
Reduced Order Modeling for Nonlinear PDE-constrained Optimization
using Neural Networks

Nikolaj Takata Mücke, Lasse Hjuler Christiansen, Allan Peter Engsig-Karup, John Bagterp Jørgensen

Abstract— Nonlinear model predictive control (NMPC) often
requires real-time solution to optimization problems. However,
in cases where the mathematical model is of high dimension
in the solution space, e.g. for solution of partial differential
equations (PDEs), black-box optimizers are rarely sufficient to
get the required online computational speed. In such cases
one must resort to customized solvers. This paper present
a new solver for nonlinear time-dependent PDE-constrained
optimization problems. It is composed of a sequential quadratic
programming (SQP) scheme to solve the PDE-constrained
problem in an offline phase, a proper orthogonal decomposition
(POD) approach to identify a lower dimensional solution space,
and a neural network (NN) for fast online evaluations. The
proposed method is showcased on a regularized least-square
optimal control problem for the viscous Burgers’ equation. It
is concluded that significant online speed-up is achieved, com-
pared to conventional methods using SQP and finite elements,
at a cost of a prolonged offline phase and reduced accuracy.

I. INTRODUCTION

Nonlinear model predictive control is a well-established
technique to solve optimal control problems within science,
engineering and other areas [1], [2]. However, in cases where
the underlying mathematical model is of high dimension, as
is the case for PDEs, the optimization requires substantial
computational power and time and cannot meet real-time
constraints. In such mathematical models the curse of di-
mensionality is often a bottleneck [3]. As a consequence,
black box optimizers are not sufficient and one must resort
to customized solvers. The state of the art customized solvers
often rely on preconditioned iterative methods [4], [5], high-
performance computing [6] and/or reduced order modeling
techniques [7], [8] to improve the online computation time.

The contribution of this paper towards real-time optimiza-
tion of large-scale processes, is a scheme based on proper
orthogonal decomposition (POD), sequential quadratic pro-
gramming (SQP) and neural networks (NNs), denoted the
POD-SQP-NN scheme. This approach is in the field of
reduced order modeling. The work is inspired by [9], where
a similar approach is presented for forward solution of
nonlinear PDEs. The idea is to identify a low dimensional
representation of the optimal control function, and then train
a neural network to map inputs to this representation. The
scheme utilizes a data driven approach to compute the low
dimensional representation. One starts by exploring the solu-
tion space by computing optimal control functions, using the
SQP algorithm [10], and then computes a low dimensional

Nikolaj Takata Mücke, Lasse Hjuler Christiansen, Allan Peter Karup-
Engsig and John Bagterp Jørgensen are with the Department of Applied
Mathematics and Computer Science, Technical University of Denmark, DK-
2800 Kgs. Lyngby, Denmark {ntmy,lhch,apek,jbjo}@dtu.dk

representation using POD [11]. The idea is closely related
to that of principal component analysis for dimensionality
reduction of data representations [12]. This approach exploits
the often existing low dimensional structures to decrease the
required computational effort and increase the accuracy of
an NN.

The computation of the low dimensional representation
and the training of the NN is kept in the offline stage. Thus,
it is only necessary to evaluate the NN for given input in
the online stage, which is an inexpensive procedure. This
way one circumvents the problem associated with the curse
of dimensionality in the online stage by keeping the full
problem in the offline stage.

The POD-SQP-NN scheme is tested on a regularized least-
square optimal control problem for the viscous Burgers’
equation to demonstrate its potential. The viscous Burgers’
equation has a nonlinear advection term. When this term is
dominating shock waves will appear in the uncontrolled case,
which makes it challenging to control [13].

The paper is organized as follows. Section 2 introduces the
optimal control problem and the optimality system. Section
3 presents the reduced order modeling framework. Section 4
outlines the use of NNs. Section 5 presents numerical results
and conclusions, as well as future prospects, are made in
section 6 and 7.

