
Nested Reinforcement Learning Based Control for Protective Relays in
Power Distribution Systems

Dongqi Wu, Xiangtian Zheng, Dileep Kalathil, Le Xie

Abstract— This paper envisions a new control architecture
for the protective relay setting in future power distribution
systems. With deepening penetration of distributed energy
resources at the end users level, it has been recognized as a
key engineering challenge to redesign the protective relays in
the future distribution system. Conceptually, these protective
relays are the discrete ON/OFF control devices at the end of
each branch and node in a power network. The key technical
difficulty lies in how to set up the relay control logic so
that the protection could successfully differentiate heavy load
and faulty operating conditions. This paper proposes a new
nested reinforcement learning approach to take advantage of
the structural properties of distribution networks and develop
a new set of training methods for tuning the protective relays.

I. INTRODUCTION

This paper is motivated by the increasing need to re-
design the control architecture of protective relays in the
power distribution systems. The goal of protective relays
is to detect abnormal conditions, such as short circuit and
equipment failures, and isolate the corresponding elements
to prevent possible cascading destruction. The key design
criteria for protective relays in the power distribution system
is to properly isolate faults under abnormal conditions while
not tripping under normal operating conditions. Since the
protective relays are installed at all the nodes and branches,
tripping of a protective relay would have consequences
beyond the immediate neighboring device in the system.
Therefore, the art and science of designing a protective relay
system lies in how to trade-off different protective relay
tripping during faulty situations. With increasing level of
uncertainties in line flow patterns due to distributed energy
resources, the design of a intelligent relay system has become
the key engineering challenge to fully realize the potential of
a truly low-carbon energy system in the future. This paper
directly addresses this challenge of how to re-design the
protective relay systems in the distribution grid.

This paper focuses on the re-design of the control logic
for overcurrent relays. Overcurrent relays are the most widely
used protective relays in the power grid. Overcurrent relays
use the current magnitude as the indicator of faults. When a
short-circuit fault occurs, the fault current is typically much
larger than the nominal current under the normal conditions.
The operating principle of this kind of relay is to trip the
line if the measured current exceeds a pre-fixed threshold.
This threshold is usually determined based on a number of

The authors are with the Department of Electrical and Computer En-
gineering, Texas A&M University, Texas, United States. Email: {dqwu,
zxt0515, dileep.kalathil, le.xie}@tamu.edu

heuristics that account for the topology of the network and
feeder capacity.

In the case of possible operation failure of any relay,
some coordination between adjacent relays is necessary to
avoid catastrophic outcomes. This is typically achieved with
a primary relay - backup relay coordination. If a faults occurs
in the assigned region of a given relay, it should act as
the primary relay and trip. If (and only if) the primary
relay fails to trip, the adjacent upstream (towards the feeder)
relay should trip. Since there is no explicit communication
between the relays, this coordination is achieved implicitly
using an ‘inverse time curve’ [1]. The basic idea is to design
relays in such a way that higher fault current results in shorter
tripping time. Since the primary relay is closer to the fault,
the measured current will be higher and it will trip faster. If
the primary relay fails, the backup relay will work but only
after some time delay indicated by the inverse time curve.

Successful operation of conventional overcurrent relays
rely on two crucial assumptions: (i) nominal operation cur-
rents are always less than the fault current, (ii) the current
measurements are always higher for the relays that are closer
to the fault. With the increasing penetration of distributed
energy resources, both assumptions are likely to be rendered
invalid. This is due to the fact that distributed energy re-
sources such as solar panels and batteries may create reverse
power flows from the edge of the grid to the substation.

An efficient control algorithm for relay protection should
be able to: (i) reduce the operation failures as low as possible,
(ii) identify the fault as soon as possible, and (iii) adapt
robustly against the changes in the operating conditions, like
shift in the load profile. A unified approach that can exploit
the availability of huge amounts of real-time sensor data from
the power distribution systems, recent advances in machine
learning, along with domain knowledge of the power systems
operations is necessary to achieve these objective, especially
in the context of next generation power systems.

Related work: Most studies of improving the perfor-
mance of the over-current relays focus on the aspects of
coordination [2] [3], fault detection [4] and fault section
estimation [5]. Among various possible methods, machine
learning is popular for advanced over-current relays. Neural
networks [6] [7] are applied to determine the coefficients
of the inverse-time over-current curve. Other research work
based on support vector machine [8] [9] directly determine
the operation of relays. However, most of these learning
techniques do not explicitly explore the dynamic nature of
the protective relay setting. As the power network grows
in its complexity and flow patterns, it is often difficult to

ar
X

iv
:1

90
6.

10
81

5v
1 

 [
ee

ss
.S

Y
] 

 2
6 

Ju
n 

20
19



differentiate normal setting from a faulty one simply from a
snapshot of measurements.

