Parameter-Dependent Poisson Equations: Tools for Stochastic Approximation in a Markovian Framework*

Algo Carè ${ }^{1} \quad$ Balázs Csanád Csáji ${ }^{2}$ Balázs Gerencsér ${ }^{3} \quad$ László Gerencsér ${ }^{2} \quad$ Miklós Rásonyi ${ }^{3}$

Abstract

The objective of the present paper is to revisit a key mathematical technology within the theory of stochastic approximation in a Markovian framework, elaborated in much detail in [2]: the existence, uniqueness and smoothness (Lipschitz-continuity) of the solutions of a parameter-dependent Poisson equation. The starting point of our investigation is a relatively new, elegant stability theory for Markov processes developed by Hairer and Mattingly [5]. The current paper provides a transparent analysis of parameter-dependent Poisson equations with convenient conditions. The application of our results for the ODE analysis of stochastic approximation in a Markovian framework is the subject of a forthcoming paper.

I. Introduction

A beautiful area of systems and control theory is recursive identification, and stochastic adaptive control of stochastic systems. In an abstract mathematical framework [2] [9] the key problem is to solve a non-linear algebraic equation

$$
\begin{equation*}
\mathbb{E} H\left(X_{n}(\theta), \theta\right)=0 \tag{1}
\end{equation*}
$$

where $\theta \in \mathbb{R}^{k}$ is an unknown, vector-valued parameter of a physical plant or controller, $\left(X_{n}(\theta)\right),-\infty<n<+\infty$ is a strictly stationary stochastic process, representing a physical signal affected by θ, and $H(X, \theta)$ is a computable function. The same mathematical framework is applied in other fields such as adaptive signal processing and machine learning.

Our objective is to find the root of (1), denoted by θ^{*}, via a recursive algorithm based on computable approximations of $H\left(X_{n}(\theta), \theta\right)$. In the case when $H\left(X_{n}(\theta), \theta\right)=h(\theta)+e_{n}$, where $\left(e_{n}\right)$ is an i.i.d. process, or a martingale difference sequence, we get a classical stochastic approximation process.

An early version of the above problem is presented in the celebrated paper by Ljung [8], in which $\left(X_{n}(\theta)\right)$ was assumed to be defined via a linear stochastic system driven by a weakly dependent process.

A renewed interest in recursive estimation in a Markovian framework was sparked by the excellent book of Benveniste, Métivier and Priouret [2] elaborating an extensive mathematical technology for the analysis of these processes. A central

[^0]tool in their analysis is a complex set of results concerning the parameter-dependent Poisson equation. This is carried out by a specific stability theory for a class of Markov processes, which is off the track of usual methodologies, e.g., Athreya and Ney [1], Nummelin [11], Meyn and Tweedie [10].
The enormous practical value of the estimation problem in a Markovian framework motivates our interest to revisit the theory of [2], and see if their analysis can be simplified or even extended in the light of recent progress in the theory of Markov processes. The starting point of our investigation is a relatively new, elegant stability theory for Markov processes developed by Hairer and Mattingly [5].

The focus of the present paper is the study of the parameter-dependent Poisson equation formulated as

$$
\begin{equation*}
\left(I-P_{\theta}^{*}\right) u_{\theta}(x)=f_{\theta}(x)-h_{\theta}, \tag{2}
\end{equation*}
$$

where P_{θ} is the probability transition kernel of the Markov process $\left(X_{n}(\theta)\right)$, with $P_{\theta}^{*} u_{\theta}(\cdot)$ denoting the action of P_{θ} on the unknown function $u_{\theta}(\cdot)$, and $f_{\theta}(\cdot)$ is an a priori given function defined on the state-space of the process, finally h_{θ} denotes the mean value of $f_{\theta}(\cdot)$ under the assumed unique invariant measure, say μ_{θ}^{*}, corresponding to P_{θ}.

The Poisson equation is a simple and effective tool to study additive functionals on Markov-processes of the form

$$
\begin{equation*}
\sum_{n=1}^{N}\left(H\left(X_{n}(\theta), \theta\right)-\mathbb{E}_{\mu_{\theta}^{*}} H\left(X_{n}(\theta), \theta\right)\right) \tag{3}
\end{equation*}
$$

via martingale techniques. Proving the Lipschitz continuity of $u_{\theta}(x)$ w.r.t. θ, and providing useful upper bounds for the Lipschitz constants are vital technical tools for an ODE analysis proposed in [2, Chapter 2, Part II]. The analysis of the Poisson equation takes up more than half of the efforts in proving the basic convergence results in [2], and the verification of their conditions is far from being trivial.

The objective of our project is to revisit the relevant mathematical technologies and outline a hopefully more transparent and flexible analysis within the setup of [5]. The present paper is devoted to the first half of this project, the analysis of the parameter-dependent Poisson equation.

The application of our results for stochastic approximation within a Markovian framework is the subject of a forthcoming paper, in which a combination of the ODE analysis developed in [2] and [4] is to be extended using the results of the current paper. In the end we get the expected rate of convergence for the moments of the estimation error under a convenient set of conditions.

The significance of the topic of the paper is reinforced by the current intense interest in the minimization of functions
computed via MCMC [3]. To complement the above historical perspective we should note that the problem goes back to [12], providing results for finite state Markov chains. The extension of these results for more general state-spaces is far from trivial, posing the challenge to choose an appropriate distance of measures.

The structure of the paper is as follows: in Section II we provide a brief introduction to the stability theory for Markov chains developed in [5]. The main results of the paper are stated in Section III, culminating in Theorem 2, proving the Lipschitz continuity of a parameter-dependent Poisson equation. These results are extended in Section IV, in particular, the uniform drift condition, stated as Assumption 1 , is significantly relaxed. Our primary objective is to provide a clear, well-motivated presentation of the new concepts and results accompanied by a bird's-eye view on the proofs.

