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Positive Consensus of Directed Multi-agent Systems

Nachuan Yang, Student Member, IEEE, Yonghua Yin and Jinrong Liu†

Abstract— This paper addresses the problem of positive
consensus of directed multi-agent systems with observer-type
output-feedback protocols. More specifically, directed graph
is used to model the communication topology of the multi-
agent system and linear matrix inequalities (LMIs) are used
in the consensus analysis in this paper. Using positive systems
theory and graph theory, a convex programming algorithm is
developed to design appropriate protocols such that the multi-
agent system is able to reach consensus with its state trajectory
always remaining in the non-negative orthant. Finally, numer-
ical simulations are given to illustrate the effectiveness of the
derived theoretical results.

I. INTRODUCTION

Recently, the research on multi-agent systems, especially

the consensus issue has received much attention from various

scientific and engineering areas for its important applications

in sensor networks, automatic vehicles and modern robotics,

to name just a few [1], [7], [13]. Theoretically speaking,

the main concern on this issue is to design effective control

protocols so that the multiple agents in the overall system are

able to cooperatively and coordinately attain some common

goals without centralized controllers. Most existing studies

on the consensus issue of multi-agent systems assume that

full state information of agents is known. Based on this

assumption [16], [18], many algorithms have been devel-

oped to design static consensus protocols. Recently, dynamic

output-feedback protocols have been broadly used to solve

the consensus problem of multi-agent systems [19], [11].

Hence, how to design such kind of control protocols has

become an important issue nowadays.

Positive systems have the special property that, the states

and outputs of a positive system are always non-negative if its

initializations and inputs are non-negative. The applications

of positive systems can be very broad, including industrial

engineering, systems biology, and biomedicine [2], [6], [9].

Among quantities of research literature on positive systems,

special attention has been devoted to the reachability and

realization of such kind of systems. For instance, sufficient

and necessary conditions on positive realizability have been

concluded via convex analysis in [5]. The synthesis and

analysis on positive dynamics are investigated using linear

Nachuan Yang is with the Department of Mathematics, Faculty of
Science, The University of Hong Kong, Pokfulam Rd, Hong Kong
yangnachuan@connect.hku.hk

Yonghua Yin is with the Department of Electrical and
Electronic Engineering, Imperial College London, UK, SW7 2BT
y.yin14@imperial.ac.uk

Jinrong Liu is with the Department of Mechanical Engineering, Faculty
of Engineering, The University of Hong Kong, Pokfulam Rd, Hong Kong
liujinrjason@connect.hku.hk

† indicates corresponding author

matrix inequality (LMI) method and new results are con-

cluded in [3]. In recent years, positive systems theory is also

applied in the study of nodal networks, time delay system

and edge-consensus problem, and many useful results have

been derived on these problems [4], [8], [15]. For multi-agent

systems, positive systems are commonly used to model the

dynamics of the agents. A classical example is the multi-

agent system with integrators as agents where the multiple

agents are regarded as positive systems [7]. There are also

lots of other examples where positive multi-agent systems

are involved [10], [14]. In real applications, values involved

with practical systems are usually intrinsically non-negative,

so the positivity should be guaranteed when analyzing the

consensus issue of such kinds of multi-agent systems [10].

For these reasons, we are motivated to investigate the positive

consensus of multi-agent systems.

Although many breakthroughs on positive consensus of

multi-agent systems have been made in the past few years,

the complete solution to this challenging problem is still

under investigation. In a common way, the general consensus

problem can be transformed to a simultaneous stabilization

problem, but this transformation cannot be directly applied

to positive multi-agent systems because the positivity of the

overall system cannot always be guaranteed [16]. Recently,

many new results have been obtained on this problem. In

[16], a single-input single-output positive state-space model

is used to describe the agents of multi-agent systems, and

some conditions on positive consensus are concluded. This

problem is further discussed in [11], [17], [18] where undi-

rected multi-agent systems are considered. In the recent work

[21], the consensus of positive multi-agent systems with

strongly connected and directed communication topology is

studied. These works provide many useful results to solve the

positive consensus problem of multi-agent systems. However,

the positive consensus of multi-agent systems with general

directed communication topology is still an open question.