Reinforcement learning (RL) is a class of machine learning
that focuses on learning to control unknown dynamical sys-
tems. Unlike the other two classes of machine learning, su-
pervised learning and unsupervised learning, which typically
focus on static systems, RL methodology explicitly includes
the tools to characterize the dynamical nature of the system
that it tries to learn. In RL, a learning agent sequentially
interacts with a (dynamical) system by observing the states of
the system and by selecting appropriate control actions. The
system state evolves stochastically depending on the control
action of the agent and according to the (unknown) model
of the system. After each interaction, the agent receives a
reward. The goal of the agent is to learn a control policy,
which specifies the optimal action to take given the state of
the system, in order to to maximize the cumulative reward.

Last few years have seen significant progresses in deep
neural netwoks based RL approaches for controlling un-
known dynamical systems, with applications in many areas
like playing games [11], locomotion [12] and robotic hand
manipulation [13]. This has also led to addressing many
power systems problems using the tools from RL, as detailed
in the survey [14]. RL is indeed the most appropriate
machine learning approach for a large class of power systems
problems because of the inherent stochastic and dynamical
nature of the power systems. RL based applications in power
systems include electricity markets [15] [16], voltage control
[17], automatic generation control [18], demand control [19],
and angle stability control [20] [21]. However, little effort
has been made for using RL for relay protection control.
The closest work [22] discusses about using a centralized
Q-learning algorithm to determine the protection strategy
for a relay network with full communication between them.
The prerequisite of global communication leaves this method
impractical.

Our contributions: We propose a novel nested reinforce-
ment learning algorithm for optimal relay protection control
for a network of relays in a power distribution network. We
don’t assume any explicit communication between the relays.
We formulate the relay protection control as a multi-agent
RL problem where each relay acts as an agent, observes only
its local measurements and takes control actions based on
this observation. Multi-agent RL problems are known to be
intractable in general and convergence results are sparse. We
overcome this difficulty by cleverly exploiting the underlying
radial structure of power distribution systems. We argue that
this structure imposes only a one directional influence pattern
among the agents, starting from the end of the line to the
feeder. Using this structure, we develop a nested training pro-
cedure for the network of relays. Unlike generic multi-agent
RL algorithms which often exhibit osculations and even non-
convergence in training, our nested RL algorithm converges
fast in simulations. The converged policy far outperforms
the conventional threshold based relay protection strategy in
terms of failure rates, robustness to change in the operation
conditions, and speed in responses.

Fig. 1: IEEE34 node test feeder

Fig. 2: Protective relays in a radial network

This paper is organized as follows. Section II formulates
the relay operation problem. Section III gives a brief review
on RL. Section IV provides our new algorithm. Section
V presents simulation studies that show the efficiency of
the proposed method. Concluding remarks are presented in
Section VI.

II. PROBLEM FORMULATION

In order to precisely characterize the operation of protec-
tive relays, we first explain what ideal relays are supposed
to do using a concrete setting given in Fig. 2. This is a
small section of the larger standard IEEE 34 node test feeder
[23] shown in Fig. 1. There are five relays protecting five
segments of the distribution line.

Desirable operation of the relays is as follows. Each relay
is located to the right of a bus (node). Each relay needs to
protect its own region, which is between its own bus and the
first down-stream bus. Relays are also required to provide
backup for its first downstream neighbor: when its neighbor
fails to operate, it needs to trip the line and clears the fault.
For example, in Fig. 2, if a fault occurs between bus 862
and 838, relay 5 is the main relay protecting this segment
and it should trip the line immediately. If relay 5 fails to
work, relay 4, which provides backup for relay 5, needs to
trip the line instead. The time delay between detecting and
clearing a fault should be as short as possible for primary
relays, while backup relays should react slower to ensure that
they are only triggered when the corresponding main relay
is not working.

According to the above description, the desired operation
of a network of protective relays can be formalized as
follows. Suppose there are n relays. Denote the control action
of ith relay as ai and the index of its downstream neighbor
as ni. For ai, 1 means to trip while 0 means to hold. Let Xpi



and Xbi respectively be the primary and backup protection
region of relay i. Suppose xf is the location of the fault,
then the ideal control action ai of relay i is

ai = 1((xf∈XPi
) ∪ ((xf∈Xbi) ∩ (ani

= 0))) (1)

where 1(·) is an indicator function.
However, in practice each relay knows only the local

measurements like voltage and current. In particular, relay
i is not aware of downstream neighbors’ actions ani and the
exact location of the fault xf . So, each relay i needs a local
control policy πi that maps the local observation si to control
action ai, i.e., ai = πi(si). These local control polices are to
be designed in such a way to enable an implicit coordination
between the relays in the network to achieve the a global
protection strategy. In following, we propose a multi-agent
reinforcement learning approach for addressing this problem.

III. MARKOV DECISION PROCESSES AND
REINFORCEMENT LEARNING

Before formulating the relay protection problem using the
RL approach, we first give a brief review of some basic
terminologies in RL.

