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Data-driven structured noise filtering
via common dynamics estimation

Ivan Markovsky, Tianxiang Liu, and Akiko Takeda

Abstract—Classical signal from noise separation problems
assume that the signal is a trajectory of a low-complexity linear
time-invariant system and that the noise is a random process.
In this paper, we generalize this classical setup to what we
call data-driven structured noise filtering. In the new setup,
the noise has two components: structured noise, which is also
a trajectory of a low-complexity linear time-invariant system,
and unstructured noise, which is a zero-mean white Gaussian
process. The key assumption that makes the separation problem
in the new setup well posed is that among several experiments,
the signal’s dynamics remains the same while the structured
noise’s dynamics varies. The data-driven structured noise filtering

problem then becomes a problem of estimation of common
linear time-invariant dynamics among several observed signals.
We show that this latter problem is a structured low-rank
approximation problem with multiple rank constraints and use
a subspace identification approach for solving it. The resulting
methods allow computationally efficient and numerically robust
implementation and have the system theoretic interpretation
of finding the intersection of autonomous linear time-invariant
behaviors. Statistical analysis providing confidence bounds is a
topic for future research.

Index Terms—Hankel structured low-rank approximation,
Subspace system identification, Behavioral approach.

I. INTRODUCTION

The prototypical signal processing problem of signal from
noise separation is ill-posed, i.e., it has a nonunique solution
unless prior information is given. The prior information is
expressed in the form of assumptions about the signal and
the noise. Different signal from noise separation methods are
developed for different signal and noise assumptions. Stronger
assumptions lead to more accurate but less general methods.

Despite the diversity of the assumptions, in all problems
the signal is in some sense predictable while the noise is
unpredictable. This is justified in practice by the fact that
the signal satisfies natural laws which allow for its deter-
ministic modeling while the noise is poorly understood which
allows only a statistical description. Natural laws, such as the
Newton’s second law of dynamics in mechanical engineering
and RLC-circuits in electrical engineering, are often given by
linear constant coefficients differential equations. Therefore,
the classical signal from noise separation setup assumes that
the signal is a trajectory of a linear time-invariant system while
the noise is a random process.
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The classical setup declares that anything that is determin-
istically predictable is a signal. This is restrictive. Indeed,
there are deterministic components in the data such as offsets,
trends, and periodic disturbances that are not part of the
signal but are also responses of linear time-invariant systems.
Traditionally, in system identification [1] these components
are removed in a preprocessing step. As pointed out in [2]
and further elaborated in [3], this leads to inferior results than
modeling them together with the system dynamics. In this
paper, we generalize the classical signal from noise separation
setup in order to have deterministic noise component.

The generalization proposed deals with noise consisting of
two components: a trajectory of a low-complexity autonomous
linear time-invariant system (structured noise) and a zero-
mean white Gaussian process (unstructured noise). The struc-
tured noise is therefore a sum of polynomials-times-damped-
complex-exponentials signal. The key assumptions that make
separability in this new setup possible are:

• at least two data collection experiments are performed,
and

• in different experiments, the structured noise models have
different poles.

A generic example that shows how the assumptions occur in
practice is approximation of a nonlinear system by a linear
time-invariant model. Contrary to the classical assumption in
system identification that the error is a stochastic process, the
error of approximating the nonlinear system by a linear time-
invariant model is deterministic. Moreover, it depends on the
experimental conditions. In the case of autonomous systems,
the experimental conditions are determined by the initial
conditions. In different experiments when the system is excited
by different initial conditions, the resulting error signals have
different deterministic dynamics. However, the linear time-
invariant model remains the same in all experiments. This
leads to the problem of structured noise filtering (take the lin-
ear model as the "true signal dynamics" and the approximation
error as the structured noise). In general, the structured noise
has no linear time-invariant dynamics, however, in special
cases, e.g., when the nonlinear system is a Wiener system,
it does [4]. When the structured noise has no linear time-
invariant dynamics, it can be approximated by a linear time-
invariant system, attributing the remaining approximation error
to unstructured noise since it is unmodeled.

We show that the maximum likelihood estimation problem
in the new setup is a structured low-rank approximation
problem with multiple rank constraints. This is a nonconvex
optimization problem, for which an analytical solution is
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not known. Local optimization methods require an initial
approximation obtained by alternative direct methods. The aim
of this paper is to develop such direct methods, using results
from the behavioral system theory and subspace identification.
First, we consider the data-driven structured noise filtering
problem when there is no unstructured noise. In this case,
under the assumption that the structured noise models have no
common poles and the true signals are persistently exciting of
sufficiently high order, the methods developed in this paper
achieve exact signal from noise separation. The observed
signals’ common dynamics is the true signals’ dynamics. Com-
puting the common dynamics from models of the observed
signals is a greatest common divisor computational problem
[5], [6], [7]. The method developed in the paper

1) identifies models for the observed signals and
2) computes the common dynamics of the models.

The generalization of the method to the case of unstructured
as well as structured noise is done heuristically by incorporat-
ing approximation in each step and using prior knowledge
about the data generating systems’ orders. Using different
methods for approximate model identification and approximate
common divisor computation, we obtain a variety of methods
for data-driven structured noise filtering.

