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Finite-Time State Estimation of Discrete-Time Linear Systems With
Some Extensions. Application to Steering Lateral Vehicle Model

K. Chaib-Draa1, A. Zemouche2, R. Rajamani3, F. Bedouhene4, T.M. Laleg-Kirati5

Abstract— This paper presents novel exact finite-time esti-
mation algorithms for linear discrete-time systems with ex-
tension to singular systems, under specific rank conditions.
The proposed estimation algorithms are more general than
the well-known deadbeat observers, which can provide finite-
time estimation. Two new estimation schemes are proposed; the
first scheme provides a direct and explicit estimation algorithm
based on the use of delayed outputs, while the second scheme
uses two combined asymptotic observers to recover in a finite-
time the exact solution of the system. The effectiveness of the
developed estimators is shown through application to a steering
controlled lateral vehicle system where all states are estimated
from look-ahead distance measurement.

I. INTRODUCTION

State estimation for any class of systems is a crucial task
in control design. Indeed, estimation of the system state is
an important step for designing control laws, fault diagnosis,
or health monitoring [1], [2], [3], [4].

From asymptotic estimation point of view, if for nonlinear
systems there is no general methodology, the problem is
completely solved for linear systems. However, to achieve
exact and finite-time estimation, even in linear case, the
problem still remains open and there are some improvements.
It is well known that the famous deadbeat observers solve
this problem under specific constraints [5], [6], [7]. In
this paper, we propose two alternative exact and finite-time
estimation methodologies to solve the problem. The required
assumptions are different from those required by deadbeat
observers methodology based on nilpotency index of certain
matrices.

The proposed two new finite-time estimation algorithms
are summarized as follows:
• Direct and explicit estimation: This algorithm provides

an explicit solution of the system in finite-time. This
direct estimation approach is based on the use of
delayed outputs to recover the solution of the system.

• Two observers-based estimation: This technique con-
sists in combining two asymptotic state observers to
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reconstruct the solution of the system in finite-time.
This second estimation algorithm is easier to implement
numerically and may be used to investigate robustness
to norm-bounded uncertainties or L2-bounded distur-
bances which are not considered in this preliminary
version of the paper.

Extension to linear singular systems is provided under
some rank conditions and after convenient matrix transforma-
tions. This extension is useful because it allows solving the
estimation problem for linear systems with disturbances in
the measurements and dynamics. It allows solving the issue
of unknown input estimation, which is of considerable inter-
est for control design schemes and diagnosis, since unknown
inputs may represent actuator/sensor faults, uncertainties, or
disturbances.

There are several issues to consider in the future to deepen
the proposed methodology and to investigate performances
and robustness of the proposed estimation schemes. Exten-
sions to more general classes of systems are in progress,
namely extension to switched linear systems, Linear Param-
eter Varying (LPV) systems, and specific nonlinear systems.
Moreover, we aim to develop a systematic procedure for
designing the estimation parameters.

The rest of this paper is organized as follows. Section II
is divided into two subsections: Subsection II-A is devoted
to the first estimation algorithm providing explicit solutions
of the considered linear systems. The second estimation
scheme is presented in Subsection II-B. An extension of
the methodology to singular linear systems is provided
in Section III. To show the validity and effectiveness of
the proposed design algorithms, an application to steering
controlled lateral vehicle system is presented in Section IV.
Finally, Section V concludes this note.

II. PRELIMINARY RESULTS ON EXACT ESTIMATION FOR
LINEAR DISCRETE-TIME SYSTEMS

A. Explicit Solutions Using Delayed Outputs

This section is devoted to a new exact finite-time estima-
tion algorithm for linear systems described by the following
equations: {

xk+1 = Axk +Buk
yk = Cxk

(1)

where xk is the state of the system; uk is the control input,
and yk is the vector of output measurements. Assume that
the pair (A,C) is observable.
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Let L and K be two matrices so that (A−LC) and (A−
KC) are Schur stable. Then, system (1) can be written as:

xk+1 = (A− LC)xk + Lyk +Buk (2a)

xk+1 = (A−KC)xk +Kyk +Buk (2b)

By exploiting the above equations, we can provide an estima-
tion of the state xk in finite-time. However, before stating the
theorem and the exact finite-time estimation, we introduce
the following lemma, which plays an important role in the
existence of such an exact estimation in finite-time.

