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Abstract – Living cells encode and transmit in-

formation in the temporal dynamics of biochemical

components. Gaining a detailed understanding of the

input-output relationship in biological systems there-

fore requires quantitative measures that capture the

interdependence between complete time trajectories

of biochemical components. Mutual information pro-

vides such a measure but its calculation in the con-

text of stochastic reaction networks is associated with

mathematical challenges. Here we show how to esti-

mate the mutual information between complete paths

of two molecular species that interact with each other

through biochemical reactions. We demonstrate our

approach using three simple case studies.

1 Introduction

The ability to continuously sense and respond to a wide
spectrum of environmental signals and stresses is a hall-
mark of living systems. At the same time, biochemical
processes inside cells are often significantly affected by
random fluctuations [1, 2], which stands in contrast with
the remarkable robustness of biological systems. Under-
standing how living cells reliably transmit and process
information is a fundamental problem in biology, which
gained wide attention in the past.

The combination of probabilistic methods and infor-
mation theory [3] provides a rich framework to gain a
quantitative understanding of signal processing in biolog-
ical systems. Indeed, the use of information theoretical
quantities such as the Shannon entropy and mutual in-
formation (MI) has led to insights into diverse biologi-
cal systems [4, 5], ranging from neural networks [6, 7],
to biomolecular signalling and decision making systems
[8, 9, 10, 11, 12, 13]. The mutual information and re-
lated quantities such as the channel capacity have proven
particularly useful in the context of biology, since they
capture how information is transmitted between certain
inputs (e.g., inducer molecules) and outputs (e.g., down-
stream targets) through cascades of biochemical reac-
tions.

Experimental studies have demonstrated that living
cells frequently encode information in the temporal dy-
namics of biochemical processes [14, 15]. In this case, the
mutual information calculated at individual time-points
would significantly underestimate the information that is
transmitted across a system. A key advantage of infor-
mation theoretic quantities is that they can be defined

in very general terms such that they apply also to time-
spanning objects. Extensions of the mutual information
to trajectories have been proposed [16, 17, 18, 19] as well
as the closely related transfer entropy [20, 21, 22]. How-
ever, the analysis of path-related information measures is
mathematically more demanding, especially in the con-
text of continuous-time jump processes such as frequently
encountered in biochemical systems. While the informa-
tion theoretical foundation has been established for such
processes [23, 16, 17], the explicit calculation of the path
mutual information for concrete systems remains a chal-
lenge. Previous studies have addressed this problem ei-
ther numerically using particle filters [17, 19] or by ap-
proximating the original jump process by a continuous
Gaussian process [18].

In this work we present an efficient strategy to calcu-
late the path mutual information between two chemical
species that are coupled through biochemical reactions.
The method does not rely on continuous approximations
of the underlying process and therefore correctly takes
into account the discrete nature of biochemical networks.
Our theoretical results build upon the recently proposed
marginal process framework [24, 25], which allows us to
estimate the path mutual information by combining con-
ventional stochastic simulations with the solution of a fil-
tering problem.

The structure of the remaining paper is as follows. We
review some basic definitions and concepts of stochastic
chemical kinetics in Section 2.1. In Section 2.2 we for-
mally state the problem of calculating path mutual infor-
mation for a class of biochemical networks and in 2.3 we
show how it can be addressed using the marginal process
framework. We provide in Section 2.4 explicit expressions
for the Radon-Nikodym derivative between the joint and
marginal path measures which then allows us to state
our main result in Section 2.5. In Section 2.6 we briefly
relate the obtained expression to previous theoretical re-
sults from the literature. Finally, we apply the method
to study information transmission in three simple case
studies (Section 3).