Markov decision processes (MDP) is a canonical formal-
ism for stochastic control problems. The goal is to solve
sequential decision making (control) problems in stochastic
environments where the control actions can influence the
evolution of the state of the system. An MDP is modeled
as tuple (S,A, R, P, γ) where S is the state space, A is the
action space. P = (P (·|s, a), (s, a) ∈ S × A) are the state
tranistion probabilities. P (s′|s, a) specifies the probability of
transition to s′ upon taking action a in state s. R : S×A → R
is the reward function, and γ ∈ [0, 1) is the discount factor.

A policy π : S → A specifies the control action to take in
each possible state. The performance of a policy is measured
using the metric value of a policy, Vπ , defined as

Vπ(s) = E[

∞∑
t=0

γtRt|s0 = s], (2)

where Rt = R(st, at), at = π(st), st+1 ∼ P (·|st, at).
The optimal value function V ∗ is defined as V ∗(s) =
maxπ Vπ(s). Given V ∗, the optimal policy π∗ can be
calculated using the Bellman equation as

π∗(s) = arg max
a∈A

(R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′)). (3)

Similar to the value function, Q-value function of a policy
π, Qπ , is defined as

Qπ(s, a) = E[

∞∑
t=0

γtRt|s0 = s, a0 = a] (4)

Optimal Q-value function Q∗ is also defined similarly,
Q∗(s, a) = maxπ Qπ(s, a). Optimal Q-value function will
help us to compute the optimal policy directly without using
the Bellman equation, as π∗(s) = arg maxa∈A Q∗(s, a)

Given an MDP formulation, the optimal value/Q-value
function (V ∗/Q∗) or the optimal control policy (π∗) can be

computed using dynamic programming methods like value
iteration or policy iteration [24]. However, these dynamic
programming method requires the knowledge of the full
model of the system, namely, the transition probability P
and reward function R. In most real world applications,
the stochastic system model is either unknown or extremely
difficult to model. In the protective relay problem, the
transition probability represents all the possible stochastic
variations in voltage and current in the network, due to a
large number of scenarios like weather (and the resulting
shift in demand/supply) and renewable energy generation. In
such scenarios, the optimal policy has to be learned from
sequential state/reward observations.

Reinforcement learning is a method for computing the
optimal policy for an MDP when the model is unknown.
RL achieves this without explicitly constructing an empirical
model. Instead, it directly learns the optimal Q-value function
or optimal policy from the sequential observation of states
and rewards.

Q-learning is one of the most popular RL algorithms
which learn the optimal Q∗ from the sequence of observa-
tions (st, at, Rt, st+1). Q-learning algorithm is implemented
as follows. At each time step t, the RL agent updates the
Q-function Qt as

Qt+1(st, at) = (1− αt)Qt(st, at)
+ αt(Rt + γmax

b
Qt(st+1, b)) (5)

where αt is the step size (learning rate). It is known that if
each-state action pairs is sampled infinitely often and under
some suitable conditions on the step size, Qt will converge
to the optimal Q-function Q∗ [24].

Using a standard tabular Q-learning algorithm as de-
scribed above is infeasible in problems with continuous
state/action space. To address this problem, Q-function is
typically approximated using a deep neural network, i.e.,
Q(s, a) ≈ Qw(s, a) where w is the parameter of the neural
network. Deep neural networks can approximate arbitrary
functions without explicitly designing the features and this
has enabled tremendous success in both supervised learning
(image recognition, speech processing) and reinforcement
learning (AlphaGo games) tasks.

In Q-learning with neural network based approximation,
the parameters of the neural network can be updated using
stochastic gradient descent with step size α as

w = w + α∇Qw(st, at)

(Rt + γmax
b
Qw(st+1, b)−Qw(st, at)) (6)

Unlike supervised learning algorithm, the data samples
(st, at, Rt, st+1) obtained by an RL algorithm is correlated
in time due to the underlying system dynamics. This often
leads to a very slow convergence or non-convergence of the
gradient descent algorithms like (6). The idea of experience
replay is to break this temporal correlation by randomly
sampling some data points from a buffer of previously
observed (experienced) data points to perform the gradient



TABLE I: Relay State Space

State Variable Description
Voltage Voltage measurements of past m timesteps
Current Current measurements of past m timesteps
Status Current breaker state: open or close

Counter Current value of the time counter

TABLE II: Relay Action Space

Action Description
Countdown Continue the counter

Set Set counter to value 1 - 9
Reset Stop activated counter

step in (6). New observations are then added to the replay
buffer and the process is repeated.

In the gradient descent equation (6), the target Rt +
γmaxbQw(st+1, b) depends on the neural network parame-
ter w, unlike the targets used for supervised learning which
are fixed before learning begins. This often leads to poor
convergence in RL algorithms. The idea of target network
is used to address this issue. A separate (target) neural
network is used for maintaining the target value for gradient
descent. The target network is kept fixed for multiple steps
but updated periodically.

The combination of neural networks, experience replay
and target network forms the core of the DQN algorithm
[25]. In the following, we will use DQN as one of the basic
block for our nested RL algorithm.

