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Abstract— The objective of the present paper is to revisit
a key mathematical technology within the theory of stochas-
tic approximation in a Markovian framework, elaborated in
much detail in [2]: the existence, uniqueness and smoothness
(Lipschitz-continuity) of the solutions of a parameter-dependent
Poisson equation. The starting point of our investigation is a
relatively new, elegant stability theory for Markov processes
developed by Hairer and Mattingly [5]. The current paper
provides a transparent analysis of parameter-dependent Poisson
equations with convenient conditions. The application of our
results for the ODE analysis of stochastic approximation in a
Markovian framework is the subject of a forthcoming paper.

I. INTRODUCTION

A beautiful area of systems and control theory is recursive
identification, and stochastic adaptive control of stochastic
systems. In an abstract mathematical framework [2] [9] the
key problem is to solve a non-linear algebraic equation

EH(Xn(θ), θ) = 0, (1)

where θ ∈ Rk is an unknown, vector-valued parameter of a
physical plant or controller, (Xn(θ)), −∞ < n < +∞ is a
strictly stationary stochastic process, representing a physical
signal affected by θ, and H(X, θ) is a computable function.
The same mathematical framework is applied in other fields
such as adaptive signal processing and machine learning.

Our objective is to find the root of (1), denoted by θ∗, via
a recursive algorithm based on computable approximations
of H(Xn(θ), θ). In the case when H(Xn(θ), θ) = h(θ)+en,
where (en) is an i.i.d. process, or a martingale difference se-
quence, we get a classical stochastic approximation process.

An early version of the above problem is presented in
the celebrated paper by Ljung [8], in which (Xn(θ)) was
assumed to be defined via a linear stochastic system driven
by a weakly dependent process.

A renewed interest in recursive estimation in a Markovian
framework was sparked by the excellent book of Benveniste,
Métivier and Priouret [2] elaborating an extensive mathemat-
ical technology for the analysis of these processes. A central
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tool in their analysis is a complex set of results concerning
the parameter-dependent Poisson equation. This is carried out
by a specific stability theory for a class of Markov processes,
which is off the track of usual methodologies, e.g., Athreya
and Ney [1], Nummelin [11], Meyn and Tweedie [10].

The enormous practical value of the estimation problem in
a Markovian framework motivates our interest to revisit the
theory of [2], and see if their analysis can be simplified or
even extended in the light of recent progress in the theory of
Markov processes. The starting point of our investigation is a
relatively new, elegant stability theory for Markov processes
developed by Hairer and Mattingly [5].

The focus of the present paper is the study of the
parameter-dependent Poisson equation formulated as

(I − P ∗θ )uθ(x) = fθ(x)− hθ, (2)

where Pθ is the probability transition kernel of the Markov
process (Xn(θ)), with P ∗θ uθ(·) denoting the action of Pθ on
the unknown function uθ(·), and fθ(·) is an a priori given
function defined on the state-space of the process, finally hθ
denotes the mean value of fθ(·) under the assumed unique
invariant measure, say µ∗θ , corresponding to Pθ.

The Poisson equation is a simple and effective tool to
study additive functionals on Markov-processes of the form

N∑
n=1

(
H(Xn(θ), θ)− Eµ∗θH(Xn(θ), θ)

)
(3)

via martingale techniques. Proving the Lipschitz continuity
of uθ(x) w.r.t. θ, and providing useful upper bounds for
the Lipschitz constants are vital technical tools for an ODE
analysis proposed in [2, Chapter 2, Part II]. The analysis
of the Poisson equation takes up more than half of the
efforts in proving the basic convergence results in [2], and
the verification of their conditions is far from being trivial.

The objective of our project is to revisit the relevant
mathematical technologies and outline a hopefully more
transparent and flexible analysis within the setup of [5]. The
present paper is devoted to the first half of this project, the
analysis of the parameter-dependent Poisson equation.

The application of our results for stochastic approximation
within a Markovian framework is the subject of a forth-
coming paper, in which a combination of the ODE analysis
developed in [2] and [4] is to be extended using the results
of the current paper. In the end we get the expected rate of
convergence for the moments of the estimation error under
a convenient set of conditions.

The significance of the topic of the paper is reinforced by
the current intense interest in the minimization of functions



computed via MCMC [3]. To complement the above histor-
ical perspective we should note that the problem goes back
to [12], providing results for finite state Markov chains. The
extension of these results for more general state-spaces is far
from trivial, posing the challenge to choose an appropriate
distance of measures.