II. OPTIMAL CONTROL OF NONLINEAR PDES

Consider the class of nonlinear time-dependent PDEs of
the form

∂ty − ε∂xxy +N(y) = f, in Q (1a)
y(x, t) = 0, on Σ (1b)
y(x, 0) = y0, in Ω (1c)

where Q = Ω × (0, T) is a space-time cylinder, Ω ∈
Rd, d = 1, 2, 3, Σ = Γ × (0, T), Γ = ∂Ω, ε > 0,
f ∈ L∞(Q) is an external forcing, and N is nonlinear
operator. The initial value problem (IVP), (1), is a general
form of advection-reaction-diffusion equations with linear
diffusion. Processes of this type encapsulates a great amount
of physical phenomena, such as chemical reactions [4], fluid
flows [14], and predator-prey systems [15].

ar
X

iv
:1

90
4.

06
96

5v
2

 [
m

at
h.

N
A

]
 2

9
Se

p
20

19

A. The Optimal Control Problem

To control (1) towards a desired state we formulate the
PDE-constrained optimization problem:

min
y,u

J(y, u), (2a)

s.t. ∂ty − ε∂xxy +N(y) = f + bu, in Q (2b)
y(x, t) = 0, on Σ (2c)
y(x, 0) = y0, in Ω (2d)

The goal of problem (2) is to determine the optimal control
function, u ∈ L2(Q), such that the state, y, is as close as
possible to a pre-defined desired state, yd ∈ L2(Q). For this
purpose a typical choice of the cost functional, J , is given
by the tracking-type functional:

J(y, u) =
1

2
||y − yd||22 +

β

2
||u||22 , (3)

where || · ||2 denotes the standard L2(Q) norm and β > 0
is the Tikhonov regularization parameter, ensuring that the
optimal control has higher regularity [10]. The control can be
restricted to a subdomain, Ωc ⊂ Ω by choosing b = b(x, t) as
a characteristic function, i.e. b = b(x, t)χΩc(x, t). Note that
in many real-world applications (2) is often accompanied by
constraints on the control function, u. However, to illustrate
the ideas and principles of this paper we leave out such
constraints on u.

B. Optimality System

Solving (2) can be done in more than one way. This
paper follows the optimize-then-discretize approach [16].
That is, we start by deriving the optimality conditions on the
continuous level and then we discretize the resulting system.
Utilizing the formal Lagrange method [10], we arrive at the
following system:

∂ty − ε∂xxy +N(y)− b2

β
p = f, in Q, (4a)

−∂tp− ε∂xxp+Ny(y)p = y − yd, in Q, (4b)
y(x, t) = p(x, t) = 0, on Σ, (4c)
y(x, 0) = y0, in Ω, (4d)
p(x, T) = 0, in Ω. (4e)

where p is the adjoint state. The control is recovered by
u = b

β p. The IVP (4) is a system of nonlinear PDEs with
the state evolving forward in time and the adjoint state
backwards. We use a Newton/SQP approach to overcome the
nonlinearities, which first linearizes (4) and then solve the
resulting system until a given stopping criteria is fulfilled
[10], [13]. Denoting by (yi, pi), 1 ≤ i ≤ k, the Newton
iterates and (yk+1, pk+1) := (y, p), the next iterate, we
recover the following linear system to solve for (y, p):

∂ty − ε∂xxy +Ny(yk)y − b2

β
p = F1, (5a)

−∂tp− ε∂xxp+Ny(yk)p− y +Nyy(yk)pky = F2, (5b)

where

F1 := f +N(yk)−Ny(yk)yk, (6a)
F2 := −yd +Nyy(yk)pkyk, (6b)

and with initial and boundary conditions as given in (4).
While (5) are linear, the problem of opposite time evo-

lutions of the state and the adjoint state remains. To solve
this problem we solve for all time steps at once. This is also
referred to as an all-at-once approach [16].