Lemma 1: Assume that the pair (A,C) is observable.
Then there exist L, K, and m ≥ 1 such that the matrix

Em = (A− LC)
−m − (A−KC)

−m (3)

is invertible.
Proof: Let us denote by D(0; r) the disc centered at

0 with radius r > 0. We denote by D̊(0; r) its interior. For
every m ≥ 1, the matrix Em is well-defined, since we can
always choose both L1 and L2 such that all eigenvalues of
A−LiC for all i = 1, 2 are located in D̊(0; 1)− {0}. With
this choice, both (A − L1C)−m and (A − L2C)−m exist.
Now, in view of the formula

Em = (A− L1C)−m
(
I − (A− L1C)m(A− L2C)−m

)
and since (A−L1C)−m is invertible for m ≥ 1, we deduce
that Em is invertible if and only if Hm := I − (A −
L1C)m(A − L2C)−m is invertible. To get invertibility of
Hm, for every m ≥ 1, it suffices to chose L1 and L2 such
that

‖(A− L1C)m(A− L2C)−m‖ < 1. (4)

Observe that (5) holds for every m ≥ 1 if

‖(A− L1C)‖‖(A− L2C)−1‖ < 1. (5)

Indeed, this follows from the following inequalities:

‖(A− L1C)m(A− L2C)−m‖ ≤ ‖(A− L1C)m‖‖(A− L2C)−m‖
≤ ‖(A− L1C)‖m‖(A− L2C)−1‖m.

To get (5), it suffices then to place the eigenvalues of A−
L1C in D̊(0; 1

2 )− {0}, and the eigenvalues of A− L2C in
D̊(0; 1)−D(0; 1

2 ) (or equivalently, the eigenvalues of (A−
L2C)−1 in D(0; 2)− D̊(0; 1). This allows us to get

‖A− L1C‖ ∈
]
0,

1

2

[
,

‖(A− L2C)−1‖ ∈ ]1, 2] .

Inequality (5) is clearly achieved.
Remark 1: The proof of Lemma 1 provides a systematic

method to design theoretically the gains K and L for any
integer m ≥ 1 so that the matrix Em defined in (3) exists and
invertible. This means that we can always find K, L with
m = 1. However, this choice is not unique and for numerical
considerations we can have m > 1. Indeed, we can have the
two following considerations:

• Schur stability is not necessary: The Schur stability of
A−LC and A−KC is not necessary for the invertibility
of Em. Indeed, it is possible to find matrices L and K,
with A−LC and A−KC not Schur stable (eigenvalues
are not in D̊(0; 1)), and an integer m ≥ 1 such that the
matrix Em is invertible. However, the observability of
(A,C) is necessary to systematically guarantee such a
matrix Em.

• Condition number of Em: Under the observability of
the pair (A,C), following the proof of Lemma 1, for
any m ≥ 1, there exist L and K such that Em is
invertible. However, for some choices of L and K, the
matrix Em may be invertible but with high condition
number, which leads to numerical troubles and then to
bad estimation. For this reason, m = 1 is not necessarily
the best choice. A higher value of m can be provided to
improve the invertibility of Em and to provide a better
exact and finite-time estimation.

The explicit formula giving the exact estimation or the
true value xk for any k ≥ m is presented in the following
theorem.

Theorem 1: There exist L, K and m ≥ 1 so that the
solution of (1) satisfies ∀ k ≥ m:

xk = E−1m
m∑
j=1

[
(A− LC)

j−m−1
L

− (A−KC)
j−m−1

K
]
yk−j

+ E−1m
m∑
j=1

[
(A− LC)

j−m−1

− (A−KC)
j−m−1

]
Buk−j (6)

Proof: We can show easily, after some iterations, that
for k ≥ m, we have

xk = (A− LC)m xk−m +

m∑
j=1

(A− LC)j−1 Lyk−j

+

m∑
j=1

(A− LC)j−1 Buk−j (7a)

xk = (A−KC)m xk−m +

m∑
j=1

(A−KC)j−1 Kyk−j

+

m∑
j=1

(A−KC)j−1 Buk−j (7b)

By multiplying equations (7a) and (7b) by (A− LC)
−m

and (A−KC)
−m, respectively, we get

(A− LC)−m xk = xk−m +

m∑
j=1

(A− LC)j−m−1 Lyk−j

+

m∑
j=1

(A− LC)j−m−1 Buk−j (8a)
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(A−KC)−m xk = xk−m +

m∑
j=1

(A−KC)j−m−1 Kyk−j

+

m∑
j=1

(A−KC)j−m−1 Buk−j (8b)

By subtracting (8b) from (8a), it follows that

Emxk =

m∑
j=1

[
(A− LC)

j−m−1
L

− (A−KC)
j−m−1

K
]
yk−j

+

m∑
j=1

[
(A− LC)

j−m−1

− (A−KC)
j−m−1

]
Buk−j (9)

Finally, since from Lemma 1, there exists m ≥ 1 so that Em
is invertible, then we can conclude.