II. A Brief Summary of
 a New Stability Theory for Markov Chains

Let $(\mathbf{X}, \mathcal{A})$ be a measurable space and $\Theta \subseteq \mathbb{R}^{k}$ be a domain (i.e., a connected open set). Consider a class of Markov transition kernels $P_{\theta}(x, A)$, that is for each $\theta \in \Theta$, $x \in \mathbf{X}, P_{\theta}(x, \cdot)$ is a probability measure over \mathbf{X}, and for each $A \in \mathcal{A}, P .(\cdot, A)$ is (x, θ)-measurable. Let $\left(X_{n}(\theta)\right)$, $n \geq 0$, be a Markov chain with transition kernel P_{θ}. For any probability measure μ and measurable $\varphi: \mathbf{X} \rightarrow \mathbb{R}$ define

$$
\begin{aligned}
\left(P_{\theta} \mu\right)(A) & =\int_{\mathbf{X}} P_{\theta}(x, A) \mu(\mathrm{d} x) \\
\left(P_{\theta}^{*} \varphi\right)(x) & =\int_{\mathbf{X}} \varphi(y) P_{\theta}(x, \mathrm{~d} y)=\mathbb{E}_{\theta}\left[\varphi\left(X_{1}\right) \mid X_{0}=x\right]
\end{aligned}
$$

assuming the integral exists. The next condition is motivated by [5], stated there for single Markov chains.

Assumption 1 (Uniform Drift Condition for P_{θ}): There exists a measurable function $V: \mathbf{X} \rightarrow[0, \infty)$ and constants $\gamma \in(0,1)$ and $K \geq 0$ such that

$$
\begin{equation*}
\left(P_{\theta}^{*} V\right)(x) \leq \gamma V(x)+K \tag{4}
\end{equation*}
$$

for all $x \in \mathbf{X}$ and $\theta \in \Theta$. Note that $V(x)$ is not θ-dependent.
Remark 1: The drift condition implies that for any probability measure μ such that $\mu(V):=\int_{\mathbf{X}} V(x) \mu(d x)<\infty$,

$$
\begin{equation*}
P_{\theta} \mu(V) \leq \gamma \mu(V)+K \tag{5}
\end{equation*}
$$

Indeed, integrating (4) with respect to μ we get (5).
As an example, consider a family of linear stochastic systems with state vectors $X_{\theta, n}$:

$$
X_{\theta, n+1}=A_{\theta} X_{\theta, n}+B_{\theta} U_{n}
$$

where $\theta \in \Theta$, the matrix A_{θ} is stable for all $\theta \in \Theta$, and $\left(U_{n}\right)$ is an i.i.d. sequence random vectors such that $\mathbb{E}\left[U_{n}\right]=0$ and $\mathbb{E}\left[U_{n} U_{n}^{\top}\right]=S$ exists and is finite. Setting $V(x)=x^{\top} Q x$, where Q is a common symmetric positive definite matrix, it can be easily seen that

$$
\left(P_{\theta}^{*} V\right)(x)=x^{\top} A_{\theta}^{\top} Q A_{\theta} x+\operatorname{tr}\left(B_{\theta}^{\top} Q B_{\theta} S\right)
$$

It can be easily seen that the drift condition in the present case is equivalent to $A_{\theta}^{\top} Q A_{\theta} \leq \gamma Q$, with $\gamma<1$, for all θ, in the sense of the semi-definite ordering.

It may seem too restrictive to assume the existence of a common quadratic Lyapunov function V for all θ. Inspired by alternative conditions that are applicable for this class of processes, Assumption 1 will be relaxed in Section IV.

The next condition is a natural extension of the corresponding assumption of [5] for a parametric family of Markov chains, which itself is a modification of a standard condition in the stability theory of Markov chains [10].

Assumption 2 (Local Minorization): Let $R>2 K /(1-\gamma)$, where γ and K are the constants from Assumption 1, and set $\mathcal{C}=\{x \in \mathbf{X}: V(x) \leq R\}$. There exist a probability measure $\bar{\mu}$ on \mathbf{X} and a constant $\bar{\alpha} \in(0,1)$ such that, for all $\theta \in \Theta$, all $x \in \mathcal{C}$, and all measurable A,

$$
P_{\theta}(x, A) \geq \bar{\alpha} \bar{\mu}(A)
$$

Remark 2 (Interpretation of R): If there exists an invariant measure μ_{θ}^{*} such that $\int_{\mathbf{X}} V(x) \mu_{\theta}^{*}(\mathrm{~d} x)<\infty$, then integrating both sides of inequality (4), we get

$$
\begin{equation*}
\int_{\mathbf{X}} V(x) \mu_{\theta}^{*}(\mathrm{~d} x) \leq \frac{K}{1-\gamma} \tag{6}
\end{equation*}
$$

Thus, R in Assumption 2 exceeds twice the mean of V w.r.t. any of the invariant measures.

Assumption 2 is a major point of departure from the theory developed in [10], where the "small set" \mathcal{C} is defined in terms of an irreducibility measure ψ such that $\psi(\mathcal{C})>0$.

We now introduce a weighted total variation distance between two probability measures μ_{1}, μ_{2}, where the weighting is in the form $1+\beta V(\cdot)$, where $\beta>0$ for which a fine-tuned choice will be needed for the results of [5] to hold.

Definition 1: Let μ_{1} and μ_{2} be two probability measures on \mathbf{X}. Then, define the weighted total variation distance as

$$
\rho_{\beta}\left(\mu_{1}, \mu_{2}\right)=\int_{\mathbf{X}}(1+\beta V(x))\left|\mu_{1}-\mu_{2}\right|(\mathrm{d} x)
$$

where $\left|\mu_{1}-\mu_{2}\right|$ is the total variation measure of $\left(\mu_{1}-\mu_{2}\right)$.
An equivalent definition of ρ_{β} can be given by introducing the following norm in the space of \mathbb{R}-valued functions on \mathbf{X} :

Definition 2: For any function $\varphi: \mathbf{X} \rightarrow \mathbb{R}$, set

$$
\begin{equation*}
\|\varphi\|_{\beta}=\sup _{x} \frac{|\varphi(x)|}{1+\beta V(x)} \tag{7}
\end{equation*}
$$

The linear space of real-valued ameasurable functions such that $\|\varphi\|_{\beta}<\infty$ will be denoted by \mathcal{L}_{V}. Note that \mathcal{L}_{V} is independent of β. An equivalent definition of ρ_{β} is:

$$
\begin{equation*}
\rho_{\beta}\left(\mu_{1}, \mu_{2}\right)=\sup _{\varphi:\|\varphi\|_{\beta} \leq 1} \int_{\mathbf{X}} \varphi(x)\left(\mu_{1}-\mu_{2}\right)(\mathrm{d} x) \tag{8}
\end{equation*}
$$