This motivates our work in this paper. Compared with the

existing work [21] where the multi-agent systems are as-

sumed to be directed and strongly connected, we investigate

the positive consensus issue of multi-agent systems in a more

general case, where the communication topology is directed

and only assumed to have a spanning tree.

The rest of this paper is organized as follows. In Section

2, some background and preliminaries on positive systems

theory and graph theory are provided and the problem studied

in this paper is defined. In Section 3, consensus analysis and

design of positive multi-agent systems with observer-type

dynamic protocols are derived and a convex programming

algorithm is developed. In Section 4, numerical simulations
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are given to illustrate the effectiveness of the algorithm. In

Section 5, the whole paper is summarized and concluded.

II. NOTATIONS AND PRELIMINARIES

A. Notations

In this paper, capital letters such as A are used to denote

matrices and lowercase letters such as v represent scalars, or

vectors if stated that v ∈ Rm. For scalar v ∈ C, the notation

Re(v) means the real part of v. The notation A∈Rm×n means

that, all entries of matrix A are real and matrix A has m rows

and n columns. Matrices in this paper are assumed to have

compatible dimensions if not explicitly stated. In denotes

the n× n identity matrix and I denotes the identity matrix

with appropriate dimension. 1n denotes the n-dimensional

vector whose all entries are equal to one. The superscript

T represents the transpose of a matrix. The superscript *

represents the conjugate transpose of a matrix. For matrix

A ∈ Rm×n, [A]i j denotes the element located at the i-th

row and the j-th column. The notation A � 0 (respectively,

A ≻ 0) means that for all i and j, [A]i j � 0 (respectively,

[A]i j ≻ 0). The notation A � B (respectively, A ≻ B) means

that the matrix A − B � 0 (respectively, A − B ≻ 0). The

notation A ≥ 0 (respectively, A > 0) means that A is positive

semidefinite (respectively, positive definite). The notation

A ≥ B (respectively, A > B) means that the matrix A − B

is positive semi-definite (respectively, positive definite). The

notation A⊗ B denotes the Kronecker product of matrices

A and B. Matrix A ∈ Rn×n is called Metzler if all its off-

diagonal elements are non-negative, i.e., [A]i j � 0 whenever

i 6= j, which is denoted by A∈Mn. Matrix A∈Rn×n is called

Hurwitz if all its eigenvalues have strictly negative real part,

i.e., Re(λi)≺ 0 for each eigenvalue λi, which is denoted by

A ∈ Hr. The notation α(A) means the spectral abscissa of

matrix A.

B. Positive Systems Theory

Consider a continuous-time linear system:
{

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
(1)

where x(t) ∈Rr, u(t)∈Rm, and y(t) ∈Rp denote the system

state, control input and output respectively. A, B and C are

system matrices with compatible dimensions. In order to

analyze the positive consensus of multi-agent systems, some

useful results are listed as follows [6]:

Definition 1: System (1) is a continuous-time linear posi-

tive system if for all initial value x(0)� 0 and input u(t)� 0,

then the state trajectory x(t)� 0, and the output y(t)� 0 for

all t � 0.

Lemma 1: System (1) is positive if and only if matrix A

is Metzler, matrices B and C are non-negative, i.e., A ∈Mr,

B � 0, and C � 0.

Lemma 2: If system (1) is a continuous-time linear pos-

itive system, then it is asymptotically stable if and only if

there exists a diagonal matrix D > 0 such that

ATD+DA < 0 or DAT +AD < 0.

C. Graph Theory

Graph is used to describe the communication topology

of multi-agent systems. Mathematically speaking, graph is

a structure composed of vertices where some of them are

connected by edges. If all edges in a graph have no orien-

tation, it is called undirected graph. Otherwise, it is called

directed graph. A path in a graph is a sequence of end-to-end

(directed) edges. Without loss of generality, directed graph

is used to model the communication topology of multi-agent

systems in this paper. A graph can be described by an ordered

set G = (V , E ) which consists of a finite vertex set V = {v1,

v2, . . . , vn} and an edge set E ⊂ V ×V . For convenience,

we also define a number set I := {1,2,. . . ,n}. A directed

graph is said to have a spanning tree if there is a node such

that there exists a path from it to any other nodes in the

graph. For the purpose of consensus, G is assumed to have

a spanning tree in this paper. Degree matrix for graph G

is defined as a diagonal matrix D where [D ]ii is equal to

the indegree of vi, i.e., the number of incoming edges at vi.