Apart from data-driven structured noise filtering, the com-
mon dynamics problem occurs in biomedical signal processing
[8], monitoring of material structures [9], and audio modeling
[10], [11]. Methods for common dynamics estimation are
proposed in [12], [13]. Note that the data may be collected
in a single multi-channel experiment as well as in multiple
experiments. For example, a real-life application, considered
in [14], that leads to structured noise filtering is multi-channel
EEG seizure detection. In this application, the aim is to retrieve
the common epileptic seizure information among the recorded
EEG channels, taking into account the fact that each channel
may be affected by different artifact sources: muscle artefacts,
eye blink artefacts, respiration artefacts, etc. This leads to
different disturbance dynamics in the different channels.

To the best of our knowledge, the data-driven structured
noise filtering problem considered in the paper is new. Note
that the classical methods for sum-of-exponentials modeling,
spectral estimation, and latent variable modeling, such as
MUSIC [15], ESPRIT [16], and dynamic PCA [17] are not
applicable to the data-driven structured noise filtering problem.
Indeed, these classical methods correspond to step 1 of the
data-driven structured noise filtering method developed in
the paper. Without imposing the constraint that the observed
signals have common dynamics (the true signal’s dynamics) as
well as different dynamics (the structured noise’s dynamics),
the identified poles can not be separated into signal poles and
structured noise poles.

The main contributions of the paper are:

• a novel signal from noise separation setup, called data-
driven structured noise filtering, where the noise has
deterministic as well as stochastic components,

• identifiability conditions (Theorem 8) and equivalence of
the maximum likelihood estimation problem in the new

setup to a structured low-rank approximation problem
with multiple rank constraints (Theorems 9 and 10),

• a class of subspace methods for solving the data-driven
structured noise filtering problem (Section VI).

In Section II, we illustrate the data-driven structured noise
filtering problem by a numerical example. For the problem
formulation and derivation of solution methods, we use the
behavioral approach to system theory [18], [19], [20]. The
main difference between the behavioral and the classical
approaches is that the model is viewed as a set of signals rather
than an equation (such as a difference equation). This makes
the behavioral approach particularly convenient for model-free
signal reconstruction. The necessary background, notation, and
basic results are given in Section III. Section IV presents
the classical signal from noise separation setup and shows its
connection to Hankel structured low-rank approximation [21],
[22], [23], [3]. The maximum likelihood estimation problem
in the new setup is defined in Section V and is shown to be
equivalent to a generalized structured low-rank approximation
problem. In Section VI, we present a general subspace ap-
proach for solving the problem. In the absence of unstructured
noise, the method yields the exact data generating system;
however, in the presence of unstructured noise it becomes
a heuristic for solving the maximum likelihood estimation
problem. The performance of the subspace methods resulting
from the general subspace approach is empirically evaluated
in Section VII. Conclusions and directions for future work are
given in Section VIII.

II. ILLUSTRATIVE EXAMPLE

In this section, we show a numerical example of the data-
driven structured noise filtering problem considered in the
paper. Doing data collection experiments, we obtain a set of
scalar discrete-time signals (the data)

yi =
(
yi(1), . . . ,yi(Ti)

)
, for i = 1, . . . ,N.

In the example, N = 2 experiments are done and the signals
have T1 = T2 = 1000 samples. The signals

yi = si + di+ ei, for i = 1, . . . ,N, (1)

are sums of three components:
• si is the true signal

s1(t) = 2sin(0.05t + 100)+ sin(0.03t− 100)

s2(t) = 2sin(0.05t − 150)− sin(0.03t+ 50)

• di is the structured noise

d1(t) =−2sin(0.04t − 150)

d2(t) = 2sin(0.07t + 150)

• ei is the unstructured noise e1,e2 ∼N(0,ς2I) that is zero-
mean white Gaussian with standard deviations ς = 1.

The aim of the data-driven structured noise filtering problem
is to recover the true signals s1,s2 from the measurements
y1,y2 and the prior knowledge that

• the data generating system of the true signals is au-
tonomous linear time-invariant of order ns = 4,
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• the data generating systems of the structured noises are
autonomous linear time-invariant of order nd = 2, and

• the unstructured noises are zero-mean white Gaussian.
Figure 1, first column, shows the noisy data y1,y2 (solid red

lines) and the approximation of the data (dashed blue lines),
obtained with the subspace method presented in Section VI.
The approximation is a sum of the true signal’s estimate, the
structured noise’s estimate, and a residual. The second column
in Figure 1 shows the true signals s1,s2 (solid red lines) and
the corresponding approximations (dashed blue lines). Despite
the low signal-to-noise ratio (SNR=−0.5dB), the fit of the
true signals is good. The same good fit is observed in the
third column that shows the true structured noise signals d1,d2
(solid red lines) and the approximations (dashed blue lines).
The fourth column shows the unstructured noises e1,e2 (solid
red lines) and the residuals (dashed blue lines).

III. NOTATION AND PRELIMINARIES

We use the behavioral approach to systems theory [18], [19],
[20]. A discrete-time dynamical system is a set B of signals
y =

(
y(1),y(2), . . .

)
. (Contrast this to the classical approach

that invariably defines the system by an equation.) The set B

is called the behavior of the system that it describes. Since
the behavior specifies completely the system, we will refer
to B as the system. The notation y ∈ B is a convenient way
of saying that the signal y is a trajectory of the system B.
It replaces writing the equation defining the system in the
classical setting.

The restriction of the signal y to the interval [1,L] is

y|L :=
(
y(1), . . . ,y(L)

)
.

Similarly, B|L is the restriction of B to the interval [1,L],

B|L := {y|L | y ∈ B }.
In this paper, we consider scalar linear time-invariant sys-

tems. The class of all such systems is denoted by L . Let σ
be the shift operator

(σy)(t) := y(t + 1), for all t.