Denoting by δ_{x} the Dirac measure at x, note that, for $x \neq y$, it holds that $\rho_{\beta}\left(\delta_{x}, \delta_{y}\right)=2+\beta V(x)+\beta V(y)$. This leads to the definition of the following metric on \mathbf{X} :

$$
d_{\beta}(x, y)= \begin{cases}2+\beta V(x)+\beta V(y) & \text { if } x \neq y \tag{9}\\ 0 & \text { if } x=y\end{cases}
$$

This may seem to be an unusual metric, assigning a distance at least 2 between any pair of distinct points, but it turns out to be quite useful. Having a metric on \mathbf{X}, we can introduce a measure of oscillation for functions $\varphi: \mathbf{X} \rightarrow \mathbb{R}$.

Definition 3: For any function $\varphi: \mathbf{X} \rightarrow \mathbb{R}$, set

$$
\begin{equation*}
\|\varphi\|_{\beta}=\sup _{x \neq y} \frac{|\varphi(x)-\varphi(y)|}{d_{\beta}(x, y)} . \tag{10}
\end{equation*}
$$

It is readily seen that $\|\varphi\|_{\beta} \leq\|\varphi\|_{\beta}$. Since $\|\varphi\|_{\beta}$ is invariant w.r.t. translation by any constant $c \in \mathbb{R}$ we also get $\|\varphi\|_{\beta} \leq\|\varphi+c\|_{\beta}$. Surprisingly, the infimum, and in fact the minimum, of these upper bounds reproduces $\|\mid \varphi\|_{\beta}$ as stated in the following lemma proved in [5]:

Lemma 1: $\|\varphi\|_{\beta}=\min _{c \in \mathbb{R}}\|\varphi+c\|_{\beta}$.
Definition 4: Let μ_{1}, μ_{2} be two probability measures on \mathbf{X}. Then, we define the distance

$$
\begin{equation*}
\sigma_{\beta}\left(\mu_{1}, \mu_{2}\right)=\sup _{\varphi:\|\varphi\|_{\beta} \leq 1} \int_{\mathbf{X}} \varphi(x)\left(\mu_{1}-\mu_{2}\right)(\mathrm{d} x) \tag{11}
\end{equation*}
$$

A relatively simple corollary of Lemma 1 is the following:
Corollary 1: For probability measures μ_{1}, μ_{2}, we have

$$
\begin{equation*}
\sigma_{\beta}\left(\mu_{1}, \mu_{2}\right)=\rho_{\beta}\left(\mu_{1}, \mu_{2}\right) \tag{12}
\end{equation*}
$$

Remark 3: The metrics $\rho_{\beta}\left(\mu_{1}, \mu_{2}\right)$ and $\sigma_{\beta}\left(\mu_{1}, \mu_{2}\right)$ depend only on $\left(\mu_{1}-\mu_{2}\right)$, therefore they can be expressed by the univariate functions $\rho_{\beta}(\eta)$ and $\sigma_{\beta}(\eta)$ defined for signed measures η with $|\eta|(V)<\infty$ and $\eta(\mathbf{X})=0$ as

$$
\begin{align*}
\sigma_{\beta}(\eta) & =\int_{\mathbf{X}}(1+\beta V(x))|\eta|(\mathrm{d} x) \\
& =\sup _{\varphi:\|\varphi\|_{\beta} \leq 1} \int_{\mathbf{X}} \varphi(x) \eta(\mathrm{d} x) \\
& =\sup _{\varphi:\|\varphi\|_{\beta} \leq 1} \int_{\mathbf{X}} \varphi(x) \eta(\mathrm{d} x) \tag{13}
\end{align*}
$$

A fundamental result of [5, Theorem 3.1] is as follows:
Proposition 1: Under Assumptions 1 and 2, there exists $\alpha \in(0,1)$ and $\beta>0$ such that for all θ and measurable φ,

$$
\begin{equation*}
\left\|P_{\theta}^{*} \varphi\right\|_{\beta} \leq \alpha\|\varphi\|_{\beta} . \tag{14}
\end{equation*}
$$

In particular, one can choose $\beta=\bar{\alpha} /(2 K)$, and then choose any α such that $\alpha>(1-\bar{\alpha} / 2) \vee \frac{2+\beta(R \gamma+2 K)}{2+\beta R}$, where this lower bound can be seen to be strictly less than 1 .

Remark 4: Note that with the choice of α as given in Proposition 1 it holds that $1>\alpha>\gamma$. This indicates that the contraction coefficient α is strictly larger than the contraction coefficient γ postulated by the drift condition.

A corollary of Proposition 1 stated in [5, Theorem 1.3] is:
Proposition 2: Under Assumptions 1 and 2, there exists $\alpha \in(0,1)$ and $\beta>0$, such that for all θ,

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta} \mu_{1}, P_{\theta} \mu_{2}\right) \leq \alpha \sigma_{\beta}\left(\mu_{1}, \mu_{2}\right) \tag{15}
\end{equation*}
$$

for any pair of probability measures μ_{1}, μ_{2} on \mathbf{X}.

In what follows, α and β are chosen as indicated in Proposition 1. Using standard arguments one can easily show the following theorem also stated in [5] as Theorem 3.2:

Proposition 3: Under Assumptions 1 and 2 for all θ there is a unique probability measure μ_{θ}^{*} on \mathbf{X} such that $\int_{\mathbf{X}} V \mathrm{~d} \mu_{\theta}^{*}<\infty$ and $P_{\theta} \mu_{\theta}^{*}=\mu_{\theta}^{*}$.

Similar results to those of Propositions 2 and 3 are stated in Theorem 14.0.1 [10] under slightly different conditions. In particular, the special choice of the parameter β in the weighting function $1+\beta V$ is not part of the conditions in [10] at the price that the contraction of the one-step kernel P_{θ} is not stated. In addition, in [10] it is a priori assumed that the Markov-chain is ψ-irreducible and aperiodic, while in [5] these conditions are circumvented by assuming that the minorization condition holds on a fairly large set.