Adjacency matrix for directed graph G is defined as an n×n

matrix A such that [A ]i j = 1 if there is a directed edge from

v j to vi, i.e., (v j,vi) ∈ E ; otherwise, [A ]i j = 0. In this paper,

we also assume that graph G has no self-loop, i.e., [A ]ii = 0,

i ∈ I . If (v j, vi) ∈ E , then v j is called the neighbour of vi.

The set of all neighbours of vi is denoted by Ni = {v j ∈
V : (v j,vi) ∈ E }. The graph G can also be described by its

Laplacian matrix L . The Laplacian matrix L for graph G

is defined as L := D −A , i.e., [L ]ii = ∑v j∈Ni
[A ]i j and

[L ]i j = −[A ]i j for any i 6= j. Define lmax := max([L ]ii),
i ∈ I . It is easy to see that each row of L sums up to 0,

and thus 1n is always an eigenvector of L corresponding to

the eigenvalue 0. As graph G is directed, the eigenvalues of

L are complex numbers, which can be ordered and denoted

as 0 = λ1 ≺ Re(λ2)� . . .� Re(λn).

D. Problem Formulation

Consider a multi-agent system with n identical agents,

where each agent has linear positive dynamics. It can be

described by
{

ẋi(t) = Axi(t)+Bui(t)

yi(t) =Cxi(t), i ∈ I
(2)

where xi(t) := [xi1, xi2, . . . , xir]
T ∈ Rr is the state, ui(t) ∈

Rm is the control input, yi(t) ∈ Rp is the measured output.

A ∈ Rr×r is a Metzler matrix, B ∈ Rr×m and C ∈ Rp×r are

non-negative matrices. Moreover, (A, B, C) is assumed to

be detectable and stabilizable in this paper.

The following observer-type dynamic output-feedback

protocol is used:
{

˙̂xi(t) = Ax̂i(t)+LC ∑v j∈Ni
[A ]i j(e j(t)− ei(t))+Bui(t)

ui(t) =−Kx̂i(t)
(3)

where i ∈I , x̂i(t)∈Rr is the state, ui(t)∈Rm is the control

input and ei(t) is the feedback signal for agent i which is

defined as ei(t) := xi(t)− x̂i(t). K and L are feedback gain

matrices to be determined.



Using x̃i(t) := [xT
i (t), eT

i (t)]
T as the state variable, the

augmented system for each agent i with the observer-type

dynamic protocol can be described as











˙̃xi(t) = Ãx̃i(t)+ B̃ũi(t)

ỹi(t) = C̃x̃i(t)

ũi(t) = L∑v j∈Ni
[A ]i j(ỹ j(t)− ỹi(t))

(4)

where

Ã =

[

A−BK BK

0 A

]

, B̃ =

[

0

I

]

, C̃ =
[

0 C
]

. (5)

Define the state X(t) := [x̃T
1 (t), x̃T

2 (t), . . . , x̃T
n (t)]

T ∈ Rrn.

Then the overall closed-loop system is represented by

Ẋ(t) = AX(t) (6)

where A = In ⊗ Ã−L ⊗ B̃LC̃.

The positive consensus problem of directed multi-agent

systems is studied in this paper. Based on the above descrip-

tions, the problem to be solved is defined as follows:

Problem PCDMAS (Positive Consensus of Directed Multi-

agent Systems): Regarding a multi-agent system (2) with

observer-type dynamic output-feedback control protocol (3),

assuming that all agents have identical positive dynamics,

given any non-negative initial values, design matrices K and

L such that the consensus of the nominal dynamic system

in (4) and (5) is achievable, i.e., limt→∞(x̃ j(t)− x̃i(t)) =
0, ∀i, j ∈I , meanwhile the state of each augmented system

in the overall closed-loop system keeps non-negative, i.e.,

X(t)� 0 for t � 0.