Acting on B, σ shifts all signals in B, σB = {σy | y ∈B }.
By definition, a system B is linear if B is a subspace and
time-invariant if σB = B. The dimension dim B of B ∈ L

is the order n(B) of B. The order is a measure of the system’s
complexity. The subclass of L consisting of systems with
complexity bounded by n is denoted by Ln. The statement
"B is a scalar linear time-invariant system of order bounded
by n" is then concisely written as B ∈ Ln.

A system B ∈ L is an n(B)-dimensional subspace. Simi-
larly, B|L is a subspace of RL. Its dimension is

dim B|L =

{
L if L ≤ n(B)

n(B) if L ≥ n(B).

The system B ∈Ln admits different representations—state-
space; polynomial, also called kernel; poles, also called sum-
of-polynomials-times-damped-exponentials; etc. Representa-
tions bring parameterizations of the system and are unavoid-
able in computational methods. The kernel representation [18],

B = ker p(σ) := {y | p0y+ p1σy+ · · ·+ pnσny = 0}, (2)

is defined by a scalar univariate polynomial

p(z) = p0 + p1z+ · · ·+ pnzn

with coefficients vector p :=
[
p0 p1 · · · pn

]
6= 0. The

roots z1, . . . ,zn of p(z) are invariant of the representation and
are called the poles of the system B. The set of the poles of
B ∈ Ln is denoted by λ (B).

Identification of linear time-invariant systems and process-
ing of signals that are trajectories of such systems is closely
related to low-rank approximation of Hankel matrices [24],
[25]. The Hankel matrix with L ≤ T rows, constructed from
the signal y =

(
y(1), . . . ,y(T )

)
is denoted by

HL(y) :=




y(1) y(2) · · · y(T −L+ 1)
y(2) y(3) · · · y(T −L+ 2)
...

...
...

y(L) y(L+ 1) · · · y(T )


 . (3)

Of particular interest is whether the matrix HL(y) is full row
rank. This property is important enough to be given a name.

Definition 1 (persistency of excitation). A signal y is persis-

tently exciting of order L if rankHL(y) = L. More generally,
a set of signals y = {y1, . . . ,yN } is persistently exciting of
order L if

rank
[
HL(y1) · · · HL(yN)

]
= L. (4)

The importance of the Hankel matrix HL(y) in identification
and signal processing stems from the following result.

Lemma 2. Let y =
(
y(1), . . . ,y(T )

)
be a trajectory of a linear

time-invariant system B ∈ Ln, i.e., y ∈ B|T . Then, the image

of the Hankel matrix HL(y) is a subset of B|L, i.e.,

image HL(y)⊆ B|L. (5)

Equality holds in (5) when y is persistently exciting of order

n(B) and L ≤ T − n(B). More generally, let the signals

y1, . . . ,yN be trajectories of a linear time-invariant system

B ∈ Ln, i.e., yi ∈ B|Ti
, for i = 1, . . . .N. Then,

image
[
HL(y1) · · · HL(yN)

]
⊆ B|L. (6)

Proof. By the time-invariance property of B, the columns of
the Hankel matrix HL(y), viewed as time series, are L-samples
long trajectories of B. Then by the linearity property of B, a
linear combination of the columns of HL(y) is also an element
of BL. This proves (5).

Under the persistency of excitation assumption,

dim image HL(y) =

{
L for L < n(B)

n(B) for n(B)≤ L ≤ T −n(B).

On the other hand, since B ∈L , dim B|L = L, for L≤ n(B),
and dim B|L = n(B), for L ≥ n(B), so that

image HL(y) = B|L, for L ≤ T −n(B).

The generalization (6) for multiple trajectories follows
from (5) and the fact that

image
[
HL(y1) · · · HL(yN)

]

= image HL(y1)+ · · ·+ image HL(yN).
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Fig. 1. Numerical illustration of the signal from structured noise separation problem. (solid red lines — observed and true signals, dashed blue lines —
estimates obtained with the subspace method presented in Section VI.)

As a corollary of Lemma 2, we obtain a simple test for
whether a given signal is a trajectory of a linear time-invariant
system of bounded complexity by computing the rank of a
Hankel matrix HL(y).

Corollary 3. The signal y =
(
y(1), . . . ,y(T )

)
is a trajectory of

a linear time-invariant system B ∈Ln, i.e., y ∈B|T for some

B ∈ Ln, if and only if rankHL(y) ≤ n for some L such that

n+ 1 ≤ L ≤ T − n. More generally, the signals y1, . . . ,yN are

trajectories of a linear time-invariant system B ∈ Ln, i.e.,
yi ∈ B|T for some B ∈ Ln and for all i = 1, . . . ,N, if and

only if

rank
[
HL(y1) · · · HL(yN)

]
≤ n, (7)

for some L such that

n+ 1 ≤ L ≤ ∑N
i=1(Ti − n). (8)

The inequality rankHL(y)≤ n is a fundamental relation be-
tween the rank of the Hankel matrix constructed from the data
and the order of an exact linear time-invariant model for the
data. For L= 1, . . . ,n and L= T −n+1, . . . ,T , rankHL(y)≤ n,
irrespective of the data y. Otherwise, rankHL(y) ≤ n if and
only if y ∈ B|T for a system B ∈ Ln.