2 Theoretical Results

2.1 Stochastic chemical kinetics

We consider a stochastic reaction network RX that
describes the time evolution of D chemical species
X(1), . . . ,X(D) and K reaction channels. The network can
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be defined by a set of stoichiometric equations

D∑
i=1

αk,iX
(i) −⇀

D∑
i=1

βk,iX
(i) (1)

for k = 1, . . . ,K. The non-negative integer numbers
αk,i and βk,i are respectively the reactant and product
stoichiometric coefficient of species i in the reaction k.
We introduce the stochastic process X = (Xt)t≥0, which
takes values in ND0 and is subject to the reaction dy-
namics in (1). The state vector Xt collects the discrete
copy numbers of each species at time t and it changes
by νk = βk − αk when reaction k occurs. Each reaction
channel k is equipped with a propensity function hk(Xt),
which sets the firing rate of this reaction. Throughout
this work, we consider mass-action kinetics such that

hk(Xt) = ck

D∏
i=1

(
X

(i)
t

αk,i

)
, (2)

with ck as the stochastic rate constant of reaction k. In
this setting, X admits a continuous-time Markov chain
(CTMC), whose time evolution satisfies an integral equa-
tion of the form

Xt = X0 +

K∑
k=1

Nk

(∫ t

0

hk(Xs)ds

)
νk, (3)

where Nk denotes a unit Poisson process counting the oc-
currences of reaction k until time t [26]. We define by
Xt

0 a complete path of X collecting all information about
the types and firing times of the reactions that happen
between time zero and t. Moreover, let PX denote the
probability measure over the complete path Xt

0 consid-
ered on the natural filtration FXt generated by X. Note
that for a given initial condition X0, exact realizations
of Xt

0 can be simulated using the Stochastic Simulation
Algorithm (SSA) [27].

2.2 Information transmission between
two chemical species

The goal of this work is to calculate the mutual infor-
mation between complete paths of two chemical species,
which we denote by A and B, respectively. For simplicity,
we restrict ourselves to the scenario where the network
RX comprises only A and B and no additional species.
The network evolves through an arbitrary number of re-
action channels, whereas only reactions involving both A
and B (as reactant or product) will lead to an exchange
of information among the two. We refer to these reac-
tions as coupling reactions. Here we consider coupling
reactions that modify either A and B but not both at the
same time. This involves reactions of catalytic or annihi-
lating form such as A → A + B or A + B → A, whereas
conversions such as A→ B are not considered. As a con-
sequence, the total set of reactions can be split into two
disjoint sets RX = {RA,RB} where RA and RB are the
reactions that exclusively modify A or B, respectively. In
the following, we refer to this property as smooth coupling
between A and B.

Without loss of generality, we arrange the state vec-
tor such that Xt = (At, Bt). We define the partial paths

At0 and Bt0 and corresponding sub-filtrations FAt ,FBt ⊂
FXt = FABt generated by At and Bt. Notice that since A
and B are smoothly coupled, FAt and FBt contain infor-
mation exclusively about reactions inRA andRB , respec-
tively. Using these definitions, our goal is to characterize
information transmission between paths At0 and Bt0 via
their path mutual information (path-MI)

I(At0, Bt0) = E
[
log

dPAB

d(PA × PB)

]
. (4)

In (4), the term inside the logarithm corresponds to the
Radon-Nikodym derivative of the joint path measure PAB
with respect to the product of the marginal path measures
PA and PB . The latter can be thought of as the probabil-
ity laws that describe the time evolution of only A or B,
respectively. We and others have previously shown how
such marginal process models can be constructed for gen-
eral reaction networks [28, 24]. While in those studies,
it was used predominantly for the purpose of model re-
duction and stochastic simulation, it will now serve us to
find explicit expressions of the Radon-Nikodym deriva-
tive in (4). In the following section, we will show how
the marginal process dynamics can be obtained for the
considered two-species network.