The structure of the paper is as follows: in Section II
we provide a brief introduction to the stability theory for
Markov chains developed in [5]. The main results of the
paper are stated in Section III, culminating in Theorem 2,
proving the Lipschitz continuity of a parameter-dependent
Poisson equation. These results are extended in Section IV, in
particular, the uniform drift condition, stated as Assumption
1, is significantly relaxed. Our primary objective is to provide
a clear, well-motivated presentation of the new concepts and
results accompanied by a bird’s-eye view on the proofs.

II. A BRIEF SUMMARY OF
A NEW STABILITY THEORY FOR MARKOV CHAINS

Let (X,A) be a measurable space and Θ ⊆ Rk be a
domain (i.e., a connected open set). Consider a class of
Markov transition kernels Pθ(x,A), that is for each θ ∈ Θ,
x ∈ X, Pθ(x, ·) is a probability measure over X, and for
each A ∈ A, P·(·, A) is (x, θ)-measurable. Let (Xn(θ)),
n ≥ 0, be a Markov chain with transition kernel Pθ. For
any probability measure µ and measurable ϕ : X→ R define

(Pθµ)(A) =

∫
X

Pθ(x,A)µ(dx),

(P ∗θ ϕ)(x) =

∫
X

ϕ(y)Pθ(x,dy) = Eθ
[
ϕ(X1) | X0 = x

]
,

assuming the integral exists. The next condition is motivated
by [5], stated there for single Markov chains.

Assumption 1 (Uniform Drift Condition for Pθ): There
exists a measurable function V : X→ [0,∞) and constants
γ ∈ (0, 1) and K ≥ 0 such that

(P ∗θ V )(x) ≤ γV (x) +K, (4)

for all x ∈ X and θ ∈ Θ. Note that V (x) is not θ-dependent.

Remark 1: The drift condition implies that for any prob-
ability measure µ such that µ(V ) :=

∫
X
V (x)µ(dx) <∞,

Pθµ(V ) ≤ γµ(V ) +K. (5)

Indeed, integrating (4) with respect to µ we get (5).
As an example, consider a family of linear stochastic

systems with state vectors Xθ,n:

Xθ,n+1 = AθXθ,n +BθUn,

where θ ∈ Θ, the matrix Aθ is stable for all θ ∈ Θ, and (Un)
is an i.i.d. sequence random vectors such that E [Un] = 0 and
E [UnU

>
n ] = S exists and is finite. Setting V (x) = x>Qx,

where Q is a common symmetric positive definite matrix, it
can be easily seen that

(P ∗θ V )(x) = x>A>θ QAθx+ tr(B>θ QBθS).

It can be easily seen that the drift condition in the present
case is equivalent to A>θ QAθ ≤ γ Q, with γ < 1, for all θ,
in the sense of the semi-definite ordering.

It may seem too restrictive to assume the existence of a
common quadratic Lyapunov function V for all θ. Inspired
by alternative conditions that are applicable for this class of
processes, Assumption 1 will be relaxed in Section IV.

The next condition is a natural extension of the cor-
responding assumption of [5] for a parametric family of
Markov chains, which itself is a modification of a standard
condition in the stability theory of Markov chains [10].

Assumption 2 (Local Minorization): Let R > 2K/(1−γ),
where γ and K are the constants from Assumption 1, and
set C = {x ∈ X : V (x) ≤ R}. There exist a probability
measure µ̄ on X and a constant ᾱ ∈ (0, 1) such that, for all
θ ∈ Θ, all x ∈ C, and all measurable A,

Pθ(x,A) ≥ ᾱµ̄(A).

Remark 2 (Interpretation of R): If there exists an invari-
ant measure µ∗θ such that

∫
X
V (x)µ∗θ(dx) < ∞, then

integrating both sides of inequality (4), we get∫
X

V (x)µ∗θ(dx) ≤ K

1− γ
. (6)

Thus, R in Assumption 2 exceeds twice the mean of V w.r.t.
any of the invariant measures.

Assumption 2 is a major point of departure from the theory
developed in [10], where the ”small set” C is defined in terms
of an irreducibility measure ψ such that ψ(C) > 0.