Note 4 (On the choice of L). Using Corollary 3 for checking
numerically whether y ∈ B|T for some B ∈ Ln requires
choosing a priori the value of L. Any value in the range (8)
is allowed, however; the boundary values L = n+ 1 and L =

∑N
i=1(Ti − n) are advantageous from a numerical computation

point of view. For example, L = n+ 1 leads to the smallest
number of variables when using a left kernel representation

p
[
HL(y1) · · · HL(yN)

]
= 0,

where p ∈ R
1×(n+1) and p 6= 0.

For this reason, the value L = n+ 1 is used in the maximum
likelihood optimization problems (10), (16), and (17).

By Corollary 3, a signal that is persistently exciting of order
n+ 1 has no exact linear time-invariant model of order n or

less. Vice versa, rank deficiency of the Hankel matrix HL(y),
i.e., lack of persistency of excitation, implies the existence of
an exact linear time-invariant model of bounded complexity.

The identity matrix is denoted by I. A zero-mean Gaus-
sian process e with covariance matrix ς2I is denoted by
e ∼ N(0,ς2I). With probability one, a realization e =(
e(1), . . . ,e(T )

)
of a Gaussian process e with nonsingular

covariance matrix is persistently exciting of order ⌊T/2⌋,
where ⌊a⌋ is the largest integer smaller than a. Throughout
the paper ‖ · ‖ denotes the 2-norm.

IV. CLASSICAL SETUP: ZERO-MEAN WHITE GAUSSIAN

NOISE

Let y be the observed signal, s its true value, and e the
measurement noise. The classical assumptions are that s is
generated by a low-complexity linear time-invariant system
and e is zero-mean white Gaussian process. Using the notation
introduced in Section III, the classical data generating model
is concisely written as

y = s+ e, where s ∈ Bs ∈ Lns and e ∼ N(0,ς2I). (9)

The maximum likelihood estimation problem for (9) is: Given
y and ns, find estimates ŝ of s and B̂s of Bs as a solution of
the optimization problem

minimize over ŝ and B̂s ‖y− ŝ‖
subject to ŝ ∈ B̂s ∈ Lns .

(10)

In applications of simulation, prediction, and control, we
are interested in the model B̂s rather than the signal ŝ. In
the case of noise free data, i.e., e = 0 so that y = s, the
signal from noise separation problem has a trivial solution
ŝ = y. Nevertheless, the data modeling problem y 7→ B̂s is
meaningful and nontrivial. The conditions under which the
data generating system Bs can be recovered back from the
data y, i.e., B̂s = Bs, are called identifiability conditions.

Proposition 5. If the true signal s is persistently exciting of

order ns and the data is exact, i.e., y = s ∈ Bs, the solution

B̂s of (10) is the true system Bs, i.e., B̂s = Bs.
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Proof. By construction, the pair

(ŝ = s, B̂s = Bs) (11)

satisfies the constraint of (10), i.e., it is feasible. In the case of
exact data, y = s = ŝ so that (11) achieves zero approximation
error ‖y− ŝ‖= 0. Therefore, it is an optimal solution. Finally,
by the persistency of excitation assumption there is no feasible
solution in Lns−1, so that (11) is the unique solution of (10).

As an application of Corollary 3 to the maximum likelihood
problem (10), we have the following proposition.

Proposition 6. The maximum likelihood estimation prob-

lem (10) is equivalent to the Hankel structured low-rank

approximation problem

minimize over ŝ ‖y− ŝ‖
subject to rankHns+1(ŝ)≤ ns.

(12)

Proof. With L = ns + 1, by Corollary 3, ŝ ∈ B̂s ∈ Lns if and
only if rankHns+1(ŝ)≤ ns.

The Hankel structured low-rank approximation prob-
lem (12) is a nonconvex optimization problem, so it requires
iterative optimization methods. An alternative suboptimal so-
lution approach is subspace identification [26]. Subspace iden-
tification methods can be used to provide an initial approxi-
mation for local optimization methods.

The subproblem of (10), where the model B̂s is given,

minimize over ŝ ‖y− ŝ‖
subject to ŝ ∈ B̂s,

(13)

is called the smoothing problem. An efficient way to solve (13)
is the Kalman filter, which effectively employs a state space
representation of B̂s. Alternatively, the Kalman filter can be
viewed as an estimation method for the initial condition. In
case of a noise free data, (13) has the trivial solution ŝ = y.
However, the initial state estimation problem is nontrivial and
meaningful; in fact, it is the observer design problem [27].

Note 7 (Order selection in the classical setup). In the statement
of the maximum likelihood estimation problem (10), it is
assumed that the order ns of the true system Bs is given.
Therefore, ns should be known a priori or estimated from the
data y in advance. The estimation of ns is a rank estimation
problem. Indeed, by the persistency of excitation assumption
and Corollary 3, we have that rankHL(s) = ns for all L

satisfying (8). A classical approach for rank estimation is to
compute the singular values of the Hankel matrix H⌈T/2⌉(y)
and take as an estimate of the order the number of singular
values larger than a given noise dependent threshold. If such
a threshold is not given, statistical methods such as the
Akaike information criterion, the minimum description length,
or the L-curve heuristic can be used instead [28]. For more
information about the order estimation problem and methods
for its solution, see the overview paper [29].