IV. NESTED REINFORCEMENT LEARNING FOR CONTROL
OF PROTECTIVE RELAYS

We model the protective relays as collection of RL agents.
Each relay can only observe its local measurements of
voltage and current. Each relay also knows the status of the
local current breaker circuits, i.e., if it is open or closed.
Since relays don’t observe the measurements at other relays,
an implicit coordination mechanism is also needed in each
relay. This is achieved by including a local counter that
ensures the necessary time delay in its operation as backup
relay. These variables constitute the state si(t) of each relay i
at time t. Table I summarizes this state space representation.
Note that the state includes the past m measurements.

To define the action space, we first specify the possible
actions each relay can take. When a relay detects a fault it
will decide to trip. However, to facilitate the coordination
between the network of relays, rather than tripping instan-
taneously, it will trigger a counter with a time countdown,
indicating the relay will trip after certain time steps. If the
fault is cleared by another relay during the countdown, the
relay will reset the counter to prevent mis-operation. Table
II summarizes the action space of each relay. So, the action
of relay i at time t, ai,t, is one of these 11 possible values.

The reward given to each relay is determined by its current
action and fault status. A positive reward occurs if, i) it
remains closed during normal conditions, ii) it correctly
operates after a fault in its assigned region or in its first

TABLE III: Rewards

Condition Trip Hold
Normal -150 +3

After fault in
main region +120 -3 for each post-fault step

After fault
as backup +100 -2 for each post-fault step

After fault
outside assigned region -150 +5

downstream region when the corresponding primary relay
fails. A negative reward is caused by, i) tripping when there
is no fault; 2) tripping after a fault outside its assigned
region. The magnitude of the rewards are designed in such
a way to facilitate the learning, implicitly signifying relative
importance of false positives and false negatives. The reward
function for each relay is shown in Table III.

Consider a network with n relays. Define the global state
of the network at time t as s̄t = (s1,t, s2,t, . . . , sn,t) and the
global action at time t as āt = (a1,t, a2,t, . . . , an,t). Let Ri,t
be the reward obtained by relay i at time t. It is clear from
the description of the system that Ri,t depends on the global
state s̄t and global action āt rather than the local state si,t
and local action ai,t of relay i. Define the global reward R̄t
as R̄t =

∑n
i=1Ri,t. Note that the (global) state evolution

of the network can longer be described by looking at the
local transition probabilities because the control actions of
the relays affect each others’ states. The global dynamics is
represented by the transition probability P̄ = P̄ (s̄t+1|s̄t, āt).

We formulate the optimal relay protection problem in a
network as multi-agent RL problem. The goal is to achieve a
global objective, maximizing the cumulative reward obtained
by all relays, using only local control laws πi which maps the
local observations si,t to local control action ai,t. Formally,

max
(πi)ni=1

E[

∞∑
t=0

γtR̄t], ai,t = πi(si,t). (7)

Since the model is unknown and there is no communication
between relays, each relay has to learn its own local control
policy πi using an RL algorithm to solve (7).

Classical RL algorithms and their deep RL versions typ-
ically address only the single agent learning problem. A
multi-agent learning environment violates one of the funda-
mental assumption needed for the convergence of RL algo-
rithms, namely, the stationarity of the operating environment.
In a single agent system, for any fixed policy of the learning
agent, the probability distribution of the observed states can
be described using a stationary Markov chain. RL algorithms
are designed to learn only in such a stationary Markovian
environment. Multiple agents taking actions simultaneously
violate this assumption. Even if the policy of a given agent
is fixed, state observations for that agent are no longer
according to a stationary Markov chain, as they are controlled
by the actions of other agents. Moreover, in our setting, each
relay observes only its local measurements which further
complicates the problem. A formulation that involves these



two constraints is known as Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP) [28]. There
are existing literatures [29] addressing this kind of problems,
but the performance of most algorithms are unstable and the
convergence is rarely guaranteed.

We propose an approach to overcome this difficulty of
multi-agent RL problem by exploiting the radial structure of
power distribution systems. Using this structural insight, we
develop a nested RL algorithm to extend the single agent RL
algorithm to the multi-agent setting we address.

We use the following training procedure. We start from the
very end of the radial network in Fig. 2. The relay protecting
the last segment is relay 5, which has no downstream
neighbors and can be trained using the single-agent training
algorithm described in the previous section. Once the training
of relay 5 is complete, it will react to the system dynamics
using its learned policy. Since relay 5 only needs to clear
local faults (i.e. faults between bus 862 - 838) and ignores
disturbances at any other location, its policy will not change
according to the change in the policy of other relays. This
enables us to train relay 4 with relay 5 operating with a fixed
policy (which it learned via the single agent RL algorithm).
Since the policy of relay 5 remains fixed when training relay
4, the environment from the perspective of relay 4 remains
more or less stationary (except for the possible disturbances
due to difference in the local measurements). Similarly, after
the training of relay 4 and 1 is complete, relay 2 can be
trained with the policy of relay 1, 4 and 5 fixed. This process
can be repeated for all the relays upstream to the feeder.

This nested training approach which exploits the nested
structure of the underlying physical system allows us to
overcome the non stationarity issues presented in generic
multi-agent RL settings. Our nested RL algorithm is formally
presented in Algorithm 1.