III. Lipschitz Continuity of the

Solution of a θ-Dependent Poisson Equation

In this section we shall consider the Poisson equation

$$
\begin{equation*}
\left(I-P_{\theta}^{*}\right) u_{\theta}(x)=f_{\theta}(x)-h_{\theta}, \tag{16}
\end{equation*}
$$

for $\theta \in \Theta$, where P_{θ} is given above and $f_{\theta}: \mathbf{X} \rightarrow \mathbb{R}$, $h_{\theta}=\mu_{\theta}^{*}\left(f_{\theta}\right)$, and we look for a solution $u_{\theta}: \mathbf{X} \rightarrow \mathbb{R}$. First, we prove the existence and the uniqueness of the solution for a fixed θ, then we formulate smoothness conditions on the kernel P_{θ}^{*}, and the right hand side, f_{θ}. Using these conditions we prove the Lipschitz continuity of the solution $u_{\theta}(\cdot)$ in θ. For a start let $\theta \in \Theta$ be fixed.

Theorem 1: Let Assumptions 1 and 2 hold. Let f be a measurable function $\mathbf{X} \rightarrow \mathbb{R}$ such that $\|f\|_{\beta}<\infty$ and let $P=P_{\theta}$ for some fixed θ, with invariant measure $\mu^{*}=\mu_{\theta}^{*}$. Let $h=\mu^{*}(f)$. Then, the Poisson equation

$$
\begin{equation*}
\left(I-P^{*}\right) u(x)=f(x)-h \tag{17}
\end{equation*}
$$

has a unique solution $u(\cdot)$ up to an additive constant. Henceforth, we shall consider the particular solution

$$
\begin{equation*}
u(x)=\sum_{n=0}^{\infty}\left(P^{* n} f(x)-h\right) \tag{18}
\end{equation*}
$$

which is well-defined, in fact the right hand side is absolute convergent, and in addition $\mu^{*}(u)=0$. Furthermore,

$$
\begin{equation*}
|u(x)| \leq\|\mid f\|_{\beta} K(x) \tag{19}
\end{equation*}
$$

where $K(x):=\frac{1}{1-\alpha}\left(2+\beta V(x)+\beta \frac{K}{1-\gamma}\right)$, also implying $\|u\|_{\beta}<\infty$.

Outline of the proof: It is immediate to check that (17) is formally satisfied by u. To show that u is well-defined, use:

$$
\begin{equation*}
\left|\int_{\mathbf{X}} \varphi(x)\left(\mu_{1}-\mu_{2}\right)(\mathrm{d} x)\right| \leq\|\varphi\|_{\beta} \sigma_{\beta}\left(\mu_{1}, \mu_{2}\right) \tag{20}
\end{equation*}
$$

For the nth term of the right hand side of (18), we have:

$$
\begin{array}{r}
\frac{1}{\|f\|_{\beta}}\left|P^{* n} f(x)-\mu^{*}(f)\right|=\frac{1}{\| \| f \|_{\beta}}\left|\left(P^{n} \delta_{x}-\mu^{*}\right)(f)\right| \\
=\frac{1}{\|f\|_{\beta}}\left|\int_{\mathbf{X}} f(y)\left(P^{n} \delta_{x}-P^{n} \mu^{*}\right)(\mathrm{d} y)\right|
\end{array}
$$

We can bound the right hand side by

$$
\sigma_{\beta}\left(P^{n} \delta_{x}, P^{n} \mu^{*}\right) \leq \alpha^{n} \sup _{\varphi:\|\varphi\|_{\beta} \leq 1} \int_{\mathbf{X}} \varphi(x)\left(\delta_{x}-\mu^{*}\right)(\mathrm{d} x)
$$

We conclude that the series $\sum_{n=0}^{\infty}\left(P^{* n} f(x)-h\right)$ is absolutely convergent, so $u(x)$ is well-defined and satisfies the desired upper bound. It is readily seen that

$$
\begin{equation*}
\int_{\mathbf{X}} u(x) \mu^{*}(\mathrm{~d} x)=0 \tag{21}
\end{equation*}
$$

The uniqueness follows directly from Proposition 1.
Now we consider a parametric family of kernels $\left(P_{\theta}\right)$ and that of functions $\left(f_{\theta}\right)$ for $\theta \in \Theta$, and impose appropriate smoothness conditions for them in the context of [5].

Assumption 3: There exists a constant L_{P} such that for every $\theta, \theta^{\prime} \in \Theta$ and $x \in \mathbf{X}$ it holds that

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta} \delta_{x}, P_{\theta^{\prime}} \delta_{x}\right) \leq L_{P}\left|\theta-\theta^{\prime}\right|(1+\beta V(x)) \tag{22}
\end{equation*}
$$

It is easy to show that, under a relaxed drift condition defined by Assumption 1 without assuming $\gamma<1$, and under Assumption 3, we have for every $\theta, \theta^{\prime} \in \Theta$ and every probability measure μ such that $\mu(V)<\infty$, the inequality

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta} \mu, P_{\theta^{\prime}} \mu\right) \leq L_{P}\left|\theta-\theta^{\prime}\right| \mu(1+\beta V) \tag{23}
\end{equation*}
$$

The above observation is easily extended from probability measures to signed measures η such that $|\eta|(V)<\infty$.

The class of functions $\left\{f_{\theta}: \mathbf{X} \rightarrow \mathbb{R} \mid \theta \in \Theta\right\}$ is characterized by the following assumption:

Assumption 4: We have $K_{f}:=\sup _{\theta \in \Theta}\| \| f_{\theta} \|_{\beta}<\infty$, and there exists a constant L_{f} such that, for all θ, θ^{\prime}, it holds that

$$
\begin{equation*}
\left\|f_{\theta}-f_{\theta^{\prime}}\right\|_{\beta} \leq L_{f}\left|\theta-\theta^{\prime}\right| \tag{24}
\end{equation*}
$$