Remark 1: It can be observed from (4) and (5) that, the

designs of the feedback gain matrices L and K are separated

in the overall system so that the matrices L and K can

be designed independently [12]. Moreover, as the matrices

K and L should be designed such that x̂i(t) converges

to zero asymptotically, i.e., limt→∞ x̂i(t) = 0, ∀i ∈ I , the

consensus problem of the multi-agent system in (2) via the

observer-type dynamic output-feedback protocol in (3) can

be transformed to the consensus problem of the augmented

system in (4) and (5).

III. MAIN RESULTS

In this section, Problem PCDMAS is studied based on

the results of positive systems theory and the consensus

issue. Some new results on positive consensus of directed

multi-agent systems are derived and a convex programming

algorithm is developed to design the protocols.

Theorem 1: Problem PCDMAS is solvable if and only if

all the following conditions hold:

1) BK � 0,

2) A−BK is Metzler and Hurwitz,

3) LC � 0,

4) A− lmaxLC is Metzler,

5) A−λiLC is Hurwitz, ∀i ∈ I \{1}.

Proof.

(i) Positivity: According to Lemma 1, the overall closed-

loop system (6) is positive if and only if the system matrix

A is Metzler. By definition, the system matrix A can be

represented as A =








Ã−∑v j∈N1
[A ]1 j B̃LC̃ [A ]12B̃LC̃ ... [A ]1nB̃LC̃

[A ]21B̃LC̃ Ã−∑v j∈N2
[A ]2 jB̃LC̃ ... [A ]2nB̃LC̃

...
...

. . .
...

[A ]n1B̃LC̃ [A ]n2B̃LC̃ ... Ã−∑v j∈Nn [A ]n jB̃LC̃









(7)

where

Ã− ∑
v j∈Ni

[A ]i jB̃LC̃ =

[

A−BK BK

0 A−∑v j∈Ni
[A ]i jLC

]

(8)

and

[A ]i jB̃LC̃ =

[

0 0

0 [A ]i jLC

]

. (9)

It is easy to see that, A is Metzler if and only if [A ]i jB̃LC̃

is non-negative and Ã−∑v j∈Ni
[A ]i jB̃LC̃ is Metzler. Since

[A ]i j � 0, we have LC � 0 by (9). From equation (8), Ã−

∑v j∈Ni
[A ]i jB̃LC̃ ∈Mr is equivalent to, BK � 0, A−BK ∈Mr

and A− ∑v j∈Ni
[A ]i jLC ∈ Mr. Since [A ]i j � 0, to ensure

A−∑v j∈Ni
[A ]i jLC ∈ Mr, ∀i ∈ I , it suffices to show that

A− lmaxLC ∈ Mr. So, the positivity of the overall closed-

loop system (6) is preserved if and only if LC � 0, BK � 0,

A−BK ∈Mr and A− lmaxLC ∈Mr.

(ii) Consensus: To guarantee the consensus of the overall

closed-loop system in (6), a well-known fact [20] is that the

consensus of system (6) is achievable if and only if Ã−
λiB̃LC̃ is Hurwitz, ∀i ∈ I \{1}. By expanding Ã−λiB̃LC̃,

we have

Ã−λiB̃LC̃ =

[

A−BK BK

0 A−λiLC

]

. (10)

From (10), it is easy to see that Ã−λiB̃LC̃ is Hurwitz if and

only if A−λiLC ∈Hr and A−BK ∈Hr. Hence, the consensus

of the multi-agent system in (4) and (5) is achievable if and

only if A−BK and A−λiLC, ∀i ∈ I \{1}, are all Hurwitz.

The whole proof is completed. �

Theorem 2: Problem PCDMAS is solvable if there exist

a diagonal matrix D > 0 , matrices P > 0, Q > 0 and S such

that all the following statements hold:

1) PAT +AP− 2Re(λ2)PCTQCP < 0,

2) A− lmaxPCTQC ∈Mr,

3) PCTQC � 0,

4) BS � 0,

5) AD−BS ∈Mr,

6) AD−BS+DAT− STBT < 0.