Using the Galerkin finite element method (FEM), we aim
to represent the solutions by

y =

Nδ∑
i=1

ŷi(t)φi(x), p =

Nδ∑
i=1

p̂i(t)φi(x), (7)

where φi ∈ H1(Ω) are the finite element basis functions
and ŷi, p̂i are the generalized Fourier coefficients, i.e. the
degrees of freedom, to be estimated. We denote the finite
dimensional solution space Vδ = span {φi}Nδi=1, introduce a
time discretization, ti = i∆t, i = 1 . . . Nt, and define

y = (ŷ1(t1), . . . , ŷ1(tNt), . . . , ŷNδ(t1), . . . , ŷNδ(tNt)),
(8a)

p = (p̂1(t1), . . . , p̂1(tNt), . . . , p̂Nδ(t1), . . . , p̂Nδ(tNt)),
(8b)

as the vectors collecting the degrees of freedom for all time
steps. Thus, we solve a system of the form[

Ak BTk
BTk −Ck

]
︸ ︷︷ ︸

Lk

[
y
p

]
=

[
F1

F2

]
, (9)

in each Newton iteration. Note that Lk ∈ R2NδNt can
potentially be a large matrix. Thus, solving (9) multiple times
may be expensive, which motivates the use of specialized
approaches to improve computation time.

III. REDUCED ORDER MODELING

Decreasing the size of (9) is one way to reduce the compu-
tational cost. To do so we need an efficient reduced basis, i.e.
a basis comprising fewer functions without compromising
the accuracy for given set of parameters. Hence, we seek
solutions of the form

urb =

Nrb∑
i=1

ûi(t)ψi(x), (10)

where Nrb � Nδ and ψi is the reduced basis functions.
We denote the reduced space Vrb = span {ψi}Nrb

i=1 ⊂ Vδ .
This also motivates naming Vδ the full-order or high-fidelity
space. To derive such a basis, we utilize the POD [11], [17].

A. Parametrized PDEs

To describe the POD method, we begin by introducing
the concept of parametrized PDEs. Here, we assume that
the solution does not only depend on space and time but
also on the parameters. Define the vector, µ ∈ P ⊂ RP , to
be the vector of all parameters. Such parameters could be

either physical, such as the diffusion rate, characteristics of
the initial condition, or geometric, such the shape and size
of the domain. The input parameters will often comprise an
initial state in optimal control problems. Therefore, it makes
sense to decompose the parameter vector into an initial state
and other parameters, µ = (y0,λ).

The set of all solutions for varying parameters makes up
a manifold, denoted the solution manifold:

M = {u(µ) | µ ∈ P} . (11)

Similarly, we define Mδ and Mrb to be the solutions
manifold for the high-fidelity and the reduced basis approx-
imations, respectively.

B. Proper Orthogonal Decomposition

The POD method to compute the reduced basis is a
data driven approach. One starts by computing a series of
snapshots. A snapshot is a solution of the full problem
for a given set of parameters and time instance. Ideally
the snapshots should make up a good representation of the
solution manifold. Then we seek to minimize√√√√ Ns∑

i=1

inf
v∈Vrb

∣∣∣∣uiδ − v∣∣∣∣2L2(Ω)
, (12)

where Vrb is the reduced space, uiδ ∈ Vδ denotes a snapshot,
i.e. the solution for a specific parameter choice and time
instance, and Ns = NpNt is the number of snapshots, where
Np and Nt are the number of parameter samples and time
steps respectively. According to the orthogonal projection
theorem the minimizing reduced basis representation of uiδ
is the orthogonal projection [11]:√√√√ Ns∑

i=1

∣∣∣∣∣
∣∣∣∣∣uiδ −

Nrb∑
k=1

〈uiδ, ψj〉ψj

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)2

. (13)

In the l2(Ω) case one can show that minimizing (13) is
equivalent to the constrained maximization problem [18]:

max
{ψψψi}Ni=1

Ns∑
i=1

Nδ∑
j=1

∣∣uTi ψψψj∣∣2 , (14a)

s.t. ψψψTj ψψψi = δij , ∀i, j (14b)

where ψψψj is the vector of coefficients of the reduced basis
functions, expanded in terms of the FE functions, and yi is
the degrees of freedom of a snapshot. By collecting all the
snapshots in a snapshot matrix, S, and all the reduced basis
functions as columns in a matrix, W , the solution to (14) is
the solution to the eigenvalue problem [11]:

