)

where
2(KCe)>ᾱ(t)sgn(KCe) ≥ 0.

Based on the above-mentioned issues, since −e(t)>Qe(t)
always is negative definite, as t→∞,

(KCe(t))>ᾱ(t)sgn(KCe(t)) ≤ r√p ‖χ‖ ‖K‖ ‖Ce(t)‖
< r
√
p ‖χ‖ ‖K‖ ‖δm(t, y)‖ .

Therefore, from (18), and by using the definition of d(t) in
(16), we have

V̇ (t) ≤ −e(t)>Qe(t) + d(t),

which indicates that e(t) is uniformly ultimately bounded
such that, as t→∞, one gets

‖e(t)‖ ≤

√
d(t)

λmin(Q)
.

Therefore, the proof is completed.
Remark 2: In the case of mostly faulty sensors, even

though the proposed observer may be unable to ensure the
estimation error convergence to zero, the estimation error
is still ultimately bounded where the bound depends on the
medium fault quantity, and for all k ∈ {1, 2, . . . , p}, all the
faults larger than δmk(t, y) will be rejected. For instance, if
there are more than ceil( r−1

2 ) sensors suffering from fault
with small quantity at any time instant, the robust observer
is still capable of generating state estimates which are close
to the real states. However, if the proposed robust strategy
is not employed, due to possible large faults in sensors, the
estimation error may diverge. This issue is explained in more
details in the simulation results reported in the next section.

Remark 3: It is worth mentioning that the results of
Theorems 1 and 2 are also applicable for linear systems when
f(x) = 0n. In this condition, since γ = 0, the LMI condition
(5) should be modified as follows:

A>P + PA+ 2C>KC ≺ 0 (19)

which since the pair (C,A) is observable, it has a solution
for P and K (2K can be chosen negative definite).

Remark 4: It should be noted that although in the observer
(4), the function sgn(·) is utilized, this function only leads
to chattering in ˙̂x(t), and since x̂(t) will be obtained from
the integration of ˙̂x(t), there is no chattering in x̂(t).

Remark 5: The observer adopts a robust approach tolerant
to sensor faults such that the effect of the occurrence of
faults in sensors is rejected without any transient behavior.
However, this property relies on the redundancy of the
sensors and the known bounds of the values of faults in the
sensors.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed observer
is verified in numerical examples of a ball-and-beam system



in two cases. In Case A, the result of Theorem 1 is verified,
and the result of Theorem 2 is evaluated in Case B.

We consider a ball-and-plane system which consists of a
ball placed on a plane whose inclination can be adjusted via
two motors from two perpendicular directions. The system
model can be stated as [24]

ẋ(t) = Ax(t) +Bu(t) + f(x)

where by defining x(t) =
[
x1(t) x2(t) . . . x8(t)

]>
,

x1(t) and x5(t) represent the position of the ball, x2(t)
and x6(t) indicate the velocity accordingly, x3(t) and x7(t)
represent the inclination of the plane, and x4(t) and x8(t)
indicate the derivative of the inclination. Moreover, A, B,
and f(x) are as

A = diag




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ,

B =


03 03

1 0
03 03

0 1

 , f(x) =


0

5
7

(
x1x

2
2 + x4x5x8 − g sin(x3)

)
03

5
7

(
x5x

2
8 + x1x4x8 − g sin(x7)

)
02


where g = 9.8 represents the gravitational acceleration. By
considering Assumption 3, the states are considered in a set
such that γ = 1. We suppose that the position of the ball and
the inclination of the plane are measurable. Therefore, by
considering three packs of sensors, the output measurement
can be stated as follows:

yi(t) =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

x(t)

+ δi(t, y), i ∈ {1, 2, 3}.

A. The Case of Sensors Being Partially Faulty

We assume that the set of the sensors are partially faulty
such that

δ1(t, y) = s(t− 0.5)
[
sin(t) w2 cos(y1) 0.1w1

]>
where w1(t) is an 1 Hz square wave signal with amplitude
1 and 50% duty cycle, and w2(t) is a random signal whose
magnitude is truncated from −2 to 2 whereas δ2(t, y) =
δ3(t, y) = 0 (note that the index of the faulty sensor is
unknown). The observer is established based on (4) where
P and K are obtained from the solution of the LMI (5), and
χ is set as 2.

Under these conditions, the observer estimation error is
depicted in Fig. 1 verifying that the convergence of the
estimation error to zero is guaranteed. It can be observed
from the simulation result that the effect of the sensor fault is
completely rejected without any transient abnormal behavior.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

-4

-3

-2

-1

0

1

2

3

4

Fig. 1. Estimation error in Case A.

B. The Case of Sensors Being Mostly Faulty

The faults are assumed to occur after t = 1, and they are
as

δ1(t, y) = s(t− 1)
[
sin(t) w2 cos(y1) 0.1w1

]>
,

δ2(t, y) = 0.1s(t− 1.5)
[
w1 sin(y3) w2 cos(t)

]>
,

δ3(t, y) = 0.1s(t− 2)
[
0.6w1y3 0.5w2 sin(2t) 5

]>
.

The observer is established based on (4), and the correspond-
ing P and K are obtained from the solution of the LMI (5),
and χ is set as 2. The observer estimation error is depicted
in Fig. 2 verifying that the entries of the estimation error
vector are ultimately bounded. It should be noted that despite
the case of partially faulty sensors, as mentioned in Remark
2, only the faults larger than δmk(t, y), k ∈ {1, 2, . . . , p},
will be rejected. However, the proposed strategy still leads
to significant robustness against sensor faults. For instance,
we have repeated the mentioned estimation scenario by using
only the first pack of the sensors and by employing the
nonlinear estimation strategy introduced in [25] which is
developed for Lipschitz nonlinear systems of the form (1)
as well (without sensor redundancy). The simulation results
depicted in Fig. 3 show that using only the first pack of the
sensors cannot guarantee robustness against sensor faults.

VI. CONCLUSIONS AND FUTURE WORK

A robust observer design based on the redundancy of
sensors was proposed in this paper. It was shown that if the
number of the healthy sensors are larger than the number
of the faulty ones, the proposed robust observer was able
to tolerate the effect of faults occurred at the sensors to
ensure that the estimation error converges to zero without any
sensitivity to the occurrence of the fault. In a more general
case when more sensors were faulty, it was shown that the
estimation error was always ensured to have an ultimate
bound whose range depended on the performance of the
sensors with medium fault quantities. The extension of the
design to the distributed systems with jointly observability
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Fig. 2. Estimation error in Case B by using the proposed robust observer.
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Fig. 3. Estimation error in Case B by using the introduced observer in
[25].

characteristic is another open problem worthy of being
investigated as future work.
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