2.3 Marginal process dynamics

As a first step, we instantiate the dynamics from (3) for
the considered network. This yields two coupled integral
equations of the form

At = A0 +
∑
k∈RA

Nk

(∫ t

0

λABk (s)ds

)
νAk (5)

Bt = B0 +
∑
k∈RB

Nk

(∫ t

0

λABk (s)ds

)
νBk , (6)

where νAk and νBk are respectively the stoichiometric
change coefficients corresponding to A and B. Note that
we have introduced λABk (t) = hk(At, Bt) to emphasize
that (5) and (6) are the equations of motion for At and
Bt relative to their (joint) filtration FABt . The corre-
sponding solutions Xt

0 = {At0, Bt0} admit a joint measure
PAB . Our goal is to find two analogous equations, each
being consistent with the marginal path measures PA and
PB , respectively. Technically, this can be achieved by re-
stricting the two processes to depend only on their own
history (i.e., FAt in case of At and FBt in case of Bt) but
not their joint history captured by FABt . Informally, this
can be understood as ”integrating out” the dependency
of one path on the other one. It can be shown [24] that
relative to the filtrations FAt and FBt , the counting pro-
cesses (5) and (6) evolve according to

At = A0 +
∑
k∈RA

Nk

(∫ t

0

λAk (s)ds

)
νAk (7)

Bt = B0 +
∑
k∈RB

Nk

(∫ t

0

λBk (s)ds

)
νBk , (8)

where we have defined λAk (t) = E
[
hk(At, Bt) | FAt

]
and

λBk (t) = E
[
hk(At, Bt) | FBt

]
. In other words, the origi-

nal propensities hk are replaced by their expected value
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conditionally on the sub-filtrations FAt and FBt . In the
information theory literature, these conditional expecta-
tions are commonly referred to as causal or filtering esti-
mates, since they provide a reconstruction of the original
propensities hk at time t from a continuous path up to
time t (i.e., either At0 or Bt0). Notice that due to the
marginalization, (7) and (8) are now decoupled from each
other, such that their solutions are consistent with the
product measure PA × PB . We point out, however, that
the dynamics are no longer Markovian due to the history-
dependence of λAk (t) and λBk (t).

While (7) and (8) provide the marginal descriptions
we seek for, the calculation of the marginalized propensi-
ties λAk (t) and λBk (t) is associated with certain challenges.
More precisely, the expectations E

[
· | FAt

]
and E

[
· | FBt

]
are taken with respect to the conditional distributions
πA(b, t) = P (Bt = b | FAt ) and πB(a, t) = P (At = a |
FBt ), for which analytic expressions are not available. We
have shown previously [24] that a stochastic differential
equation can be found for such conditional distributions.
For instance, the equation for πB(a, t) would read

dπB(a, t) =
∑
k∈RA

[
hk(a− νAk , Bt)πB(a− νAk , t)

− hk(a,Bt)π
B(a, t)

]
dt

−
∑

k∈RB|A

(
hk(a,Bt)− λAk (t)

)
πB(a, t)dt

+
∑

k∈RB|A

hk(a,Bt)− λAk (t)

λAk (t)
πB(a, t)dNk(t)

(9)

with RB|A ⊂ RB denoting the set of coupling reactions
affecting species B which are driven by A. In (9), the
terms dNk(t) correspond to the differential version of the
reaction counters Nk at time t. A corresponding equa-
tion for πA(b, t) can be formulated analogously. Since
the propensities obey the mass-action law from (2), we
further realize that λAk (t) and λBk (t) are just functions
of the moments of the associated filtering distributions.
The calculation of the marginal propensities is therefore
equivalent to the calculation of the moments of πA(b, t)
and πB(a, t). However, depending on the stoichiometry
of the considered system, the obtained moment dynam-
ics may not be closed. In this case we can employ suit-
able moment-closure schemes [29] to derive approximate
equations for the conditional moments. We will provide
explicit expressions for the time-evolution of λAk (t) and
λBk (t) for some examples in Section 3. For further infor-
mation on the marginal process framework and the cal-
culation of the conditional expectations the reader may
refer to [24].