V. NEW SETUP: DATA-DRIVEN STRUCTURED NOISE

FILTERING

The new setup for data-driven structured noise filtering was
illustrated in Section II on an example with two observed
signals. The general data generation model in the structured
noise filtering problem is

yi = si + di + ei, where si ∈ Bs ∈ Lns , di ∈ Bd,i ∈ Lnd ,

and ei ∼ N(0,ς2I), for i = 1, . . . ,N. (14)

Here, si is the true signal, di is the structured noise, and ei is
the unstructured noise in the ith experiment. The problem is
to estimate the true signals s1, . . . ,sN and the true model Bs,
given the noisy data y1, . . . ,yN and the model orders ns and nd.
The maximum likelihood data-driven structured noise filtering
problem is

minimize

√
N

∑
i=1

‖yi − ŝi − d̂i‖2

over ŝi, B̂s, d̂i, B̂d,i, for i = 1, . . . ,N

subject to ŝi ∈ B̂s ∈ Lns, for i = 1, . . . ,N and

d̂i ∈ B̂d,i ∈ Lnd , for i = 1, . . . ,N.

(15)

The following proposition states identifiability conditions in
the new setup.

Theorem 8. For e1 = · · · = eN = 0, under the assumptions

that:

A1: the set of signals {s1, . . . ,sN } is persistently exciting

of order ns and

A2: the structured noise models Bd,1, . . . ,Bd,N have no

common poles,

the solution B̂ of (15) coincides with the true data generating

system, i.e., B̂s = Bs.

Proof. Define the systems

Bi := Bs +Bd,i, B̂i := B̂s + B̂d,i, for i = 1, . . . ,N.

Note that Bi ∈ Lns+nd and B̂i ∈ Lns+nd . Moreover, by as-
sumption A2, B1, . . . ,BN and B̂1, . . . ,B̂N have ns common
poles:

• the common poles of B1, . . . ,BN are λ (Bs) and
• the common poles of B̂1, . . . ,B̂N are λ (B̂s).

By assumption ei = 0, so that yi ∈Bi. Then, by assumption
A1, yi is persistently exciting of order (at least) ns. Although
Bi may not be identifiable from yi, the persistency of excita-
tion assumption A1 guarantees that Bs ⊂ B̂i, for i = 1, . . . ,N.
Then the common poles of B̂1, . . . ,B̂N must coincide with
the poles λ (Bs) of Bs. Therefore, B̂s = Bs.

Proposition 6 shows that in the classical setup for signal
from noise separation, the maximum likelihood estimation
problem is equivalent to Hankel structured low-rank approx-
imation. Similarly, applying Corollary 3 to (15), we have
that in the new setup the maximum likelihood estimation
problem is equivalent to a generalized Hankel structured low-
rank approximation problem.
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Theorem 9. The maximum likelihood estimation problem (15)

is equivalent to the following Hankel structured low-rank

approximation problem with multiple rank constraints

minimize over ŝi, d̂i, i = 1, . . . ,N

√
N

∑
i=1

‖yi − ŝi − d̂i‖2

subject to rank
[
Hns+1(ŝ1) · · · Hns+1(ŝN)

]
≤ ns,

rankHnd+1(d̂i)≤ nd, for i = 1, . . . ,N.
(16)

Another reformulation of maximum likelihood estimation
problem (15) as a Hankel structured low-rank approximation
is given in the following proposition.

Theorem 10. Under assumptions A2 and

A1’: for i= 1, . . . ,N, di is persistently exciting of order nd,

the maximum likelihood estimation problem (15) is equivalent

to the Hankel structured low-rank approximation problem with

multiple rank constraints

minimize over ŷ1, . . . , ŷN

√
N

∑
i=1

‖yi − ŷi‖2

subject to rankHns+nd+1(ŷi)≤ ns + nd, i = 1, . . . ,N,

rank
[
HNnd+ns+1(ŷ1) · · · HNnd+ns+1(ŷN)

]
≤ Nnd + ns.

(17)

Proof. With the definition ŷi = ŝi + d̂i, (15) and (17) have
the same cost functions. Therefore in order to prove their
equivalence, we need to prove that their constraints are equiv-
alent (i.e., that they define the same feasible sets). The first N

constraints of (17) impose the constraints that ŷ1, . . . , ŷN are
trajectories of scalar linear time-invariant systems of order at
most ns + nd, i.e., ŷi ∈ B̂i ∈ Lns+nd , for i = 1, . . . ,N. Without
extra constraints, we then have

rank
[
HNnd+ns+1(ŷ1) · · · HNnd+ns+1(ŷN)

]
≤ N(nd + ns).

Equality holds when each of the signals ŷi are persistently
exciting of the maximal possible order (ns + nd) and the
systems B̂1, . . . ,B̂N have no common poles. Existence of ns
common poles implies that

rank
[
HNnd+ns+1(ŷ1) · · · HNnd+ns+1(ŷN)

]
≤ Nnd + ns. (18)

Vice versa, if (18) holds and the signals ŷ1, . . . , ŷN are per-
sistently exciting of the maximal possible order, the models
B̂1, . . . ,B̂N must have at least ns common poles. The per-
sistency of excitation assumption that makes (18) equivalent
to the condition that B̂1, . . . ,B̂N have ns common poles is
guaranteed by assumptions A2 and A1’.

Problem (17) can be viewed as a preprocessing operation on
the data imposing the prior knowledge that the data generating
model is (14). Computing the common dynamics model B̂s

from the signals ŷ1, . . . , ŷN is then an exact identification
problem. This is considered in the next section.

Note 11 (Order selection in the new setup). As in the classical
setup, the maximum-likelihood problem (15) in the new setup
assumes that the orders ns and nd are known. However, if
they are not given as prior information, they can be estimation
from the data. First, the selection of the order ns + nd of the

combined true signal and structured disturbance system is a
classical order selection problem (see Note 7). Second, as
shown in Note 14, the selection of the order ns of the common
dynamics model Bs is equivalent to the choice of the rank of
a Sylvester matrix.