SSTW = WΛ, (15)

where Λ is a diagonal matrix with the eigenvalues, corre-
sponding to the columns of W , on the diagonal. The matrix
SST is denoted the correlation matrix [11]. Truncating the
number of eigenvectors gives us the number of reduced basis
functions in use. One transforms between the degrees of

freedom, in the high-fidelity basis and the POD basis, by
[11]:

yδ = Wurb, urb = WTuδ. (16)

The projection error on the snapshots corresponds to the
eigenvalues of the correlation matrix of the POD modes left
out [11]:

Ns∑
i=1

||ui −WWTui︸ ︷︷ ︸
Projection

||22 =

r∑
i=Nrb+1

λi. (17)

Hence, the eigenvectors corresponding to the largest eigen-
values contain the most information about the solution space.
Thus, one should choose the reduced basis functions by
looking at the size of their respective eigenvalues.

IV. ARTIFICIAL NEURAL NETWORKS

First, we will give a brief recap of the fundamental
concepts regarding NNs. An NN can be considered a map,
F : RMI → RMO , that maps a vector of MI features to
a vector of MO responses. In the case of a feedforward
network, also denoted a perceptron, the map consists of a
series of function compositions [19]:

F (x; θ,H,L) = uL+1 ◦ fL ◦ uL ◦ . . . ◦ f1 ◦ u1(x), (18)

where L is the number of hidden layers, H is the number of
neurons in each layer, θ is the set of weights and biases, fi
are the activation functions, and ui are the propagation func-
tions. The evaluation of a NN is called a forward propagation
since it can be considered a propagation of the input features
through the series of functions. The propagation function is
often a linear combination with a bias term:

ui(x) = wi−1x+ βi, (19)

where wi’s are matrices containing the weights and βi’s are
vectors containing the bias terms. There are many choices
for the activation functions. Recently the functions called
rectified linear units (ReLUs) have gained much success due
to great results. In this paper we make use of the slightly
modified version called the leaky ReLU [20]:

f(x) = max(αx, x), (20)

where α is a small positive real number.
The motivation for using neural networks are their ver-

satility. It can be shown that any continuous function ϕ ∈
Rd → Rd′ can be approximated arbitrarily well by a deep
neural network [19]. However, in practice it is difficult to get
arbitrary precision due to various problems. These include
i) a large parameter space, ii) nonlinearities, and iii) a non-
convex optimization problem for determining the parameters.

Much time has gone into developing optimization al-
gorithms for computing the weights and biases to get as
close as possible to the theoretical potential. Second order
methods can not, in general, be used since they only ensure
local convergence and are too expensive in high dimen-
sions. Therefore, stochastic variations of gradient descent
algorithms, such as Adam, are often used [21].

V. THE POD-SQP-NN SCHEME

For PDE-constrained optimization problems one can con-
sider a map, that takes input parameters and maps them to
the high-fidelity optimal control solution manifold:

G : P ⊂ RP → RNδNt , (y0,λ) 7→ G(y0,λ) = uδ. (21)

G(y0,λ) is computed using the SQP method and finite
elements. The image of the mapping, G, corresponds to the
high-fidelity solution manifold for the control function. The
general idea of the POD-SQP-NN scheme is to approximate
this map in the POD space by using NNs. That is, by using
the relation in (16) we aim to compute a map, Gnn, such
that

Gnn(y0,λ) ≈WTG(y0,λ), ∀µ ∈ P, (22)

from which we recover the optimal control in the high-
fidelity space by

uδnn = WGnn(y0,λ). (23)

Consequently, the POD-SQP-NN scheme is decomposed into
two stages:
• The offline stage.

1) Compute snapshots, {(y0,λ)i, G((y0,λ)i)}Nsi=1,
using SQP and finite elements.

2) Compute POD basis functions and
transform snapshots to get training data:{

(y0,λ)i,W
TG((y0,λ)i)

}Ns
i=1

.
3) Train the neural network, Gnn, on training data.