V. SIMULATION RESULTS

In this section we evaluate the performance of our RL
algorithm for protective relays. We compare its performance
with the conventional threshold based relay protection strat-
egy. We compare the performance in the following metrics:
Failure rate: We evaluate the percentage of operation failures
of relays in four different scenarios: when there is a: (i) fault
in the local region, (ii) fault in the immediate downstream
region, (iii) fault in a remote region, (iv) no fault in the
network.
Robustness to changes in the operating conditions: Relays
are trained for a given operating condition, like a specific
load profile. We evaluate protective relay strategies when
there are changes in such operating conditions.
Response time: Relay protection control is supposed to work
immediately after a fault occurs. We evaluate the time taken
between the occurrence of a fault and activation of the
protection control.

A. Simulation Environment Implementation

We choose the network structure shown in Fig. 1 for
simulations. In particular, we focus on the relays in the

Algorithm 1 Nested RL for Radial Relay Network

Sort {i|1 ≤ i ≤ n} into a vector N by the ordering of
training
Initialize replay buffer of each relay Ni, 1 ≤ i ≤ n
Initialize Q-value function of each relay i with random
network weights wi
for relay i = 1 to n do

for episode k = 1 to M do
Initialize PSS/E simulation environment with ran-
domly generated system parameters
for time step t = 1 to T do

Observe the state si,t of each relay Ni
for relay j = 1 to i do

With probability ε select a random action aj,t,
otherwise select a greedy action
aj,t = arg maxaQwj

(sj,t, a)
Observe the reward Rj,t and next state sj,t+1

Store (sj,t, aj,t, Rj,t, sj,t+1) in the replay buffer
of relay Nj
Sample a minibatch from replay buffer and
update wj

end for
for relay j = i+ 1 to n do

Select the null action, aj,t = 0
end for

end for
end for

end for

section of the network shown in Fig. 2. We first describe
the simulation environment created for training and testing
different relay protection strategies. We implemented the
environment using Power System Simulator for Engineering
(PSS/E) by Siemens, a commercial power system simulation
software. The simulation process is controlled by Python
using the official PSSPY interface library and the dynamic
simulation module. The environment is wrapped according to
the OpenAI Gym [26] format that provides APIs for agents
to start, step through and end an episode.

An episode is defined as a short simulation segment that
contains a fault. In the beginning of each episode, a random
initial operating condition (e.g. generator output, load size) is
generated to mimic the load variation in distribution systems.
During an episode, a fault is added to the system at a random
time-step. The fault is set to have random fault impedance
within a range determined according to the proposed model
in [27] and occurs at a random location. In order to mimic
the real world scenario that necessitates the backup relays,
a small probability to ignore a tripping action is added for
each relay. This corresponds to the case when the breaker
fails as a relay tries to trip the line. In this case, the first
upstream relay needs to trip the line instead.

In practice, the load level of distribution systems varies
a lot with the time of day. To simulate this, the system is
assigned a random trend factor from 70% to 130% in the



TABLE IV: DQN Agent Hyperparameters

Hyperparameter Value
Hidden Layers 2

Layer Size 128/64
Activation ReLU/ReLU/Linear

Replay Buffer 10000
Replay Batch 32
Target Soft

Update Rate 0.005

Optimizer Adam, Learing Rate 0.0005
Double DQN On

Loss MSE
Discount 0.95

beginning of each episode. In addition to this, each load in
the system has its own load multiplier between 80% and
120% of the system-wide trend factor. The capacity of each
load is determined by multiplying the base case capacity and
the local multiplier. A powerflow solution is then calculated
using this random load profile as the initial condition for the
dynamic simulation.

B. RL Algorithm Implementation and Training

The RL algorithm is implemented using the open-source
library Keras-RL [30]. Since the Python interface of PSS/E
used for the environment simulations and the Keras-RL used
for training the RL agents are not compatible, they must run
on two separate processes simultaneously. In order to enable
this, the environment is wrapped as a TCP/IP server that
accepts connections through a pre-allocated port and keeps
running in the background. RL agents communicate with the
server using the same port via localhost. Also, to accom-
modate the TCP/IP requirement, a dedicated encoder/decoder
pair is also written to pack the data as byte strings before
transmitting through the port. We implemented Algorithm 1
using this setup. Hyperparameters are selected via random
search. The final configuration and hyperparameters of the
RL algorithm are specified in Table IV. All agents use the
same hyperparameters in training.

The learning curves are shown in Fig. 3. In particular, Fig.
3a shows the convergence of episodic reward (cumulative
reward obtained in an episode) for relay 5. The thick line
indicates the mean value of episodic reward obtained during
a trial consisting of 20 independent runs of training. The
shaded envelope is bounded by the mean reward ± standard
deviation recorded at the same progress during the trial.
Note that the episode reward converges in less than 250
episodes. One episode takes roughly 3 seconds. So, the
training converges in less than 750 seconds.