We now introduce a weighted total variation distance be-
tween two probability measures µ1, µ2, where the weighting
is in the form 1+βV (·), where β > 0 for which a fine-tuned
choice will be needed for the results of [5] to hold.

Definition 1: Let µ1 and µ2 be two probability measures
on X. Then, define the weighted total variation distance as

ρβ(µ1, µ2) =

∫
X

(1 + βV (x))|µ1 − µ2|(dx),

where |µ1 − µ2| is the total variation measure of (µ1 − µ2).

An equivalent definition of ρβ can be given by introducing
the following norm in the space of R-valued functions on X:

Definition 2: For any function ϕ : X→ R, set

‖ϕ‖β = sup
x

|ϕ(x)|
1 + βV (x)

. (7)

The linear space of real-valued ameasurable functions such
that ‖ϕ‖β < ∞ will be denoted by LV . Note that LV is
independent of β. An equivalent definition of ρβ is:

ρβ(µ1, µ2) = sup
ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)(µ1 − µ2)(dx). (8)

Denoting by δx the Dirac measure at x, note that, for
x 6= y, it holds that ρβ(δx, δy) = 2 + βV (x) + βV (y). This
leads to the definition of the following metric on X:

dβ(x, y) =

{
2 + βV (x) + βV (y) if x 6= y,

0 if x = y.
(9)



This may seem to be an unusual metric, assigning a distance
at least 2 between any pair of distinct points, but it turns out
to be quite useful. Having a metric on X, we can introduce
a measure of oscillation for functions ϕ : X→ R.

Definition 3: For any function ϕ : X→ R, set

|||ϕ|||β = sup
x 6=y

|ϕ(x)− ϕ(y)|
dβ(x, y)

. (10)

It is readily seen that |||ϕ|||β ≤ ‖ϕ‖β . Since |||ϕ|||β is
invariant w.r.t. translation by any constant c ∈ R we also
get |||ϕ|||β ≤ ‖ϕ + c‖β . Surprisingly, the infimum, and in
fact the minimum, of these upper bounds reproduces |||ϕ|||β
as stated in the following lemma proved in [5]:

Lemma 1: |||ϕ|||β = minc∈R ‖ϕ+ c‖β .

Definition 4: Let µ1, µ2 be two probability measures on
X. Then, we define the distance

σβ(µ1, µ2) = sup
ϕ:|||ϕ|||β≤1

∫
X

ϕ(x)(µ1 − µ2)(dx). (11)

A relatively simple corollary of Lemma 1 is the following:

Corollary 1: For probability measures µ1, µ2, we have

σβ(µ1, µ2) = ρβ(µ1, µ2). (12)

Remark 3: The metrics ρβ(µ1, µ2) and σβ(µ1, µ2) de-
pend only on (µ1 − µ2), therefore they can be expressed by
the univariate functions ρβ(η) and σβ(η) defined for signed
measures η with |η|(V ) <∞ and η(X) = 0 as

σβ(η) =

∫
X

(1 + βV (x))|η|(dx)

= sup
ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)η(dx)

= sup
ϕ:|||ϕ|||β≤1

∫
X

ϕ(x)η(dx). (13)

A fundamental result of [5, Theorem 3.1] is as follows:

Proposition 1: Under Assumptions 1 and 2, there exists
α ∈ (0, 1) and β > 0 such that for all θ and measurable ϕ,

|||P ∗θ ϕ|||β ≤ α|||ϕ|||β . (14)

In particular, one can choose β = ᾱ/(2K), and then choose
any α such that α > (1 − ᾱ/2) ∨ 2+β(Rγ+2K)

2+βR , where this
lower bound can be seen to be strictly less than 1.

Remark 4: Note that with the choice of α as given in
Proposition 1 it holds that 1 > α > γ. This indicates that the
contraction coefficient α is strictly larger than the contraction
coefficient γ postulated by the drift condition.

A corollary of Proposition 1 stated in [5, Theorem 1.3] is:

Proposition 2: Under Assumptions 1 and 2, there exists
α ∈ (0, 1) and β > 0, such that for all θ,

σβ(Pθµ1, Pθµ2) ≤ ασβ(µ1, µ2), (15)

for any pair of probability measures µ1, µ2 on X.