2.4 Radon-Nikodym derivatives and Ja-
cod’s formula

Having discussed the joint and marginal dynamics of At
and Bt, we are now ready to study the Radon-Nikodym
derivative that appears inside (4). To this end, we em-
ploy Jacod’s formula, which provides an explicit form of
the Radon-Nikodym derivative for multivariate counting
processes. Consider a counting process Xt of the form (3)

with natural filtration FXt . We define path measures QX

and Q̂X restricted to FXt under which X has propensi-
tities ηk(t) and η̂k(t), respectively. Note that ηk(t) and
η̂k(t) may be history-dependent in general. The Radon-

Nikodym derivative of QX with respect to Q̂X is given by
[23]

dQX

dQ̂X
=

∏K
k=1

∏Nk(t)
j=1 ηk(T−k,j)e

−
∫ t
0
ηk(s)ds∏K

k=1

∏Nk(t)
j=1 η̂k(T−k,j)e

−
∫ t
0
η̂k(s)ds

, (10)

where the symbol T−k,j is the left limit to the jth firing

time of reaction channel k. Therefore, if we set QX and
Q̂X to PAB and PA × PB , respectively, we obtain for the
Radon-Nikodym derivative inside (4)

dPAB

d(PA × PB)
=

K∏
k=1

Nk(t)∏
j=1

λABk (T−k,j)e
−

∫ t
0
λAB
k (s)ds

×

( ∏
k∈RA

Nk(t)∏
j=1

λAk (T−k,j)e
−

∫ t
0
λA
k (s)ds

×
∏
k∈RB

Nk(t)∏
j=1

λBk (T−k,j)e
−

∫ t
0
λB
k (s)ds

)−1
.

(11)

2.5 Path mutual information

We recognize that the path mutual information defined
in (4) is just the expectation of the logarithm of (11),
which reads

log
dPAB

d(PA × PB)
=

K∑
k=1

Nk(t)∑
j=1

log λABk (T−k,j)−
∫ t

0

λABk (s)ds

−
∑
k∈RA

Nk(t)∑
j=1

log λAk (T−k,j) +

∫ t

0

λAk (s)ds

−
∑
k∈RB

Nk(t)∑
j=1

log λBk (T−k,j) +

∫ t

0

λBk (s)ds.

(12)

Note that (12) can be simplified by realizing that the re-
sulting (finite) sums over the reaction occurrences can be
written as stochastic integrals with respect to the differ-
ential reaction counters dNk(t). Before we state the final
result, we take into account the fact that only the cou-
pling reactions are affected by the marginalization. The
propensities of all other reactions will remain unaffected
when FAB is replaced by FA or FB , respectively. Those
reactions will have two contributions in (12) with opposite
sign and will thus cancel out. Taking this into account
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and performing some minor rearrangements yields

I(At0, Bt0) = E
[
log

dPAB

d(PA × PB)

]
= E

[ ∑
k∈RA|B

∫ t

0

(
log λABk (s−)− log λAk (s−)

)
dNk(s)

−
∫ t

0

(
λABk (s)− λAk (s)

)
ds

+
∑

k∈RB|A

∫ t

0

(
log λABk (s−)− log λBk (s−)

)
dNk(s)

−
∫ t

0

(
λABk (s)− λBk (s)

)
ds
]
, (13)

where we recall that the symbol RA|B denotes the cou-
pling reactions affecting species A which are driven by B,
and vice versa for RB|A. The symmetric structure of (13)
reflects the fact that information can be transferred both
from RA to RB as well as RB to RA. In order to numer-
ically evaluate (13), we can use Gillespie’s stochastic sim-
ulation algorithm to simulate paths of the whole network
RX and for each of them, evaluate the integrals in (13)
using the marginal propensities described in Section 2.3.
Subsequently, the path-MI is obtained by averaging over
all sample paths.

2.6 Connection to previous results

While our study focuses on the explicit calculation of the
path-MI from (13), we want to show how our results can
be related to existing theoretical work in the literature.
Following [16, 17], we realize that the expectation of the
Riemann integrals in (13) is equal to zero. This can be
seen by exchanging the order of the expectation and time
integration and realizing that E

[
λABk (s)− λAk (s)

]
= 0

and E
[
λABk (s)− λBk (s)

]
= 0 by definition of the marginal

propensity. Additionally, we can use the Doob-Meyer de-
composition theorem and expand the differential reaction
counters in a predictable part and a martingale dNk(s) =
λABk (s)ds + dQk(s), where E