B. Finite-Time Estimation Using Two Combined Observers

Unlike the previous section where we used a sum of
delayed outputs weighted by powers of A−LC and A−KC,
this section is devoted to estimate the solutions of the
considered system by using two different asymptotic state
observers. By using tools borrowed from the continuous-
time results in [8] and [9], we get an exact estimation of
the solution without using explicitly the delayed outputs.
Indeed, the delayed output measurements are hidden and
appear implicitly in the states of the intermediate observers.
This way to provide an exact estimation of the state xk is
more suitable for practical implementation point of view.

Consider the following two state observers corresponding
to (1) and described by the equations:{

ζk+1 = Aζk +Buk + L
(
yk − Cζk

)
ζ0 ∈ Rn

(10)

and {
ηk+1 = Aηk +Buk +K

(
yk − Cηk

)
η0 ∈ Rn

(11)

where L a nd K are the two observer gains to be determined.
Theorem 2: Assume that there exist L, K, and m ≥ 1 so

that the matrix Em exists and invertible. Then, the solution
of system (1) satisfies ∀ k ≥ m:

xk = E−1m
[(
A− LC

)−m
ζk − ζk−m

−
(
A−KC

)−m
ηk + ηk−m

]
. (12)

Proof: By reasoning as in the previous section, we can

easily write ζk and ηk as follows:

ζk =
(
A− LC

)m
ζk−m +

m∑
j=1

(A− LC)
j−1

Lyk−j

+

m∑
j=1

(A− LC)
j−1

Buk−j (13)

ηk =
(
A−KC

)m
ηk−m +

m∑
j=1

(A−KC)
j−1

Kyk−j

+

m∑
j=1

(A−KC)
j−1

Buk−j . (14)

It follows that

Σm =
(
A− LC

)−m
ζk − ζk−m

−
(
A−KC

)−m
ηk + ηk−m (15)

where

Σm ,
m∑
j=1

[
(A− LC)

j−m−1
L

− (A−KC)
j−m−1

K
]
yk−j

+

m∑
j=1

[
(A− LC)

j−m−1

− (A−KC)
j−m−1

]
Buk−j . (16)

Then by substituting (15) in (6), the relation (12) is inferred.

III. EXACT FINITE-TIME ESTIMATION FOR LINEAR
SINGULAR SYSTEMS

In this section, we propose an extension of the proposed
methodology to a class of descriptor systems for which
there are no available results in the literature on finite-time
estimation.

A. System description

Consider the descriptor systems described by the following
equations: {

Eζζk+1 = Aζζk +Bζvk
yk = Cζζk

(17)

where Eζ , Aζ , Bζ and Cζ are constant matrices of appropri-
ate dimensions. The state vector is ζk ∈ Rnζ and the control
input vector is vk ∈ Rmζ . Let us introduce the following rank
condition, which is standard in descriptor systems theory.

Assumption 1: The matrices Eζ and Cζ satisfy the fol-
lowing condition:

rank

([
Eζ
Cζ

])
= nζ . (18)

Condition (18) is necessary to guarantee existence of an
observer for (17).
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B. System transformation and estimation

System (17) can be rewritten under the form[
Eζ
Cζ

]
ζk+1 =

[
Aζ
0

]
ζk +

[
0
Ip

]
yk+1 +

[
Bζ
0

]
vk. (19)

From Assumption 1, the matrix[
Eζ
Cζ

]> [
Eζ
Cζ

]
is invertible. It follows that after pre-multiplying (19) by[
Eζ
Cζ

]>
, and using the notation

[
Pζ Qζ

]
,

([
Eζ
Cζ

]> [
Eζ
Cζ

])−1 [
Eζ
Cζ

]>
we get the new structure of (19):

ζk+1 = PζAζζk +
[
PζBζ Qζ

] [ vk
yk+1

]
(20)

which is exactly under the form (1) with

A , PζAζ , B ,
[
PζBζ Qζ

]
and

uk ,

[
vk
yk+1

]
.

Hence, we can apply directly the results of Section II to get
exact finite-time estimation of ζ.