The main result of the paper is as follows.
Theorem 2: Let Assumptions 1, 2, 3 and 4 hold, and consider the parameter-dependent Poisson equation

$$
\begin{equation*}
\left(I-P_{\theta}^{*}\right) u_{\theta}(x)=f_{\theta}(x)-h_{\theta} \tag{25}
\end{equation*}
$$

where $h_{\theta}=\mu_{\theta}^{*}\left(f_{\theta}\right)$. Then, h_{θ} is Lipschitz continuous in θ :

$$
\begin{equation*}
\left|h_{\theta}-h_{\theta^{\prime}}\right| \leq L_{h}\left|\theta-\theta^{\prime}\right| \tag{26}
\end{equation*}
$$

and the family of solutions $u_{\theta}(x)=\sum_{n=0}^{\infty}\left(P_{\theta}^{* n} f_{\theta}(x)-h_{\theta}\right)$, ensured by Theorem 1, is Lipschitz continuous in θ :

$$
\left|u_{\theta}(x)-u_{\theta^{\prime}}(x)\right| \leq L_{u}(1+\beta V(x))\left|\theta-\theta^{\prime}\right|
$$

where the constant L_{u} is independent of x. Note that this also implies $\left\|u_{\theta}-u_{\theta^{\prime}}\right\|_{\beta} \leq L_{u}\left|\theta-\theta^{\prime}\right|$.

Outline of the proof: Consider the extended parametric family of Poisson-equations, where P^{*} and f are independently parametrized, with the notation $h_{\theta, \psi}=\mu_{\theta}^{*}\left(f_{\psi}\right)$,

$$
\begin{equation*}
\left(I-P_{\theta}^{*}\right) u_{\theta, \psi}(x)=f_{\psi}(x)-h_{\theta, \psi} \tag{27}
\end{equation*}
$$

First, we prove that $h_{\theta, \psi}$ is Lipschitz-continuous in θ and ψ. Since $h_{\theta}=\mu_{\theta}^{*}\left(f_{\theta}\right)=h_{\theta, \theta}$, the Lipschitz-continuity of h_{θ}, stated in (26) then follows. We can write

$$
\begin{align*}
\left|h_{\theta, \psi}-h_{\theta, \psi^{\prime}}\right| & =\lim _{n \rightarrow \infty}\left|P_{\theta}^{* n} f_{\psi}(x)-P_{\theta}^{* n} f_{\psi^{\prime}}(x)\right|, \tag{28}\\
\left|h_{\theta, \psi}-h_{\theta^{\prime}, \psi}\right| & =\lim _{n \rightarrow \infty}\left|P_{\theta}^{* n} f_{\psi}(x)-P_{\theta^{\prime}}^{* n} f_{\psi}(x)\right| \tag{29}
\end{align*}
$$

We can bound the right hand side of (28) as follows:

$$
\begin{align*}
\left|P_{\theta}^{* n} f_{\psi}(x)-P_{\theta}^{* n} f_{\psi^{\prime}}(x)\right| & \leq\left(P_{\theta}^{* n}\left|f_{\psi}-f_{\psi^{\prime}}\right|\right)(x) \\
& =\left(P_{\theta}^{n} \delta_{x}\right)\left|f_{\psi}-f_{\psi^{\prime}}\right| \tag{30}
\end{align*}
$$

Using the Lipschitz continuity of f as given by Assumption 4 and the drift condition Assumption 1, we finally get
$\limsup _{n \rightarrow \infty}\left|P_{\theta}^{* n} f_{\psi}(x)-P_{\theta}^{* n} f_{\psi^{\prime}}(x)\right| \leq L_{f}\left|\psi-\psi^{\prime}\right|\left[1+\beta \frac{K}{1-\gamma}\right]$.
To continue the proof of the we will have to establish the Lipschitz-continuity of the powers of the kernel P_{θ}^{n} together with an upper bound for the Lipschitz constants. We can show that for any probability measure μ with $\mu(V)<\infty$,

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta}^{n} \mu, P_{\theta^{\prime}}^{n} \mu\right) \leq L_{P}\left|\theta-\theta^{\prime}\right|\left(L_{P}^{\prime}+\frac{\alpha^{n}}{\alpha-\gamma} \beta \mu(V)\right) \tag{31}
\end{equation*}
$$

where L_{P}^{\prime} is determined by the constants showing up in the assumptions for P_{θ}. The proof is obtained by using a kind of telescopic inequality.

A direct corollary is that for measurable functions φ with $\|\varphi\|_{\beta}<\infty$ it holds that $\left|P_{\theta}^{* n} \varphi(x)-P_{\theta^{\prime}}^{* n} \varphi(x)\right|$ is bounded from above by

$$
\begin{equation*}
\||\varphi|\|_{\beta} L_{P}\left|\theta-\theta^{\prime}\right|\left(L_{P}^{\prime}+\frac{\alpha^{n}}{\alpha-\gamma} \beta V(x)\right) \tag{32}
\end{equation*}
$$

From (31) above we immediately get the Lipschitz-continuity of the invariant measures with $L_{P}^{\prime \prime}=L_{P} L_{P}^{\prime}$:

$$
\begin{equation*}
\sigma_{\beta}\left(\mu_{\theta}^{*}, \mu_{\theta^{\prime}}^{*}\right) \leq L_{P}^{\prime \prime}\left|\theta-\theta^{\prime}\right| \tag{33}
\end{equation*}
$$

Inequality (31) has an effective extension for signed measures η satisfying the additional condition $\eta(\mathbf{X})=0$:

Lemma 2: Assume that Assumptions 1, 2, and 3 hold. Then for every $\theta, \theta^{\prime} \in \Theta$ and every signed measure η such that $|\eta|(V)<\infty$ and $\eta(\mathbf{X})=0$, we have

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta}^{n} \eta, P_{\theta^{\prime}}^{n} \eta\right) \leq L_{P}\left|\theta-\theta^{\prime}\right| n \alpha^{n-1}|\eta|(1+\beta V) \tag{34}
\end{equation*}
$$

Returning to the right hand side of (29) we use the upper bound (32) with $\varphi=f_{\psi}$ and let n go to infinity:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|P_{\theta}^{* n} f_{\psi}(x)-P_{\theta^{\prime}}^{* n} f_{\psi}(x)\right| \leq\| \| f_{\psi} \|_{\beta} L_{P}^{\prime \prime}\left|\theta-\theta^{\prime}\right| \tag{35}
\end{equation*}
$$