In what follows, α and β are chosen as indicated in
Proposition 1. Using standard arguments one can easily show
the following theorem also stated in [5] as Theorem 3.2:

Proposition 3: Under Assumptions 1 and 2 for all θ
there is a unique probability measure µ∗θ on X such that∫
X
V dµ∗θ <∞ and Pθµ∗θ = µ∗θ.

Similar results to those of Propositions 2 and 3 are stated
in Theorem 14.0.1 [10] under slightly different conditions.
In particular, the special choice of the parameter β in the
weighting function 1 + βV is not part of the conditions in
[10] at the price that the contraction of the one-step kernel
Pθ is not stated. In addition, in [10] it is a priori assumed
that the Markov-chain is ψ-irreducible and aperiodic, while
in [5] these conditions are circumvented by assuming that
the minorization condition holds on a fairly large set.

III. LIPSCHITZ CONTINUITY OF THE
SOLUTION OF A θ-DEPENDENT POISSON EQUATION

In this section we shall consider the Poisson equation

(I − P ∗θ )uθ(x) = fθ(x)− hθ, (16)

for θ ∈ Θ, where Pθ is given above and fθ : X → R,
hθ = µ∗θ(fθ), and we look for a solution uθ : X→ R. First,
we prove the existence and the uniqueness of the solution for
a fixed θ, then we formulate smoothness conditions on the
kernel P ∗θ , and the right hand side, fθ. Using these conditions
we prove the Lipschitz continuity of the solution uθ(·) in θ.
For a start let θ ∈ Θ be fixed.

Theorem 1: Let Assumptions 1 and 2 hold. Let f be a
measurable function X → R such that |||f |||β < ∞ and let
P = Pθ for some fixed θ, with invariant measure µ∗ = µ∗θ .
Let h = µ∗(f). Then, the Poisson equation

(I − P ∗)u(x) = f(x)− h (17)

has a unique solution u(·) up to an additive constant.
Henceforth, we shall consider the particular solution

u(x) =

∞∑
n=0

(P ∗nf(x)− h), (18)

which is well-defined, in fact the right hand side is absolute
convergent, and in addition µ∗(u) = 0. Furthermore,

|u(x)| ≤ |||f |||βK(x), (19)

where K(x) := 1
1−α

(
2 + βV (x) + β K

1−γ

)
, also implying

‖u‖β <∞.

Outline of the proof: It is immediate to check that (17) is
formally satisfied by u. To show that u is well-defined, use:∣∣∣∣∫

X

ϕ(x)(µ1 − µ2)(dx)

∣∣∣∣ ≤ |||ϕ|||βσβ(µ1, µ2). (20)

For the n th term of the right hand side of (18), we have:
1

|||f |||β
|P ∗nf(x)− µ∗(f)| = 1

|||f |||β
|(Pnδx − µ∗)(f)|

=
1

|||f |||β

∣∣∣∣∫
X

f(y)(Pnδx − Pnµ∗)(dy)

∣∣∣∣ .



We can bound the right hand side by

σβ(Pnδx, P
nµ∗) ≤ αn sup

ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)(δx − µ∗)(dx).

We conclude that the series
∑∞
n=0(P ∗nf(x) − h) is

absolutely convergent, so u(x) is well-defined and satisfies
the desired upper bound. It is readily seen that∫

X

u(x)µ∗(dx) = 0. (21)

The uniqueness follows directly from Proposition 1.
Now we consider a parametric family of kernels (Pθ) and

that of functions (fθ) for θ ∈ Θ, and impose appropriate
smoothness conditions for them in the context of [5].

Assumption 3: There exists a constant LP such that for
every θ, θ′ ∈ Θ and x ∈ X it holds that

σβ(Pθδx, Pθ′δx) ≤ LP |θ − θ′|(1 + βV (x)). (22)

It is easy to show that, under a relaxed drift condition
defined by Assumption 1 without assuming γ < 1, and
under Assumption 3, we have for every θ, θ′ ∈ Θ and every
probability measure µ such that µ(V ) <∞, the inequality

σβ(Pθµ, Pθ′µ) ≤ LP |θ − θ′|µ(1 + βV ). (23)

The above observation is easily extended from probability
measures to signed measures η such that |η|(V ) <∞.

The class of functions {fθ : X → R | θ ∈ Θ} is
characterized by the following assumption:

Assumption 4: We have Kf := supθ∈Θ |||fθ|||β <∞, and
there exists a constant Lf such that, for all θ, θ′, it holds that

‖fθ − fθ′‖β ≤ Lf |θ − θ′|. (24)

The main result of the paper is as follows.