Similarly, Fig. 3b shows the convergence of the false
operations for relay 5. In the beginning of training, the
false operation rate is really high but it soon converges to a
value approximately zero. Fig. 3c shows the learning curve
corresponding to the episodic reward of relay 4. The behavior
is similar to that of relay 5 though it takes more number of
episodes to converge. This is expected because relay 4 has
to act both as primary relay and as backup for relay 5, while
relay 5 only has to act as the primary relay (c.f. Fig. 2).

So, the control policy of relay 4 is more complex than the
policy of relay 5, and hence it takes a longer training time
to converge. Also, the standard deviation of episodic reward
of relay 4 is slightly higher than relay 5. This is because the
reward relay 4 can get in backup relay mode can be smaller
than in primary relay mode even for perfect operation.

We omit the learning curves for other relays as they are
very similar to that of relay 5 and relay 4.

C. Conventional Relay Protection Strategy

Conventional relay protection strategies are based on a
fixed threshold rule. The relay trips if and only if the
measured current is greater than a fixed threshold. The
optimal threshold is typically computed using a variety of
heuristic methods [1]. Since these methods depend on the
network parameters like topology, feeder capacity and load
size, they may not give the optimal threshold that maximizes
the success rate in our setting. So, for a fair comparison
with a more powerful RL based algorithm, we compute the
threshold that guarantees the optimal performance using a
simple statistical approach.

We compute the empirical probability distribution (pdf)
of the current measurements before and after the fault from
500 episodes. For example, the pdf of the pre-fault and post-
fault current at bus 862 is plotted in Fig. 3d. It is clear from
the figure that the distributions of the pre-fault and post-fault
currents overlap with each other. This is expected, especially
in the power distribution systems, where the load profile
varies greatly with the time of day. In fact, when the system
is lightly loaded, the fault current with a relatively large
fault impedance can be smaller than the normal operating
current when the system is heavily loaded. We put a higher
weight on faulty scenarios to overcome the imbalanced prior
probabilities. The optimal threshold that will maximize the
success rate can then be approximated as the crossing point
of these two pdfs [31]. This point is marked as the ‘pickup
current’ in the figure, and is used as the threshold for the
conventional relay protection strategy.

D. Performance Evaluation

In this section we compare the performance of the RL
based relay protection strategy and threshold based conven-
tional relay protection strategy. As mentioned above, we
focus on three metrics of performance, namely, failure rate,
robustness, and response time.
Failure rate: A false operation of a relay is the one operation
where that relay fails to operate as it supposed to do. There
are two kinds of false operations, false-negative and false-
positive. A false-positive happens if: (i) relay trips when there
is no fault, (ii) relay trips even if the location of fault is
outside of the relay’s assigned region, (iii) backup relay trips
before the primary relay. A false-negative happens if: (i) relay
fails to trip even if the location of the fault is inside its
assigned region, (ii) backup relay fails to trip even after its
immediate downstream relay has failed.

For the RL based algorithm, we use the parameters ob-
tained after the training. For the conventional relay strategy,



(a) Relay 5: Episodic reward (b) Relay 5: Failure Rate (c) Relay 4: Episodic reward

(d) Normal/faulty current distribution (e) Failure Rate During Abnormal Peaks (f) Failure Rate During Increased
Mean Load

Fig. 3: Convergence Plots of Agents and Comparison of Robustness

we use the optimal threshold computed as described before.
We test the performance in four scenarios. Each scenario is
tested with 5000 episodes. Failure rate is calculated as the
ratio of the number of episodes with failed operations to the
total number of episodes. Failure rate comparison is given
in Table V. Note that our RL based algorithm remarkably
outperforms the conventional relay strategy. For example, in
the local fault scenario, the conventional strategy has a failure
rate of 7.7% where as our RL algorithm has a mere 0.26%.
Also note that in two scenarios, backup and no fault, even
after 5000 random episodes, RL based strategy didn’t cause
any operation failure. So, we put the failure rate as zero.

TABLE V: False Operation Rate Comparison

Scenario Expected Operation Failure Rate
Conventional RL-based

Local Fault Trip 7.7% 0.26%
Backup Trip 9.6% 0%

Remote Fault Hold 3.8% 0.08%
No Fault Hold 1.8% 0%

Robustness: Load profiles in a distribution system is affected
by many events like weather, social activities, renewable
generation, and electric vehicles charging schedules. These
events can generally cause the peak load to fluctuate and
possibly exceed the expected range in the planning stage.
Moreover, the electricity consumption is expected to slowly
increase each year, reflecting the continuing economy and
population growth [32]. This can cause a shift in the mean
(and variance) of the load profile. Relay protection control

should be robust to such changes as continually reprogram-
ming relays after deployment is costly.

We first evaluate the robustness in the case of peak load
variations. For the clarity of illustration, we focus on relay
5. We vary the peak load upto 15% more than the maxi-
mum load used during training. Since we are considering
the robustness w.r.t. to the peak load variations, the load
capacity used in this test is sampled only from peak load
under consideration. For example, the data collected for 3%
increase are sampled by setting the system load size between
100% and 103% of the peak load at training. We then test
the performance of both relay strategies using the same
parameter from the original training, i.e., we don’t update
the policy to accommodate the change in this load profile.