Next, we consider the Lipschitz continuity of the doublyparametrized particular solution

$$
\begin{equation*}
u_{\theta, \psi}(x)=\sum_{n=0}^{\infty}\left(P_{\theta}^{* n} f_{\psi}(x)-h_{\theta, \psi}\right) \tag{36}
\end{equation*}
$$

The critical point is to show that $u_{\theta, \psi}(x)$ is Lipschitzcontinuous in θ. Consider the measure in the n-th term:

$$
\left[P_{\theta}^{n}\left(\delta_{x}-\mu_{\theta}^{*}\right)-P_{\theta^{\prime}}^{n}\left(\delta_{x}-\mu_{\theta}^{*}\right)\right]+\left[P_{\theta^{\prime}}^{n}\left(\mu_{\theta^{\prime}}^{*}-\mu_{\theta}^{*}\right)\right]
$$

The second term of the right hand side can be readily handled by (33), while the first term can be dealt with using Lemma 2 setting $\eta=\delta_{x}-\mu_{\theta}^{*}$. The rest of the proof is analogous to the proof of Theorem 1.

IV. Relaxations of the Uniform Drift Condition

A delicate condition of Propositions 1-3 is Assumption 1, requiring the existence of a common Lyapunov function. This requirement may be too restrictive even in the case of linear stochastic systems as discussed in Section II. However, assuming that $\left(A_{\theta}\right), \theta \in \Theta$ is a compact set of stable matrices we can find a positive integer r such that $\left\|A_{\theta}^{r}\right\| \leq$ $\gamma_{r}<1$ for all $\theta \in \Theta$. This example motivates the following relaxation of the drift condition, given as Assumption 1:

Assumption 5 (Uniform Drift Condition for P_{θ}^{r}):
There exists a positive integer r, a measurable function $V: \mathbf{X} \rightarrow[0, \infty)$ and constants $\gamma_{r} \in(0,1)$ and $K_{r} \geq 0$ such that for all $\theta \in \Theta$ and $x \in \mathbf{X}$, we have

$$
\begin{equation*}
\left(P_{\theta}^{* r} V\right)(x) \leq \gamma_{r} V(x)+K_{r} \tag{37}
\end{equation*}
$$

and the following uniform one-step growth condition holds:

$$
\begin{equation*}
\left(P_{\theta}^{*} V\right)(x) \leq \gamma_{1} V(x)+K_{1} \tag{38}
\end{equation*}
$$

where we can and will assume that $\gamma_{1}>1$ and $K_{1} \geq 0$.
Note that (38) implies that for any $\beta>0$ there exist $C^{\prime}>$ 0 such that for any function $\varphi \in \mathcal{L}_{V}$ we have

$$
\begin{equation*}
\left\|\mid P_{\theta}^{*} \varphi\right\|_{\beta} \leq \alpha^{\prime}\|\varphi\|_{\beta} \tag{39}
\end{equation*}
$$

for all θ with $\alpha^{\prime}=\max \left(1+\beta K_{1}, \gamma_{1}\right)$. From here, repeating the arguments leading to Proposition 2, we get:

Lemma 3: Assume (38), then for any pair of probability measures μ_{1}, μ_{2} on \mathbf{X} such that $\mu_{1}(V), \mu_{2}(V)<\infty$ and any $\beta>0$, we have for all θ,

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta} \mu_{1}, P_{\theta} \mu_{2}\right) \leq \alpha^{\prime} \sigma_{\beta}\left(\mu_{1}, \mu_{2}\right) \tag{40}
\end{equation*}
$$

Assumption 6 (Uniform Local Minorization for P_{θ}^{r}): Let $R_{r}>2 K_{r} /\left(1-\gamma_{r}\right)$ where γ_{r} and K_{r} are the constants from Assumption 5 and $\mathcal{C}_{r}=\left\{x \in \mathbf{X}: V(x) \leq R_{r}\right\}$. There exist a probability measure $\bar{\mu}_{r}$ and a constant $\bar{\alpha}_{r} \in(0,1)$ such that for all $\theta \in \Theta, x \in \mathcal{C}_{r}$ and measurable A it holds

$$
\begin{equation*}
P_{\theta}^{r}(x, A) \geq \bar{\alpha}_{r} \bar{\mu}_{r}(A) \tag{41}
\end{equation*}
$$

The main results cited in Section II can be extended, with minor modifications, assuming the above relaxed conditions. For now we fix any $\theta \in \Theta$ and write $P_{\theta}=P$. Proposition 1 can be restated as follows:

Theorem 3: Under Assumptions 5 and 6 there exist $\alpha \in$ $(0,1), \beta>0$ and $C>0$ such that for any measurable φ and $n>0$ we have

$$
\left\|P^{* n} \varphi\right\|_{\beta} \leq C \alpha^{n}\|\varphi\|_{\beta}
$$

where we can choose $\beta=\beta_{r}$, given by Proposition 1 applied to $P^{r}, \alpha=\alpha_{r}^{1 / r}$ with some $C>0$.

Proof: By Proposition 1 there exist $\beta=\beta_{r}>0$, and $\alpha_{r} \in(0,1)$ such that $\left\|P^{* r} \varphi\right\|_{\beta} \leq \alpha_{r}\|\varphi\|_{\beta}$, implying for any positive integer m

$$
\begin{equation*}
\left\|P^{* r m} \varphi\right\|_{\beta} \leq \alpha_{r}^{m}\|\varphi\|_{\beta} \tag{42}
\end{equation*}
$$

For a general positive integer n write $n=r m+k$ with $0 \leq k \leq r-1$ to get

$$
\begin{equation*}
\left\|\left\|P^{* n} \varphi\right\|_{\beta} \leq \alpha_{r}^{m}\right\|\left\|P^{* k} \varphi\right\|_{\beta} \tag{43}
\end{equation*}
$$

To complete the proof apply (39) and obtain

$$
\begin{equation*}
\left\|P^{* n} \varphi\right\|_{\beta} \leq \alpha_{r}^{m}\left(C^{\prime}\right)^{r-1}\|\varphi\|_{\beta} \tag{44}
\end{equation*}
$$

Now $m=(n-k) / r>n / r-1$, hence $\alpha_{r}^{m}<\alpha_{r}^{n / r} \alpha_{r}^{-1}$, and thus the claim follows.