Under the conditions, K = SD−1 and L = PCTQ.

Proof.

According to the statement 1), we have PAT + AP −
2Re(λ2)PCTQCP < 0. Since PCTQCP > 0, the above in-

equality holds for any coefficient larger than 2Re(λ2). Taking

L = PCTQ, since PAT + AP − 2Re(λi)PCTQCP < 0, ∀i ∈
I \{1}, we have (A−λiLC)P+P(A−λiLC)∗ = PAT+AP−



λiLCP−λ ∗
i PCTLT =PAT+AP−λiPCTQCP−λ ∗

i PCTQCP=
PAT+AP−2Re(λi)PCTQCP < 0, ∀i ∈I \{1}. By the well-

known result in [22], we can conclude that A−λiLC ∈ Hr,

∀i ∈ I \{1}, which implies the statement 5) in Theorem 1.

Since L = PCTQ, the statements 2), 3) in Theorem 2 are

equivalent to A− lmaxLC ∈ Mr and LC � 0, which implies

the statements 3), 4) in Theorem 1.

Taking S = KD, the statement 6) is equivalent to AD−
BKD + DAT − DKTBT < 0. Hence we have (A − BK)D +
D(A−BK)T < 0. By Lemma 2, A−BK is Hurwitz. From

the statement 5), we have AD − BKD ∈ Mr. As D is a

diagonal positive definite matrix, thus A − BK ∈ Mr. So

A−BK is Hurwitz and Metzler, which implies the statement

2) in Theorem 1. From the statement 4), we have BKD � 0,

so BK � 0 as D is a diagonal positive definite matrix.

This implies the statement 1) in Theorem 1. On the other

hand, assuming that the statements 1), 2), 3) in Theorem

1 hold, by Lemma 2, there must exist matrix D > 0 such

that (A − BK)D+ D(A − KB)T < 0. Taking S = KD, it is

easy to see that, AD−BS+DAT − STBT < 0, BS � 0 and

AD−BS ∈Mr.

The whole proof is completed. �

Remark 2: Notice that, Theorem 2 only needs us to focus

on the Hurwitzness of A−λ2LC instead of all the matrices

A−λiLC, ∀i ∈ I \{1}. This fact is very useful in the later

consensus design as it will greatly simplify the complexity

of solving Problem PCDMAS.

Theorem 3: Problem PCDMAS is solvable if there exist

a diagonal matrix D > 0, matrices P > 0, Q > 0, X > 0, and

S such that all the following conditions hold:

1) PAT + AP − 2Re(λ2)PCTQCX − 2Re(λ2)XCTQCP +
2Re(λ2)XCTQCX < 0,

2) A− lmaxPCTQC ∈Mr,

3) PCTQC � 0,

4) BS � 0,

5) AD−BS ∈Mr,

6) AD−BS+DAT− STBT < 0.

Under the conditions, K = SD−1 and L = PCTQ.

Proof.

The proof of the statements 2), 3), 4), 5), 6) is similar

to Theorem 2. It suffices to show that, the statement 1) in

Theorem 3 is equivalent to the statement 1) in Theorem 2.

On one hand, if there exist matrices P > 0 and X > 0 such

that PAT + AP −2Re(λ2)PCTQCX − 2Re(λ2)XCTQCP +
2Re(λ2)XCTQCX < 0. Equivalently, we can obtain that,

PAT + AP− 2Re(λ2)PCTQCP + 2Re(λ2)(X − P)CTQC(X −
P) < 0. Because (X − P)CTQC(X − P) ≥ 0, then we have

that PAT +AP− 2Re(λ2)PCTQCP < 0. On the other hand,

if PAT +AP−2Re(λ2)PCTQCP < 0 for some matrix P > 0,

obviously there exists a matrix X = P > 0 such that PAT +
AP − 2Re(λ2)PCTQCP + 2Re(λ2)(X − P)CTQC(X − P) <
0, i.e., PAT +AP− 2Re(λ2)PCTQCX − 2Re(λ2)XCTQCP+
2Re(λ2)XCTQCX < 0.