1) Explicit solution: By analogy to Theorem 1, if there
exist L, K, and m ≥ 1 so that the matrix Em, defined by

Em =
(
PζAζ − LC

)−m
−
(
PζAζ −KC

)−m
(21)

is invertible, then the solution of (17) satisfies ∀ k ≥ m:

ζk = E−1m
m∑
j=1

[
(PζAζ − LC)

j−m−1
L

− (PζAζ −KC)
j−m−1

K
]
yk−j

+ E−1m
m∑
j=1

[
(PζAζ − LC)

j−m−1

− (PζAζ −KC)
j−m−1

]
×[

PζBζ Qζ
] [ vk−j
yk−j+1

]
. (22)

2) Two-observers based estimation: By analogy to The-
orem 2, if there exist L, K, and m ≥ 1 so that the matrix

Em defined by (21) is invertible, then ∀ k ≥ m:

ζk = E−1m
[(
PζAζ − LC

)−m
ξk − ξk−m

−
(
PζAζ −KC

)−m
ηk + ηk−m

]
; (23)

ξk+1 = PζAζξk +
[
PζBζ Qζ

] [ vk
yk+1

]
+ L

(
yk − Cξk

)
(24)

ηk+1 = PζAζηk +
[
PζBζ Qζ

] [ vk
yk+1

]
+K

(
yk − Cηk

)
.

(25)

IV. APPLICATION TO LINEAR LATERAL VEHICLE MODEL

We will illustrate the proposed algorithms on a linear
system application of a steering-controlled lateral vehicle
model. Through this model, we will validate the design
algorithm (6) and give comparisons to asymptotic estimation.

A. Model description

The linear lateral vehicle model is described under the
form (1) after Euler discretization with sampling period Te =
0.01. The system matrices in the continuous-time are given
as follows [10]:

A =


0 1 0 0

0 − 2(Cf+Cr)
MVx

2(Cf+Cr)
M − 2(Cf lf+Crlr)

MVx
0 0 0 1

0 − 2(lfCf−lrCr)
IzVx

2(lfCf−lrCr)
Iz

− 2(lf
2Cf+lr

2Cr)
IzVx


(26)

B =


0

2Cf
M
0

2lfCf
Iz

 , C =
[
1 0 ds 0

]
. (27)

The state vector x ∈ R4 and the control input consists of
the steering angle u. The parameters M , Iz , Vx, lf and lr
are the mass, yaw inertia, longitudinal velocity, the length
of front end and rear end to the center of gravity of the
vehicle respectively. For more details on the lateral model,
we refer the reader to [10]. It should be noticed that the
system is unstable (Steering control always has an unstable
plant model). In order to run the numerical simulation, we
take M = 1573, Iz = 2873, lf = 1.1, lr = 1.58, Cf =
80000, Cr = 80000, ds = 2, and we initialize the model
system by x0 =

[
10 0 3 −5

]T
and the estimated state

by x̂0 =
[
100 100 100 100

]T
.

B. Exact finite-time estimation

By using pole assignment with eigenvalues
{0.5, 0.1, 0.3, 0.2} and {0.02, 0.01, 0.07, 0.03} for A − LC
and A−KC, respectively, we found

L =


0.5316
2.0824
0.1596
−0.6307

 , K =


1.1432
5.6539
0.3388
0.1713

 ,
388



which guarantee existence and invertibility of the matrix
E4. Even if the explicit estimated state is badly initialized,
it is quite clear from Figures 1-4 that the estimation is
achieved on finite-time after m = 4. The input used for
simulation is a sinusoidal signal u = 2 sin( 2π

15 t). Compared
to the asymptotic observer, the proposed estimation in (6)
converges quickly.
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1 Finite-time Estimator (6) Asym. obs.

Fig. 1. x1 and its estimations.
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Fig. 2. x2 and its estimations.
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Fig. 3. x3 and its estimations.
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Fig. 4. x4 and its estimations.

V. CONCLUSION

Under invertibility conditions of certain matrices, we pro-
vided two algorithms for exact finite time estimation of linear
discrete-time systems. Under a certain rank condition and
after some matrix transformation of the system, an extension
to a class of linear singular systems is proposed. A linear
steering lateral vehicle model served as a numerical example
to demonstrate effectiveness of the proposed exact finite-time
estimation algorithms. Due to the satisfactory results, we
target in the near future to investigate the following issues:
• Design of the estimation parameters: All the issues

related to the design of the estimation parameters,
namely the observer gains and the finite-time are not
considered in this paper in a deepen way. Only few
indications are provided.

• Robustness and performance issues: The proposed es-
timation schemes will be generalized to systems in the
presence of uncertainties. Then, we will develop new
approximate estimation algorithms.

• Extension to nonlinear systems, LPV systems, Switched
systems: One of the main objective consists in general-
izing the methodology to a class of nonlinear systems
that can be transformed into a linear form. An exten-
sion to Linear Parameter Varying (LPV) systems is an
alternative solution to tackle nonlinear systems.

• Link to deadbeat observers and modulating functions
based estimation: Establishing comparisons of the pro-
posed methodology with the classical deadbeat ob-
servers [6] and the modulating functions based algo-
rithms [11] is a challenge we aim to achieve.
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