[
dQk(s) | FABs

]
= 0. Thus,

(13) can be reformulated as

I(At0, Bt0) =
∑
k∈RC

∫ t

0

E
[
λABk (s) log λABk (s)

]
ds

−
∑

k∈RA|B

∫ t

0

E
[
λAk (s) log λAk (s)

]
ds

−
∑

k∈RB|A

∫ t

0

E
[
λBk (s) log λBk (s)

]
ds, (14)

where RC = RA|B ∪ RB|A denotes the set of coupling
reactions. Note that (14) resembles the point process
mutual information given in [16] and analogous results
can be found in [17, 19]. Similar considerations hold also
for the transfer entropy [22], whose definition is related
to (4).

3 Case Studies

In the following, we demonstrate the provided estimator
of the path mutual information using three case studies.

All simulations have been performed using the program-
ming language julia [30]. The code is publicly available
at https://github.com/zechnerlab/PathMI .

3.1 Protein expression network

We consider a simple two-stage model of gene expression
given by the reaction network

#1 : ∅ γA−−⇀ A #3 : A
γB−−⇀ A + B

#2 : A
δA−−⇀ ∅ #4 : B

δB−−⇀ ∅, (15)

with A as mRNA, B as protein and γA, γB , δA and δB the
rate constants associated to mRNA and protein synthesis
and degradation. We want to quantify the path mutual
information between the mRNA and protein paths. In
this example the evolution of A is not driven by B, thus
RA|B = ∅. Therefore, in order to estimate I(At0, Bt0), we
only need to focus on reaction #3 and be able to compute
the marginal propensity λB3 (t) = γBÂ1(t), where Â1(t) =
E
[
At|FBt

]
denotes the first moment of the conditional

distribution πB(a, t). Thus, (13) just corresponds to

I(At0, Bt0) = E
[ ∫ t

0

(
log (γBAs)− log

(
γBÂ1(s)

))
dN3(s)

− γB
∫ t

0

(
As − Â1(s)

)
ds
]
, (16)

where dN3(t) is the differential reaction counter of the
coupling reaction. In order to evaluate Â1, we instantiate
the filtering equation from (9) for this particular example,
i.e.,

dπB(a, t) = γA
[
πB(a− 1, t)− πB(a, t)

]
dt

+ δA
[
(a+ 1)πB(a+ 1, t)− aπB(a, t)

]
dt

− γB
[
a− Â1(t)

]
πB(a, t)dt

+
a− Â1(t)

Â1(t)
πB(a, t)dN3(t). (17)

We can now obtain a stochastic differential equation for
Â1(t) =

∑∞
0 a πB(a, t) by multiplying both sides of (17)

by a and summing over all possible values of a. This
yields

dÂ1 =
[
γA − δAÂ1(t)− γB

(
Â2(t)− Â2

1(t)
)]

dt

+
Â2(t)− Â2

1(t)

Â1(t)
dN3(t). (18)

However, since (18) depends on higher order moments,
we adopt a Gamma closure at second order so that we
can write the closed evolution of Â2 = E

[
A2
t |FBt

]
as

dÂ2 =
[
γA + (2γA + δA)Â1(t)− δAÂ2(t)

− 2γB
Â2(t)

Â1(t)

(
Â2(t)− Â2

1(t)
)]

dt

+ 2
Â2(t)

Â2
1(t)

(
Â2(t)− Â2

1(t)
)

dN3(t). (19)

Equations (18) and (19) can be solved alongside of the
SSA simulations in order to evaluate (16). Finally,

4
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a c

b d

Figure 1: On the left, transcription dynamics (a) and
path-MI estimate (b) of the network (15) with initial con-
dition (A0, B0) = (10, 0) and rates γA = γB = 1 and
δA = δB = 0.1. On the right, transient behavior (c) and
path-MI estimate (d) of the network (15) with initial con-
dition (A0, B0) = (100, 0) and rates γA = 0, γB = 1 and
δA = δB = 0.1. In all the plots, thin lines represent single
realizations while thick lines are Monte Carlo averages of
104 samples.