Proposition 2 takes now the following modified form:
Theorem 4: Under Assumptions 5 and 6 there exist $\alpha \in$ $(0,1), \beta>0$ and $C>0$ such that for any $n>0$,

$$
\begin{equation*}
\sigma_{\beta}\left(P^{n} \mu_{1}, P^{n} \mu_{2}\right) \leq C \alpha^{n} \sigma_{\beta}\left(\mu_{1}, \mu_{2}\right) \tag{45}
\end{equation*}
$$

for every pair of probability measures μ_{1}, μ_{2} on \mathbf{X}, where α and C are given in Theorem 3.

Finally, we have the following extension of Proposition 3:
Theorem 5: Under Assumptions 5 and 6 there exists a unique probability measure μ^{*} on \mathbf{X} such that $\int_{\mathbf{X}} V \mathrm{~d} \mu^{*}<$ ∞ and $P \mu^{*}=\mu^{*}$. Denoting the unique invariant probability measure for P^{r} by μ_{r}^{*} we have $\mu^{*}=\mu_{r}^{*}$.

Proof: Let μ_{r}^{*} be the unique invariant probability measure for P^{r} the existence of which is ensured by Proposition 3. Then $\int_{\mathbf{X}} V \mathrm{~d} \mu_{r}^{*}<\infty$ implies $\int_{\mathbf{X}} V \mathrm{~d}\left(P^{k} \mu_{r}^{*}\right)<\infty$ for any $k>0$ by the one-step growth condition, see (39). It follows that the probability measure μ defined by

$$
\mu=\frac{1}{r}\left(I+P+\ldots P^{r-1}\right) \mu_{r}^{*}
$$

also satisfies $\int_{\mathbf{X}} V \mathrm{~d} \mu<\infty$, and it is readily seen that it is invariant for P. Since any probability measure invariant for P is also invariant for P^{r}, we have $\mu=\mu_{r}^{*}$. The uniqueness of an invariant probability measure for P follows by noting once again if μ^{\prime} is invariant for P then it is also invariant for P^{r}, and hence we must have $\mu^{\prime}=\mu_{r}^{*}$.
The main results of Section III can now be extended, with minor modifications, assuming the above relaxed conditions. For the extension of Theorem 1 we fix once again any $\theta \in \Theta$ and write $P_{\theta}=P$:

Theorem 6: Assume that the kernel P^{r} satsifies Assumptions 5 and 6 . Let $\beta>0$ be as given in Proposition 1 w.r.t. the kernel P^{r}. Let f be a measurable function such that $\|f\|_{\beta}<\infty$. Let μ^{*} denote the unique invariant probability measure of P, and $h=\mu^{*}(f)$. Then, the Poisson equation

$$
\begin{equation*}
\left(I-P^{*}\right) u(x)=f(x)-h \tag{46}
\end{equation*}
$$

has a unique solution u up to additive constants, and considering the particular solution u with $\mu^{*}(u)=0$, we have

$$
\begin{equation*}
|u(x)| \leq K(1+\beta V(x))\| \| f \|_{\beta} \tag{47}
\end{equation*}
$$

for some constant $K>0$ depending only on the constants appearing in Assumptions 5 and 6.

Outline of the proof: The starting point is the Poisson equation for $P^{* r}$, noting that $h=\mu^{*}(f)=\mu_{r}^{*}(f)$,

$$
\begin{equation*}
\left(I-P^{* r}\right) v(x)=f(x)-h \tag{48}
\end{equation*}
$$

Consider the particular solution

$$
\begin{equation*}
v(x)=\sum_{n=0}^{\infty}\left(P^{* n r} f(x)-h\right) \tag{49}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
u(x):=\left(I+P^{*}+\ldots+P^{*(r-1)}\right) v(x) \tag{50}
\end{equation*}
$$

is a solution of (46) and satisfies (47). Considering the uniqueness of the solution, for the difference of two solutions Δu we have $P^{*} \Delta u(x)=0$, for all x. Then applying $r-1$ times P^{*} we get $P^{* r} \Delta u(x)=0$, for all x, and thus by Theorem 1 we conclude that Δu is a constant function.

A straightforward extension of Theorem 2 is the following:
Theorem 7: Assume that the kernels $\left(P_{\theta}^{r}\right)$ satsify Assumptions 5 and 6. Let $\beta>0$ be as given in Proposition 1 w.r.t. the kernel $\left(P_{\theta}^{r}\right)$. Assume $\left(P_{\theta}\right)$ also satisfy Assumption 3. Finally, let $\left(f_{\theta}\right)$ be a family of measurable functions $\mathbf{X} \rightarrow$ \mathbb{R} such that Assumption 4 holds. Let μ_{θ}^{*} denote the unique invariant probability measure of P_{θ}, and let $h_{\theta}=\mu_{\theta}^{*}\left(f_{\theta}\right)$. Consider the parameter-dependent Poisson equation

$$
\begin{equation*}
\left(I-P_{\theta}^{*}\right) u_{\theta}(x)=f_{\theta}(x)-h_{\theta} \tag{51}
\end{equation*}
$$

Then, h_{θ} is Lipschitz continuous in θ :

$$
\begin{equation*}
\left|h_{\theta}-h_{\theta^{\prime}}\right| \leq L_{h}\left|\theta-\theta^{\prime}\right| \tag{52}
\end{equation*}
$$

and the particular solution $u_{\theta}(x)=\sum_{n=0}^{\infty}\left(P_{\theta}^{* n} f_{\theta}(x)-h_{\theta}\right)$ is well-defined for all θ, and Lipschitz continuous in θ,

$$
\begin{equation*}
\left|u_{\theta}(x)-u_{\theta^{\prime}}(x)\right| \leq L_{u}\left|\theta-\theta^{\prime}\right|(1+\beta V(x)) \tag{53}
\end{equation*}
$$

where the constants L_{h} and L_{u} are independent of x.
Outline of the proof: First we prove that $h_{\theta}=\mu_{\theta, r}^{*}\left(f_{\theta}\right)$ is Lipschitz-continuous referring to Theorem 2 with P_{θ}^{r} replacing P_{θ}. For this we will have to verify Assumption 3 (with P_{θ}^{r} replacing P_{θ}). This is done by extending (31) assuming only the validity of Assumption 3 for P_{θ} and the uniform one-step growth condition, see Assumption 5. We get for any pair $\theta, \theta^{\prime} \in \Theta$, for any probability measure μ such that $\mu(V)<\infty$ and for any $n>0$ we have

$$
\begin{equation*}
\sigma_{\beta}\left(P_{\theta}^{n} \mu, P_{\theta^{\prime}}^{n} \mu\right) \leq L_{P}^{\prime \prime}\left|\theta-\theta^{\prime}\right|\left(\alpha^{\prime}\right)^{n}(1+\beta \mu(V)) \tag{54}
\end{equation*}
$$

choosing $\alpha^{\prime}>\gamma_{1}$, with $L_{P}^{\prime \prime}$ depending only on n and the constants appearing in the conditions of the theorem.