Note 12. The smoothing problem (i.e., solving (15) with given
models) is the classical smoothing problem that can be solved
by the Kalman filter.

VI. SUBSPACE APPROACH FOR DATA-DRIVEN

STRUCTURED NOISE FILTERING

In the absence of unstructured noise, the data-driven struc-
tured noise filtering problem can be solved by the following
generic method:

1) identify the models B̂1, . . . ,B̂N ∈ Lns+nd of the ob-
served signals y1, . . . ,yN ,

2) comput the common dynamics B̂s of B̂1, . . . ,B̂N .

As shown in Theorem 8, under assumptions A1 and A2,
B̂s = Bs. In this section, we consider implementation details
of the generic method for data-driven structured noise filtering.
Particular ways of implementing steps 1 and 2 lead to differ-
ent algorithms. These algorithms are then used as heuristics
for data-driven structured noise filtering in the presence of
unstructured noise.

A. Step 1: Identification of the true signals plus structured

noise models

In the absence of unstructured noise and under assumption
A1, the restriction of the model is given by the image of a
Hankel matrix constructed from the data (Lemma 2). In the
presence of unstructured noise, step 1 involves approximation.
This step can be viewed then as a data preprocessing step

(y1, . . . ,yN) 7→ (ŷ1, . . . , ŷN)

that imposes the prior information si + di ∈ Bi ∈ Lns+nd .
1) Using the "row" data (no preprocessing):

(y1, . . . ,yN) 7→ (B̂1|L, . . . ,B̂N |L).

Denote by Bi := Bs +Bd,i, for i = 1, . . . ,N, the exact mod-
els for y1, . . . ,yN . In the absence of unstructured noise, by
Lemma 2,

image HL(yi) =: B̂i|L ⊂ Bi|L, for i = 1, . . . ,N. (19)

Moreover, under assumption A2, Bs|L ⊂Bi|L, for i= 1, . . . ,N.
Therefore, Bs|L is a common subspace of B1|L, . . . ,BN |L. Un-
der assumption A1, Bs|L can be computed as an intersection
of subspaces defined by the data y1, . . . ,yN :

Bs|L = B̂s|L := B̂1|L ∩·· ·∩ B̂N |L. (20)

Finally, parameters of a representation of B̂s can be computed
from the basis of B̂s|L.
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2) Kung’s method (y1, . . . ,yN) 7→ (R̂1, . . . , R̂N):

Kung’s method [30] is an effective suboptimal procedure for
solving (10). It solves (12) by ignoring the structure and do-
ing unstructured low-rank approximation—{the approximating
matrix’s rank-(ns + nd)} is enforced by truncating of the
singular value decomposition. Finally, the model parameters
are computed by solving approximately an overdetermined
system of equations in the least squares sense.

Applied to step 1 of the generic method for data driven
structured noise filtering, Kung’s method yields the following
algorithm:

• For i = 1, . . . ,N

1) Using the singular value decomposition

HL(yi) =UΣV⊤,

compute the rank-(ns+ nd) approximation

HL(yi)≈ OC

with O ∈ R
L×(ns+nd) and C (ns+nd)×(Ti−L), where

O =U
√

Σ and C =
√

ΣV⊤.
2) Let Âi be the least-squares approximate solution of

the system of linear equations OÂi = O, where O

is the matrix O with the first row removed, and O

is the matrix O with the last row removed.
3) Compute the characteristic polynomial p̂i(z) of Âi.

The suboptimal solution to (10) obtained by the subspace
method is B̂i = ker p̂i(σ), see (2).

The method has as a hyper parameter the natural number L,

ns + nd + 1 ≤ L ≤ Ti − (ns+ nd).

Empirical evidence shows that best performance is obtained
for square matrix HL(yi), i.e., L = ⌊T/2⌋.

Note 13. In [12] the total least squares method [31] is used for
the parameter estimation instead of the least square method.

B. Step 2: Common dynamics computation

The identified models B̂1, . . . ,B̂N on Step 1 are not con-
strained to have common dynamics. Therefore, in the presence
of unstructured noise, step 2 also involves an approximation
that imposes the property of common dynamics. This can be
done using an (approximate) subspace intersection or using
common factor computational methods.

1) Subspace intersection (B̂1|L, . . . ,B̂N |L) 7→ B̂s|L:

Consider kernel representations of the subspaces B̂i|L with
dimensions ns + nd = dim B̂i|L, B̂i|L = ker Ri ⊂ R

L, for i =
1, . . . ,N, where Ri ∈ R

(L−ns+nd)×L is the kernel parameter
of B̂i|L. We aim to find a kernel representation of their
intersection (20) with dimension ns = dim B̂s|L

B̂s|L := B̂1|L ∩·· ·∩ B̂N |L = ker R ⊂ R
L,

where R ∈R
(L−ns)×L is a kernel parameter of B̂s|L. First, we

solve the exact intersection problem. Then, we explain the
modification of the method for approximate intersection.

The matrix R′ =

[
R1
...

RN

]
defines an exact kernel representa-

tion of the intersection B̂s|L. Indeed,

y ∈ B̂s ⇐⇒ y ∈ B̂i, for i = 1, . . . ,N

⇐⇒ Riy = 0, for i = 1, . . . ,N

⇐⇒ R′y = 0.