• The online stage.
1) Input parameters, (y0,λ), and compute Gnn(y0,λ)

by forward propagation in NN.
2) Transform output to high-fidelity space, uδnn =

WGnn(y0,λ).
3) (Optional) Compute the optimal state by a forward

solving of the state equation.
This procedure is outlined in Fig. 1. It is apparent that the
offline stage is quite extensive. It consists of several steps
which are all, by themselves, computationally heavy tasks
and are highly dependent on the dimension of the problem.
However, the online stage is not computationally demanding,
which is essential for real-time applications.

By approximating the solution in the reduced space we
reduce the number of output neurons and, thereby, also
the number of weights to be trained significantly. This
reduces training time as well as online computation time.
Furthermore, it increases the accuracy of the NN since it
reduces the size of the parameter space.

A typical problem when training neural networks is lack
of enough data. In the proposed method, as much data as
needed can be generated, given no time constraints on the
offline phase. This, however, does not ensure high precision
due to other constraints in neural networks such as bias-
variance trade-off, irreducible errors, etc. [12]. However, it is
worth discussing potential problems regarding the dimension
of the input. Due to the curse of dimensionality it might

be infeasible to compute the proposed map Gnn since it
might require an insurmountable amount of simulations to
explore the full solution manifold. However, in many cases
it can be exploited that the initial state lies on a low
dimensional surface parametrized by only a few parameters,
which reduces this problem significantly.

We define Πrb to be the projection operator onto the
reduced basis space. By using the triangle inequality, one
gets rough a priori error estimate:∣∣∣∣u− uδnn∣∣∣∣L2(Q)

≤ ||u− uδ||L2(Q)︸ ︷︷ ︸
=:εδ

+ ||uδ −Πrbuδ||L2(Q)︸ ︷︷ ︸
=:εrb

+
∣∣∣∣Πrbuδ − uδnn

∣∣∣∣
L2(Q)︸ ︷︷ ︸

=:εnn

,

(24)

εδ is the error between the high-fidelity and the exact
solution. εrb is the discrepancy between the high-fidelity
solution and its POD basis representation. It depends on the
quality of the POD method which, in turn, depends on the
how reducible the problem is and how well the solution
manifold is sampled. In many cases this error decreases
exponentially [17]. Lastly, εnn is the discrepancy between
the POD representation and the NN output. It depends on
the quality of the training of the network and is often the
most difficult to drive down through training.

VI. NUMERICAL EXAMPLE

As a test example, we consider the viscous Burgers’
equation as the state equation. Thus, the PDE-constrained
optimization problem is:

min
u,y

, J(y, u), (25a)

s.t. ∂ty − ε∂xxy + y∂xy = f + u, in Q, (25b)
y(x, t) = 0, on Σ, (25c)
y(x, 0) = y0, in Ω, (25d)

with J defined as in (3) and f ∈ L∞(Q) a known forcing
on the system. The well-posedness of the (25) is discussed
in [13]. The resulting linear problem to be solved in each
Newton iteration is

∂ty − ε∂xxy + ∂x(yky)− 1

β
p = f + yk∂xyk, (26a)

−∂tp− ε∂xxp− yk∂xp+ (∂xpk − 1)y = −yd + yk∂xpk,
(26b)

For the spatial discretizations FEniCS is used [22] and for the
NN the PyTorch framework is used [23]. The unconditionally
stable implicit Euler is used for the time discretization.

A. Case Study

For the specific case study we choose Ω = [0, 1], T = 0.5
and the initial state:

y0(x) =

{
h, for ω ≤ x ≤ 1− ω
0 otherwise

. (27)

Fig. 1: Workflow for the POD-SQP-NN scheme divided into the offline and online phase. Note the significantly heavier
computations in the offline phase in shape of repeated solving by the SQP method and the training of a neural network.