It follows, in view of Theorem 2, that the particular solution of the Poisson equation

$$
\begin{equation*}
\left(I-P_{\theta}^{* r}\right) v_{\theta}(x)=f_{\theta}(x)-h_{\theta} \tag{55}
\end{equation*}
$$

given by $v_{\theta}(x)=\sum_{n=0}^{\infty} P_{\theta}^{* n r}\left(f_{\theta}(x)-h_{\theta}\right)$ is Lipschitzcontinuous and satisfies

$$
\begin{equation*}
\left|v_{\theta}(x)-v_{\theta^{\prime}}(x)\right| \leq L_{v}\left|\theta-\theta^{\prime}\right|(1+\beta V(x)) \tag{56}
\end{equation*}
$$

Recalling that $\left(P_{\theta}^{* m} f_{\theta}\right)(x)=P_{\theta}^{m} \delta_{x}(f)$, using (54) it is readily seen that the solution of (51) defined by

$$
\begin{equation*}
u_{\theta}(x):=\left(I+P_{\theta}^{*}+\ldots+P_{\theta}^{*(r-1)}\right) v_{\theta}(x) \tag{57}
\end{equation*}
$$

is Lipschitz continuous in θ, and due to the one-step growth condition it satisfies (53), completing the proof.

V. Discussion

The verification of Assumption 5 may seem to be too demanding. We propose a simple alternative criterion:

Assumption 7 (Individual Drift Conditions): There exists a family of measurable functions $V_{\theta}: \mathbf{X} \rightarrow[0, \infty)$ and constants $\gamma \in(0,1)$ and $K \geq 0$ such that for all x and θ

$$
\begin{equation*}
\left(P_{\theta}^{*} V_{\theta}\right)(x) \leq \gamma V_{\theta}(x)+K \tag{58}
\end{equation*}
$$

moreover, there exists a measurable $V: \mathbf{X} \rightarrow[0, \infty)$ and constants a, b, c, d with $a, c>0$, such that

$$
\begin{equation*}
a V(x)+b \leq V_{\theta}(x) \leq c V(x)+d \tag{59}
\end{equation*}
$$

Under Assumption 7, for any sufficiently large r Assumption 5 is satisfied with the function V. It is also easily seen that Theorem 7 remains valid under conditions imposed on the one-step kernels $\left(P_{\theta}\right)$, namely Assumptions 7 and 2.

A possible alternative set of conditions under which the problems of the paper may be worth studying is provided by the theory developed in [10], extended in later works, such as [6] and [7]. However, the extension of Assumption 3 on the Lipschitz-continuity of P_{θ}, so that the Lipschitz-continuity of $\left(I-P_{\theta}\right)^{-1}$ is implied, does not seem obvious.

References

[1] Krishna B. Athreya and Peter Ney. A new approach to the limit theory of recurrent Markov chains. Transactions of the American Mathematical Society, 245:493-501, 1978.
[2] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic approximations. Springer, 2nd edition, 1990.
[3] Nicolas Brosse, Alain Durmus, Sean Meyn, Éric Moulines, and Anand Radhakrishnan. Diffusion approximations and control variates for MCMC. arXiv:1808.01665, 2018.
[4] László Gerencsér. Rate of convergence of recursive estimators. SIAM Journal on Control and Optimization, 30(5):1200-1227, 1992.
[5] Martin Hairer and Jonathan C. Mattingly. Yet another look at Harris ergodic theorem for Markov chains. In Seminar on Stochastic Analysis, Random Fields and Applications VI, pages 109-117. Springer, 2011.
[6] Ioannis Kontoyiannis and Sean Meyn. Spectral theory and limit theorems for geometrically ergodic Markov processes. The Annals of Applied Probability, 13(1):304-362, 2003.
[7] Ioannis Kontoyiannis and Sean Meyn. Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electronic Journal of Probability, 10:61-123, 2005.
[8] Lennart Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic Control, 22(4):551-575, 1977.
[9] Lennart Ljung and Torsten Söderström. Theory and practice of recursive identification. MIT Press, 1983.
[10] Sean Meyn and Richard L. Tweedie. Markov chains and stochastic stability. Springer-Verlag London, 2009.
[11] Esa Nummelin. A splitting technique for Harris recurrent Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 43(4):309-318, 1978.
[12] Paul J. Schweitzer. Perturbation theory and finite Markov chains. Journal of Applied Probability, 5(2):401-413, 1968.

[^0]: *B. Cs. Csáji was supported by the Nat. Res., Dev. and Innov. Office (NKFIH), grant numbers ED_18-2-2018-0006 and KH_17 125698. M. Rásonyi and B. Gerencsér were supported by the NKFIH grant KH 126505 and by the "Lendület" grant LP 2015-6 of the Hungarian Academy of Sciences. B. Gerencsér was also supported by the NKFIH grant PD 121107.
 ${ }^{1} \mathrm{~A}$. Carè is with Dipartimento di Ingegneria dell'Informazione, Università di Brescia, Brescia, Italy, algo. care@unibs.it
 ${ }^{2}$ L. Gerencsér and B. Cs. Csáji are with MTA SZTAKI: Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary, gerencser@sztaki.hu, csaji@sztaki.hu
 ${ }^{3}$ B. Gerencsér and M. Rásonyi are with Alfréd Rényi Institute of Mathematics, Budapest, Hungary, gerencser.balazs@renyi.hu, rasonyi@renyi.hu