The performance is shown in Fig. 3e. It can be seen
that conventional relay strategy completely fails against such
a change in the operating environment as it fails in more
than 40% of such scenarios after a 9% increase in the peak
load. On the other hand, RL algorithm is remarkably robust
at this point with failures in less than 2% scenarios. RL
algorithm performance starts to decay noticeably only after
15% increase in the peak load.

We also evaluate the robustness against increase in the
mean load. Procedure is same as before and the performance
is shown in Fig. 3f. RL algorithm is remarkably robust even
after a 15% increase in the mean load. Conventional relay
strategy fails completely in this scenario also.
Response time: RL algorithm also shows a very fast tripping
speed during the testing. We observed a tripping time of
0.005 second for the primary relay and 0.009 second for the



backup relay. Conventional overcurrent relays uses the time-
inverse curves as the ones defined in IEEE C37.112-2018
[33] to determine the time delay for all situations, which
gives unnecessary delay even for operations as primary
relays. Depending on the curve selected, the minimum delay
is at least at the order of 0.1 second.

VI. CONCLUDING REMARKS

This paper proposes a multi-agent reinforcement learning
based approach for redesigning the control architecture of
protective relay in power distribution systems. We propose a
novel nested reinforcement learning algorithm that exploits
the underlying physical structure of the network in order
to overcome the difficulties associated with standard multi-
agent problems. Unlike the generic multi-agent RL algo-
rithms which often fail to converge, our nested RL algorithm
converges fast in simulations. The converged policy far out-
performs the conventional threshold based relay protection
strategy in terms of failure rates, robustness to change in the
operation conditions, and speed in responses.

In the future work, we plan to develop analytical guaran-
tees for the convergence of our nested RL algorithm. Future
work will also investigate the scalability of the proposed
work in much larger system and the impact of network
topology on the performance.

REFERENCES

[1] J. M. Gers and E. J. Holmes, Protection of Electricity Distribution
Networks, The Institution of Engineering and Technology, 3rd edition,
2011.

[2] W. El-Khattam and T. S. Sidhu, Restoration of directional overcurrent
relay coordination in distributed generation systems utilizing fault
current limiter, IEEE Transactions on Power Delivery, 2008, vol. 23,
no. 2, pp. 576585

[3] H. Zhan, C. Wang, Y. Wang, X. Yang, X. Zhang, C. Wu, and Y.
Chen, Relay protection coordination integrated optimal placement and
sizing of distributed generation sources in distribution networks, IEEE
Transactions on Smart Grid, 2016, vol. 7, no. 1, pp. 5565

[4] P. Dash, S. Samantaray, and G. Panda, “Fault classification and section
identification of an advanced series-compensated transmission line
using support vector machine”, IEEE transactions on power delivery,
2007, vol. 22, no. 1, pp. 6773

[5] H.-T. Yang, W.-Y. Chang, and C.-L. Huang, ”A new neural networks
approach to on-line fault section estimation using information of
protective relays and circuit breakers”, IEEE Transactions on Power
delivery, 1994, vol. 9, no. 1, pp. 220230

[6] P. Mahat, Z. Chen, B. Bak-Jensen and C.L. Bak, ”A Simple Adap-
tive Overcurrent Protection of Distribution Systems With Distributed
Generation”, IEEE Transactions on Smart Grid, 2011, vol.2, no.3, pp
428-437

[7] H. A. Abyane, K. Faez and H. K. Karegar, ”A new method for over-
current relay (O/C) using neural network and fuzzy logic”, TENCON
’97 Brisbane - Australia. Proceedings of IEEE TENCON ’97. IEEE
Region 10 Annual Conference: Speech and Image Technologies for
Computing and Telecommunications (Cat. No.97CH36162), Brisbane,
Queensland, Australia, 1997, pp. 407-410 vol.1

[8] D. N. Vishwakarma and Z. Moravej, ”ANN based directional overcur-
rent relay”, 2001 IEEE/PES Transmission and Distribution Conference
and Exposition. Developing New Perspectives (Cat. No.01CH37294),
2001, Atlanta, GA, USA, pp. 59-64 vol.1

[9] Y. Zhang, M. D. Ilic and O. Tonguz, ”Application of Support Vector
Machine Classification to Enhanced Protection Relay Logic in Electric
Power Grids”, 2007 Large Engineering Systems Conference on Power
Engineering, 2007, Montreal, Que., pp. 31-38

[10] X. Zheng, X. Geng, L. Xie, D. Duan, L. Yang and S. Cui, ”A SVM-
based setting of protection relays in distribution systems”, 2018 IEEE
Texas Power and Energy Conference (TPEC), 2018, College Station,
TX, pp. 1-6.