The desired state is to retain the initial condition over time.
This problem is quite similar to the one considered in
[13]. We define the vector of parameters to be varied as
µ = (h, ω, ε) ∈ [0.5, 1]× [0.1, 0.3]× [0.1, 0.001]. It is worth
noting that h and ω parametrizes the initial condition while ε
defines the diffusion rate. To sample the parameters the Latin
Hypercube Sampling method is utilized to ensure a random
distribution and that the full parameter space is explored [24].

In this paper, we use Np = 300 and Nt = 75 which in
total gives 22500 snapshots to compute the POD basis. Note
that only 300 SQP all-at-once method solutions are needed
to get all the snapshots. It is likely that that fewer snapshots
would be sufficient since f is static and yd = y0.

To train the neural network in the POD-SQP-NN scheme
a training set of 2500 optimal control solutions is used.
For the architecture we train a feedforward network with
three hidden layers with H neurons in each. Furthermore,
the Adam optimizer was utilized using mini-batches of size
32 together with early stopping and the mean squared error
with L2-regularization as the loss function. Furthermore, the
weights were initialized according to the standard Gaussian
distribution.

The error is measured to be the relative difference of the
neural network response and the high-fidelity solution:

E =

∣∣∣∣uδnn − uδ
∣∣∣∣
L2

||uδ||
. (28)

From Fig. 2 it is clear that the accuracy is increasing with the
number of POD basis functions. Furthermore, more neurons
in each layer gives a better approximation until a certain
point at which the error stagnates. However, it is worth noting
that the error is not decreasing monotonically, but is rather
noisy. This points to the fact that the networks are not trained
well enough in every configuration. In the best cases we
reach an accuracy in the order of magnitude 10−2 seconds.
In Fig. 3 we see the online computation time for the high-
fidelity as well as for the POD-SQP-NN scheme. The high-
fidelity scheme takes between 10 and 100 seconds while the
POD-SQP-NN scheme is of the order of 10−3 seconds. This
does not come as a surprise, since the online phase is just a

Fig. 2: Convergence of the POD-SQP-NN method for vary-
ing number of neurons in each layer.

single forward propagation for the POD-SQP-NN scheme.
Whether an accuracy of 10−2 is sufficient is highly depen-

dent on the problem at hand. However, for many problems it
is enough. In Figure 4 the relative difference in the objective
functional, ∣∣∣∣J(yδnn,uδnn)− J(yδ,uδ)

∣∣∣∣
L2

||J(yδ,uδ)||
, (29)

is plotted. In all online test cases the discrepancy is no
larger than 0.12, which suggests that an increase in accuracy
will not yield significant changes in the objective functional.
Whether such differences are acceptable depends on the
problem at hand.

VII. CONCLUSIONS

A new and efficient scheme for online computations of
nonlinear PDE-constrained optimization problems is pro-
posed in the paper. We first showed that the problem at hand
can be projected onto a lower dimensional manifold using
the POD method, which lays the foundation for the POD-
SQP-NN method. The scheme significantly decreases the
online computation times for the case involving the viscous
Burgers’ equation. It did, however, come with a decrease
in accuracy and a prolonged offline phase. Regarding the

Fig. 3: Execution time in seconds.

Fig. 4: Relative difference in objective function between the
high-fidelity and the POD-SQP-NN solution.

decrease in accuracy it is possible that it does not pose any
practical limitations due to the minor discrepancies in the
objective functions. For these reasons, we see a potential in
this method to be used to solve problems that are currently
intractable in real-time.

VIII. FUTURE PROSPECTS

What was not discussed in sufficient detail is how the
method performs on very high dimensional problems. In
many NMPC applications it is not necessarily possible to
parametrize the initial conditions by a small set of parame-
ters, as was done here. In such cases the entire initial state
must be the input, which could potentially cause problems.
Furthermore, the reliability is not addressed as no rigorous
a posteriori error bounds exists. This was, however, not a
problem in the examples given.

In ongoing work, we will, furthermore, explore different
NN architectures such as residual networks, and reinforce-
ment learning which has shown to be well-suited for time
dependent data. Alternatively, instead of using NN other
new approaches can be utilized to address the curse of
dimensionality, such as spectral tensor train decompositions
[25].