The whole proof is completed. �

Remark 3: In the above theorem, the matrix inequality in

the statement 1) of Theorem 2 is linearized in an equivalent

way by introducing the matrix X and the matrix X is assumed

to be known. This enables us to use LMIs to solve Problem

PCDMAS.

Based on the results of Theorems 2 and 3, a convex pro-

gramming algorithm is developed as follows:

Algorithm 1:

Step 1: Initialize k = 1, h = 1, Q(1) = I and ε(0) = 0.

Obtain the initial matrix P(1) =U−1 by solving the

following LMIs:
{

ATU +UA− 2Re(λ2)C
TQ(1)C < 0

U > 0

Step 2: Set matrix X (k) = P(k), minimize ε(h)

s.t.











PCTQ(k)C � 0

A− lmaxPCTQ(k)C ∈Mr

Ψk(P)< ε(h)I

with respect to the matrix P > 0, where the matrix

function Ψk(P) is defined as Ψk(P) := PAT+AP−
2Re(λ2)PCTQ(k)CX (k) − 2Re(λ2)X

(k)CTQ(k)CP +
2Re(λ2)X

(k)CTQ(k)CX (k).

Step 3: If ε(h) � 0, go to Step 8. Otherwise, go to Step 4.

Step 4: If |ε(h)−ε(h−1)|/ε(h) ≺ ξ , where ξ is a prescribed

tolerance, this algorithm fails to find the desired

solution, STOP. Otherwise, set k = k+ 1 and h =
h+ 1, update P(k) = P, then go to Step 5.

Step 5: Minimize ε(h)

s.t.











P(k)CTQC � 0

A− lmaxP(k)CTQC ∈Mr

Λk(Q)< ε(h)I

with respect to the matrix Q > 0, where the matrix

function Λk(Q) is defined as Λk(Q) := P(k)AT +
AP(k)− 2Re(λ2)P

(k)CTQCP(k).

Step 6: If ε(h) � 0, go to Step 8. Otherwise, go to Step 7.

Step 7: If |ε(h)−ε(h−1)|/ε(h) ≺ ξ , where ξ is a prescribed

tolerance, then this algorithm fails to find the de-

sired solution, STOP. Otherwise, update Q(k) = Q

and h = h+ 1, then go to Step 2.

Step 8: Obtain matrices D and S by solving the following

constraints:










BS � 0

AD−BS ∈Mr

AD−BS+DAT− STBT < 0

with respect to variables: diagonal matrix D > 0

and matrix S.

Step 9: The feedback gain matrices K and L can be

obtained as K = SD−1 and L = PCTQ. STOP.

Remark 4: In Step 1 of the above algorithm, the matrix

P is initialized as P(1) = U−1 such that, P(1)AT +AP(1)−
2Re(λ2)P

(1)CTQ(1)CP(1) < 0. Taking L = P(1)CTQ(1), by

Theorem 2, we have that A−λiLC, ∀i ∈I \{1}, are Hurwitz



and thus such an initialization is reasonable. In Step 2, X (k) is

updated as P(k), P(k+1) always minimizes α(Ψk(P)) and Q(k)

minimizes α(Λk(Q)), ∀k � 1. Observing that, Λk+1(Q
k) =

Ψk(P
(k+1))−2Re(λ2)(X

(k)−P(k+1))CTQ(k)C(X (k)−P(k+1)),
thus we have α(Λk+1(Q

k))� α(Ψk(P
k+1)) as Ψk(P

(k+1))−
Λk+1(Q

k) ≥ 0. Moreover, because Ψk(P
(k)) = Λk(Q

k),
we finally obtain that α(Λk+1(Q

k+1)) � α(Λk+1(Q
k)) �

α(Ψk(P
(k+1))) � α(Ψk(P

(k))) = α(Λk(Q
k)), ∀k � 1. So we

always have ε(h+1) � ε(h) for h � 1 during the iterative

process, which guarantees the convergence of Algorithm

1. Meanwhile, positivity of the multi-agent system is also

preserved since matrices P, Q and D only move in the

feasible region during the iterations.