R′ however is not minimal, i.e., it is not full row rank.
Computing a minimal kernel parameter R of B̂s requires
finding a nonsingular matrix U , such that UR′ =

[
R
0

]
, with

R full row rank. Computing a kernel representation of an
approximate intersection with dimension ns requires a rank-
(L− ns) approximation of R′.

2) Approximate common factor (R̂1, . . . , R̂N) 7→ R̂s:

The subspaces B̂1|L, . . . ,B̂N |L have the special property
that they are behaviors of autonomous linear time-invariant
systems. Exploiting this structure allows us to develop more
efficient methods for common dynamics computation. One ap-
proach of exploiting the linear time-invariant structure is to use
the polynomials p̂1(z), . . . , p̂N(z) in kernel representations of
the models. Then, the subspace intersection problem becomes
a problem of computing the greatest common divisor of the
set of polynomials p̂1(z), . . . , p̂N(z).

There are existing methods for greatest common factor
computation. In the case when the unstructured noise is
present, generically, an exact common factor does not exist. In
this case, the aim is to find an approximate common factor of
degree ns. Again, this is a well developed problem in computer
algebra. Computing an approximate greatest common factor
however is a nonconvex optimization problem. As shown in
[7], this problem is a Sylvester structured low-rank approxima-
tion. This motivates an alternative suboptimal method that first
computes an approximate intersection B̂s and then models the
resulting subspace as a linear time-invariant behavior [32].

Note 14 (Order selection of the common dynamics model).
The estimation of the order ns of the true signal’s data gen-
erating model in the second step of the method is equivalent
to the estimation of the order of the common dynamics of the
combined true signal and structured noise models B̂1, . . . ,B̂N

estimated in the first step. The order of the common dynamics,
in turn, is the degree of the greatest common divisor of the
polynomials R1, . . . ,RN defining minimal kernel representa-
tions of B̂1, . . . ,B̂N . It is a well known result that the greatest
common divisor degree is the co-rank (dimension minus the
rank) of the generalized Sylvester matrix [7]

S (R1, . . . ,RN) :=
[
M (R1) · · · M (RN)

]
,

where

M (R) :=




R0
R1 R0
...

. . .
. . .

Rn

. . . R0
. . . R1

. . .
...

Rn




.
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VII. NUMERICAL EXAMPLES

In this section, we validate empirically the generic approach
for structured noise filtering described in Section VI. First, in
Section VII-A, we illustrate the order estimation procedure.
In the absence of unstructured noise, under the conditions of
Theorem 8, the true signal’s and structured noise models are
identifiable and are recovered exactly by the subspace method
independently of the pole location (i.e., the systems can be
stable, unstable, or marginally stable). As validated empirically
in Section VII-B, the subspace method has good performance
in the presence of unstructured noise when the true signal’s
dynamics is marginally stable. In case of stable or unstable true
signal’s dynamics, however, consistent parameter estimation
from a finite number of experiments is not possible [25]. This
is illustrated in Section VII-C.

A. Order estimation

First, we illustrate and validate empirically the order esti-
mation procedure outlined in Note 11. The simulation setup
is described in Section II, in particular, the true system and
structured noise models have orders ns = 4 and nd = 2.

For the estimation of the order n = ns+nd of the combined
true signal and structured noise model in step 1 of the algo-
rithm, we compute the singular values s1,s2, . . . of the Hankel
matrix H⌈T/2⌉(y1), see Figure 2. The estimate n̂ of n is the
number of singular values above a noise dependent threshold.
In the simulation example, there is a clear separation between
s6—the smallest singular value related to the model—and s7—
the largest singular value related to the unstructured noise.
This makes possible order selection by visual inspection.
Automated procedures that do not depend on human decision
making and a priori given threshold are described in [29].

6 7

s i

i

Fig. 2. The estimate n̂ of the order n of the combined true signal and structured
noise model is obtained as the number of singular values si of the Hankel
matrix H⌈T/2⌉(y1) above a noise dependent threshold. In the example, there
is a clear separation between s6 (the smallest singular value related to the
model) and s7 (the largest singular value related to the unstructured noise).

For the estimation of the common dynamics order ns in
step 2 of the algorithm, we compute the singular values of
the generalized Sylvester matrix S (R̂1, R̂2), where R̂1, R̂2 are
the polynomials defining minimal kernel representations of the
estimated models in step 1. In this case, the order estimate
n̂s is equal to the co-rank of S (R̂1, R̂2), i.e., the number of
singular values that are "close" to zero. Figure 3 shows the
singular values of S (R̂1, R̂2) in the simulation example. There
are n̂s = 4 singular values (s10, s11, s12, and s13) of the order
of 10−10, with s9 = 3× 10−4.

5 6 7 8 9 10 11 12 13

s i

i

Fig. 3. The estimate n̂s of the true signal’s order ns is equal to the number
of singular values si of the Sylvester matrix S (R̂1, R̂2) that are close to zero.
(In the example, "close to zero" means of the order of 10−10.)

B. Comparison of the methods

Next, we compare the performance of the following meth-
ods for data-driven structured noise filtering:

alg1: the subspace method without preprocessing followed
by approximate subspace intersection,

alg2: Kung’s method using least squares (LS) for the
parameter estimation followed by approximate sub-
space intersection,

alg3: Kung’s method using total least squares (TLS) for
the parameter estimation followed by approximate
subspace intersection (SI),

alg4: Kung’s method using least squares (LS) for the
parameter estimation followed by approximate com-
mon factor (AGCD) computation with the method of
[32].