REFERENCES

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control engineering practice, vol. 11, no. 7, pp.
733–764, 2003.

[2] E. F. Camacho and C. Bordons, “Nonlinear model predictive control:
An introductory review,” in Assessment and future directions of
nonlinear model predictive control. Springer, 2007, pp. 1–16.

[3] R. E. Bellman, Adaptive control processes: a guided tour. Princeton
university press, 2015, vol. 2045.

[4] L. H. Christiansen and J. B. Jørgensen, “A new lagrange-newton-
krylov solver for pde-constrained nonlinear model predictive control,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 325–330, 2018.

[5] J. W. Pearson and M. Stoll, “Fast iterative solution of reaction-
diffusion control problems arising from chemical processes,” SIAM
Journal on Scientific Computing, vol. 35, no. 5, pp. B987–B1009,
2013.

[6] G. Biros and O. Ghattas, “Parallel lagrange–newton–krylov–schur
methods for pde-constrained optimization. part i: The krylov–schur
solver,” SIAM Journal on Scientific Computing, vol. 27, no. 2, pp.
687–713, 2005.

[7] B. Haasdonk, “Reduced basis methods for parametrized pdes–a tu-
torial introduction for stationary and instationary problems,” Model
reduction and approximation: theory and algorithms, vol. 15, p. 65,
2017.

[8] L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloe-
men Waanders, “Large-scale pde-constrained optimization: an intro-
duction,” in Large-Scale PDE-Constrained Optimization. Springer,
2003, pp. 3–13.

[9] J. S. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling
of nonlinear problems using neural networks,” Journal of Computa-
tional Physics, vol. 363, pp. 55–78, 2018.

[10] F. Tröltzsch, Optimal control of partial differential equations: theory,
methods, and applications. American Mathematical Soc., 2010, vol.
112.

[11] A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for
partial differential equations: an introduction. Springer, 2015, vol. 92.

[12] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, NY, USA:, 2001,
vol. 1, no. 10.

[13] F. Tröltzsch and S. Volkwein, “The sqp method for control constrained
optimal control of the burgers equation,” ESAIM: Control, Optimisa-
tion and Calculus of Variations, vol. 6, pp. 649–674, 2001.

[14] D. Kuzmin and J. Hämäläinen, “Finite element methods for compu-
tational fluid dynamics: a practical guide,” SIAM Rev, vol. 57, no. 4,
p. 642, 2015.

[15] B. Ainseba, M. Bendahmane, and A. Noussair, “A reaction–diffusion
system modeling predator–prey with prey-taxis,” Nonlinear Analysis:
Real World Applications, vol. 9, no. 5, pp. 2086–2105, 2008.

[16] F. Yılmaz and B. Karasözen, “An all-at-once approach for the optimal
control of the unsteady burgers equation,” Journal of Computational
and Applied Mathematics, vol. 259, pp. 771–779, 2014.

[17] J. S. Hesthaven, G. Rozza, B. Stamm, et al., Certified reduced basis
methods for parametrized partial differential equations. Springer,
2016.

[18] M. Gubisch and S. Volkwein, “Proper orthogonal decomposition for
linear-quadratic optimal control,” Model reduction and approximation:
theory and algorithms, vol. 15, p. 1, 2017.

[19] M. M. Wolf, “Mathematical foundations of supervised learning,” July
2018.

[20] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[22] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, “The fenics
project version 1.5,” Archive of Numerical Software, vol. 3, no. 100,
2015.

[23] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[24] W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.
[25] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk, “Spectral tensor-

train decomposition,” SIAM Journal on Scientific Computing, vol. 38,
no. 4, pp. A2405–A2439, 2016.

	I Introduction
	II Optimal Control of Nonlinear PDEs
	II-A The Optimal Control Problem
	II-B Optimality System

	III Reduced Order Modeling
	III-A Parametrized PDEs
	III-B Proper Orthogonal Decomposition

	IV Artificial Neural Networks
	V The POD-SQP-NN Scheme
	VI Numerical example
	VI-A Case Study

	VII Conclusions
	VIII Future Prospects
	References