I(At0, Bt0) can be estimated as a Monte Carlo over multiple
SSA simulations. Fig. 1(a-b) shows simulation results for
this example. The mRNA and protein levels were initial-
ized to γA/δA and zero respectively. After a short initial
transient, the path mutual information increases linearly
with time, indicating that information is transferred from
A to B at constant rate as soon as the system approaches
its stationary state. Individual realizations are shown to
illustrate their variability around the linear trend.

3.2 Transient induction of transcription

We again consider the reaction network introduced in (15)
but in a different regime. In particular we assume that
transcription is switched off at time zero such that γA = 0.
The initial pool of mRNA A0 > 0 will then degrade as
time increases and the system will ultimately converge to
a zero steady state. Our goal is to quantify the informa-
tion transmission between species A and B during this
transient period. Note that the expressions (16), (17),
(18) and (19) still apply, with the only difference that
γA = 0. In Fig. 1(c-d) we show the results for the ini-
tial conditions A0 = 100 and B0 = 0. The results show
that the path-MI stops to increase after both the species
are extinct. First, the mRNA gets depleted and conse-
quently the coupling reaction #3 stops firing. After this
point, the log-jump contributions in (16) cease and the
residual contribution only comes from the integral of the
difference between As = 0 and its causal estimate Â1(s)
in the second line of (16).

a

b

Figure 2: Behavior of the network (20) with initial con-
dition (A0, B0) = (500, 100) and rates γA = 1, δA = 0.01,
γB = 2 · 10−4 and δB = 0.1. (a) A single realization of
the system and the corresponding path-MI sample. (b)
Path mutual information (thick line) estimated using 103

samples. Several individual samples are shown as thin
lines.

3.3 A stochastic oscillatory system

In our last case study, we consider a stochastic predator-
prey system inspired by the Lotka-Volterra model. The
system is defined by the reaction network

#1 : A
γA−−⇀ 2A #3 : A + B

γB−−⇀ A + 2B

#2 : A + B
δA−−⇀ B #4 : B

δB−−⇀ ∅, (20)

where the species A plays the role of the prey and B is
the predator. A prey can duplicate with reproduction
rate γA and can be consumed by a predator with rate
δA. Instead, a predator can die with death rate δB and
duplicate proportionally to the amount of prey, with rate
γB .

Notice that in this example we have RA = (#1,#2)
and RB = (#3,#4) and two coupling reactions, RA|B =
#2 and RB|A = #3. It is worth mentioning that reaction
#3 satisfies the smooth coupling assumption because only
B gets modified by it. Note that, since in (20) the infor-
mation transfer happens bi-directionally between A and
B, we require expressions for both the marginal propen-
sities λA2 (t) and λB3 (t). Due to space considerations, we
omit explicit expressions for πA and πB and the condi-
tional moments, which have been obtained again under a
Gamma closure. In Fig. 2(a) we show a realization of the
system and the corresponding path-MI sample. The tra-
jectories of prey and predator exhibit a characteristic os-
cillatory pattern. The path-MI sample grows significantly
during the copy number peaks of prey and predator, be-
cause of the increased intensity of the coupling reactions.
In this model it might happen that the preys go extinct
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in which case information transmission stops. As time
increases, more and more realizations reach extinction,
which causes the path-MI to saturate (Fig. 2(b)).

4 Conclusions

In this work we have presented a method to efficiently esti-
mate the path mutual information between two chemical
species whose dynamics evolve according to a stochas-
tic reaction network. In order to derive the scheme, we
employed our recently proposed marginal process frame-
work, which allowed us to explicitly calculate the required
Radon-Nikodym derivatives. We showed how the path-
MI can be efficiently estimated by combining SSA with
the solution of a stochastic filtering problem. We showed
the efficacy of the method by applying it to three case
studies with different dynamical properties. For the pur-
poses of this work we restricted ourselves to a specific class
of reaction systems, which consist of only two smoothly
coupled species. In the future, we will extend the method
to networks comprising more than two chemical species
and arbitrary coupling reactions.
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