[11] D. Silver et al., ”Mastering the game of Go with deep neural networks
and tree search”, Nature, 2016, vol. 529, no. 7587, pp. 484

[12] T. P. Lillicrap et al., ”Continuous control with deep reinforcement
learning”, arXiv preprint, 2015, arXiv:1509.02971

[13] S. Levine, C. Finn, T. Darrell and P. Abbeel, ”End-to-end training
of deep visuomotor policies”, The Journal of Machine Learning
Research, 2016, vol. 17, no. 1, pp. 1334-1363

[14] M. Glavic, R. Fonteneau and D. Ernst, ”Reinforcement Learning for
Electric Power System Decision and Control: Past Considerations and
Perspectives”, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 6918-
6927

[15] B. Kim, Y. Zhang, M. van der Schaar and J. Lee, ”Dynamic Pricing
and Energy Consumption Scheduling With Reinforcement Learning”,
IEEE Transactions on Smart Grid, 2016, vol. 7, no. 5, pp. 2187-2198

[16] R. Lincoln, S. Galloway, B. Stephen and G. Burt, ”Comparing Policy
Gradient and Value Function Based Reinforcement Learning Methods
in Simulated Electrical Power Trade”, IEEE Transactions on Power
Systems, 2012, vol. 27, no. 1, pp. 373-380

[17] Y. Xu, W. Zhang, W. Liu and F. Ferrese, ”Multiagent-Based Re-
inforcement Learning for Optimal Reactive Power Dispatch”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 2012, vol. 42, no. 6, pp. 1742-1751

[18] T. Yu, B. Zhou, K. W. Chan, L. Chen and B. Yang, ”Stochastic Optimal
Relaxed Automatic Generation Control in Non-Markov Environment
Based on Multi-StepQ(λ)Learning”, IEEE Transactions on Power
Systems, 2011, vol. 26, no. 3, pp. 1272-1282

[19] F. Ruelens, B. J. Claessens, S. Vandael, B. De Schutter, R. Babuka
and R. Belmans, ”Residential Demand Response of Thermostatically
Controlled Loads Using Batch Reinforcement Learning”, IEEE Trans-
actions on Smart Grid, 2017, vol. 8, no. 5, pp. 2149-2159

[20] M. Glavic, ”Design of a resistive brake controller for power system
stability enhancement using reinforcement learning”, IEEE Transac-
tions on Control Systems Technology, 2005, vol. 13, no. 5, pp. 743-751

[21] T. Ademoye and A. Feliachi, ”Reinforcement learning tuned decen-
tralized synergetic control of power systems”,Electric Power Systems
Research, 2012, vol. 86, pp. 34-40

[22] H. C. Kilikiran, B. Kekezoglu and G. N. Paterakis, ”Reinforcement
Learning for Optimal Protection Coordination”, 2018 International
Conference on Smart Energy Systems and Technologies (SEST),
Sevilla, 2018, pp. 1-6

[23] IEEE Distribution System Analysis Subcommittee, ”Radial Test
Feeders”, [Online], 2019, Available: http://sites.ieee.org/pes-
testfeeders/resources/

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, 2nd Edition, 2018

[25] V. Minh et al., ”Human-level control through deep reinforcement
learning”, Nature, 2015, 518.7540:529

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang and W. Zaremba, OpenAI Gym, 2016, arXiv:1606.01540

[27] D. A. S. Jos and S. Elmer, ”Typical expected values of the fault
resistance in power systems”, 2010 IEEE/PES Transmission and
Distribution Conference and Exposition: Latin America, T and D-LA
2010. 602 - 609. 10.1109/TDC-LA.2010.5762944.

[28] S. Kapoor, ”Multi-Agent Reinforcement Learning: A Report on
Challenges and Approaches”, Computing Research Repository, arXiv,
2018, arXiv:1807.09427

[29] L. Kraemer and B. Banerjee, ”Multi-Agent Reinforcement Learning
as a Rehearsal for Decentralized Planning”, Neuralcomputing, 2016,
190:82-94

[30] M. Plappert, keras-rl, GitHub Repository, [Online], 2016, Available:
https://github.com/keras-rl/keras-rl

[31] R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, John
Wiley & sons, 2nd edition, 2002.

[32] M. Woodward, ”Record U.S. electricity generation in 2018 driven
by record residential, commercial sales”, Independent Statistics &
Analysis, [Online], 2019, U.S. Energy Information Adminstration,
Available: https://www.eia.gov/todayinenergy/detail.php?id=38572

[33] IEEE Standards Association, ”C37.112-2018 - IEEE Standard for
Inverse-Time Characteristics Equations for Overcurrent Relays”, IEEE
Standard, 2019, 10.1109/IEEESTD.2019.8635630


	I INTRODUCTION
	II Problem Formulation
	III Markov Decision Processes and Reinforcement Learning
	IV Nested Reinforcement Learning for Control of Protective Relays
	V Simulation Results
	V-A Simulation Environment Implementation
	V-B RL Algorithm Implementation and Training
	V-C Conventional Relay Protection Strategy
	V-D Performance Evaluation

	VI Concluding Remarks
	References