Remark 5: Notice that, Algorithm 1 only needs to use

eigenvalue λ2 of the Laplacian matrix to design the feedback

gain matrices K and L, which provides an efficient way to

solve Problem PCDMAS.

IV. NUMERICAL SIMULATION

In this section, we use an example of directed multi-agent

system to verify the effectiveness of the derived results and

algorithm in this paper.

Fig. 1. Directed communication graph

Consider a multi-agent system in (2) with 6 agents and the

following system matrices:

A =





−3 2 3

1 −4 2

2 1 −3



 , B =





3 0

1 0

2 2



 , C =

[

2 0 0

0 2 3

]

.

The graph in Figure 1 is used to model the communication

topology of the above multi-agent system. The associated

Laplacian matrix of the multi-agent system is:

L =

















3 0 0 −1 −1 −1

−1 1 0 0 0 0

−1 −1 2 0 0 0

−1 0 0 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

















.

Using the LMI Toolbox of MATLAB, the Algorithm 1 is

implemented and the following results are obtained.

The matrix P is initialized as P(1) =




0.60314 −0.02879 −0.0068583

−0.02879 0.33887 0.03418

−0.0068583 0.03418 0.60242



 .

The matrix Q is initialized as Q(1) = I. Obviously, the pair

(P(1),Q(1)) is not feasible since P(1)CTQ(1)C =




2.4126 −0.15631 −0.23446

−0.11516 1.5606 2.3408

−0.027433 3.7512 5.6269



� 0

and A− lmaxP(1)CTQ(1)C =




−10.238 2.4689 3.7034

1.3455 −8.6817 −5.0225

2.0823 −10.254 −19.881



 /∈Mr.

After several iterations, ε = −0.12567 � 0 and meanwhile

we have P =




1.8327 5.0754e−06 2.4062e−06

5.0754e−06 5.5882 −3.6514

2.4062e−06 −3.6514 2.4898





and Q =
[

9.9978 0.090679

0.090679 0.9999

]

.

Observe that, PCTQC =




73.292 0.66478 0.99717

0.040505 0.4444 0.6666

0.030322 0.3333 0.49995



� 0

and A− lmaxPCTQC =




−222.87 0.0056585 0.0084877

0.87848 −5.3332 0.00020407

1.909 0.00010217 −4.4998



 ∈Mr.

So, the obtained matrix pair (P, Q) is feasible.

Then the feedback gain matrices K and L are obtained as:

K =

[

0.30383 0.36377 0.59561

0.20697 −0.18142 −0.14544

]

and

L =





36.646 0.33239

0.020252 0.2222

0.015161 0.16665



 .

To better illustrate the effectiveness of our algorithm, the

states of the six augmented systems in the above example

are respectively initialized as,

x̃1(0) =

















20

1

1

15

0.5
0.5

















, x̃2(0) =

















15

2

2

10

1

1

















, x̃3(0) =

















13

5

1

10

2

0.5

















,



and

x̃4(0) =

















14

10

5

10

6

3

















, x̃5(0) =

















12

8

6

8

4

2

















, x̃6(0) =

















9

6

4

7

1

0.5

















.

With the obtained feedback gain matrices K and L, the

multi-agent system finally reaches consensus and the phase

plots are shown in Figures 2 and 3.
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Fig. 2. Phase plot of the state xi(t) in the multi-agent system
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Fig. 3. Phase plot of the feedback signal ei(t) in the multi-agent system

V. CONCLUSION

This paper has studied the positive consensus problem

of directed multi-agent systems. Based on the results in

positive systems theory and the consensus issue, the positive

consensus of directed multi-agent systems has been analyzed.

Some new results have been derived in the form of LMIs

and a convex programming algorithm has been developed

to design appropriate observer-type protocols such that the

multi-agent system is able to reach consensus with its state

trajectory always remaining in the non-negative orthant.

Finally, the simulations have illustrated the effectiveness of

the derived results and algorithm.
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