The simulation setup is (14) with N = 2 trajectories, and model
orders ns = 4, nd = 4. The signal lengths are T1 = T2 = 150,
and the noise standard deviation is ς = 0.25. The true models
are randomly generated marginally stable linear time-invariant
systems.

Let p̄(z) be a monic polynomial that defines a minimal
kernel representation ker p̄(σ) of the true model Bs and let
p̂(z) be a monic polynomial that defines a minimal kernel
representation ker p̂(σ) of the estimated model B̂s. We define
the following estimation errors

ep =
‖ p̄− p̂‖
‖ p̄‖ and ey =

‖s− ŷ‖
‖s‖

for the comparison of the methods: ep is the relative parameter

error and ey is the relative signal error. The results of a Monte-
Carlo simulation, averaged over 100 repetitions, are shown in
Table I. The results show that

• no preprocessing gives worse performance,
• using ordinary least squares gives better performance than

total least squares, and
• using common factor computation gives better perfor-

mance than subspace intersection.

C. Other examples

The structured noise filtering problem has a special case
the classical noise filtering problem. Although the subspace
method proposed in the paper can handle this special case, it
is less accurate than alternative methods, see, e.g., [25]. The
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TABLE I
RESULTS FROM A MONTE-CARLO SIMULATION, COMPARING THE

SUBSPACE METHODS FOR DATA-DRIVEN STRUCTURED NOISE FILTERING.

step 1 step 2 ep ey

alg1 raw data SI 0.3468 0.3163
alg2 [30] + LS SI 0.2182 0.2084
alg3 [30] + TLS SI 0.2460 0.2053
alg4 [30] + LS AGCD 0.1368 0.1868

latter do not impose the common dynamics constraint in a
postprocessing step but incorporates it in the first step.

Figure 4 shows that reducing the amplitude of the structured
noise relative to the unstructured noise variance has no effect
on the accuracy of the true signal model estimate, however,
it has negative effect on the accuracy of the structured noise
model estimate. The explanation for this fact is that reducing
the amplitude of the unstructured noise has no effect on the
SNR. However, structured noise to unstructured noise ratio
(SNR with respect to estimation of the unstructured noise
model) drops to zero.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
signal

structured noise

e y

a

Fig. 4. Average relative estimation error ey of the true signal (solid blue
line) and structured noise (dashed red line) parameters as a function of the
amplitude a of the structured noise for a fixed value of the unstructured
noise variance. The estimation error of the true signal is independent of the
structured noise amplitude, while the estimation error of the structured noise
increases as the structured noise amplitude goes to zero.

In the introductory example of Section II (see Figure 1),
the true signal and structured noises are selected as a periodic
signals (corresponding to marginally stable data generating
systems) in order to allow collection of data over an arbitrary
long period of time. Obviously this is not possible in case of
unstable data generating systems because of the exponential
increase of the signals. The case of a stable data generating
system is also problematic because in this case the signal-to-
unstructured noise ratio converges exponentially to zero. This
makes consistent estimation of the model not possible [25].

Figure 5 shows a simulation example with stable structured
noise and true signal dynamics. Due to the exponential con-
vergence of the signals the data collection period is limited.
(In the example, just T = 25 samples are collected and used
for solving the structured noise filtering problem.) Although
the amount of information is limited and consistent estimation
is not possible, the subspace method achieves reasonably good
separation of the true signal, structured, and unstructured noise
components.

VIII. CONCLUSIONS

Motivated by the need to deal with deterministic noise
components, we considered a generalization of the classical

data-driven noise filtering problem, where the noise has two
components—structured noise, which is a trajectory of a
low-complexity linear time-invariant system, and unstructured
noise, which is a zero-mean white Gaussian process. The
problem is well-posed when data is collected from multiple
experiments and the structured noise models in the experi-
ments have no common poles.

The maximum likelihood estimator in the new setup is
a Hankel structured low-rank approximation problem with
multiple rank constraints. We developed a generic subspace-
type method that has the following steps: 1) model the
observed signals, which serves a preprocessing role and 2)
compute the intersection of the models obtained in step 1. The
parameters of the common subspace yield then the parameters
of interest—poles of the true data generating system.

The methods proposed achieve exact recovery in the absence
of unstructured noise, i.e., the methods separate the true signal
from the structured noise exactly. In the presence of unstruc-
tured noise, the methods proposed are heuristics that yield
suboptimal solutions to the maximum likelihood estimation
problem. Simulation results comparing four variations of the
generic subspace method show that parameter estimation using
the ordinary least squares method yields more accurate results
than parameter estimation using the total least squares method.
Exploiting the linear time-invariant structure in the subspace
intersection step by using methods for approximate common
factor computation further improves the estimation accuracy.

The performance of the method in the case of unstructured
noise and marginally stable true system’s dynamics is validated
empirically. The results show a gradual degradation of the
performance as a function of the noise variance up to a
threshold noise variance above which the method fails to
yield good results. Statistical analysis of the method providing
confidence bounds and prior estimate of the threshold noise
level is a topic for future research.

Another direction for future work is extending the results
to systems with driving inputs. This would generalize the
setup considered in the paper from data generated by an au-
tonomous linear-time-invariant system (sum-of-polynomials-
times-damped-exponentials model) to data generated by a
multi-input multi-output linear-time invariant system.
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Fig. 5. Example with stable true signal and structured noise dynamics, i.e., the true signal and structured noise converges to zero while the unstructured noise
variance is constant. (solid red lines — observed and true signals, dashed blue lines — estimates obtained with the subspace method presented in Section VI.)
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