Theorem 2: Let Assumptions 1, 2, 3 and 4 hold, and
consider the parameter-dependent Poisson equation

(I − P ∗θ )uθ(x) = fθ(x)− hθ, (25)

where hθ = µ∗θ(fθ). Then, hθ is Lipschitz continuous in θ:

|hθ − hθ′ | ≤ Lh|θ − θ′|, (26)

and the family of solutions uθ(x) =
∑∞
n=0(P ∗nθ fθ(x)−hθ),

ensured by Theorem 1, is Lipschitz continuous in θ:

|uθ(x)− uθ′(x)| ≤ Lu (1 + βV (x)) |θ − θ′|,

where the constant Lu is independent of x. Note that this
also implies ‖uθ − uθ′‖β ≤ Lu|θ − θ′|.

Outline of the proof: Consider the extended parametric
family of Poisson-equations, where P ∗ and f are indepen-
dently parametrized, with the notation hθ,ψ = µ∗θ(fψ),

(I − P ∗θ )uθ,ψ(x) = fψ(x)− hθ,ψ, (27)

First, we prove that hθ,ψ is Lipschitz-continuous in θ and
ψ. Since hθ = µ∗θ(fθ) = hθ,θ, the Lipschitz-continuity of
hθ, stated in (26) then follows. We can write

|hθ,ψ − hθ,ψ′ | = lim
n→∞

|P ∗nθ fψ(x)− P ∗nθ fψ′(x)|, (28)

|hθ,ψ − hθ′,ψ| = lim
n→∞

|P ∗nθ fψ(x)− P ∗nθ′ fψ(x)|. (29)

We can bound the right hand side of (28) as follows:

|P ∗nθ fψ(x)− P ∗nθ fψ′(x)| ≤ (P ∗nθ |fψ − fψ′ |) (x)

= (Pnθ δx) |fψ − fψ′ |. (30)

Using the Lipschitz continuity of f as given by Assumption
4 and the drift condition Assumption 1, we finally get

lim sup
n→∞

|P ∗nθ fψ(x)−P ∗nθ fψ′(x)| ≤ Lf |ψ−ψ′|
[
1 + β

K

1− γ

]
.

To continue the proof of the we will have to establish the
Lipschitz-continuity of the powers of the kernel Pnθ together
with an upper bound for the Lipschitz constants. We can
show that for any probability measure µ with µ(V ) <∞,

σβ(Pnθ µ, P
n
θ′µ) ≤ LP |θ−θ′|

(
L′P +

αn

α− γ
βµ(V )

)
, (31)

where L′P is determined by the constants showing up in the
assumptions for Pθ. The proof is obtained by using a kind
of telescopic inequality.

A direct corollary is that for measurable functions ϕ with
|||ϕ|||β < ∞ it holds that |P ∗nθ ϕ(x)− P ∗nθ′ ϕ(x)| is bounded
from above by

|||ϕ|||βLP |θ − θ
′|
(
L′P +

αn

α− γ
βV (x)

)
. (32)

From (31) above we immediately get the Lipschitz-continuity
of the invariant measures with L′′P = LPL

′
P :

σβ(µ∗θ, µ
∗
θ′) ≤ L′′P |θ − θ′|. (33)

Inequality (31) has an effective extension for signed mea-
sures η satisfying the additional condition η(X) = 0:

Lemma 2: Assume that Assumptions 1, 2, and 3 hold.
Then for every θ, θ′ ∈ Θ and every signed measure η such
that |η|(V ) <∞ and η(X) = 0, we have

σβ(Pnθ η, P
n
θ′η) ≤ LP |θ − θ′|nαn−1 |η|(1 + βV ). (34)

Returning to the right hand side of (29) we use the upper
bound (32) with ϕ = fψ and let n go to infinity:

lim sup
n→∞

|P ∗nθ fψ(x)−P ∗nθ′ fψ(x)| ≤ |||fψ|||βL
′′
P |θ− θ′|. (35)

Next, we consider the Lipschitz continuity of the doubly-
parametrized particular solution

uθ,ψ(x) =

∞∑
n=0

(P ∗nθ fψ(x)− hθ,ψ). (36)

The critical point is to show that uθ,ψ(x) is Lipschitz-
continuous in θ. Consider the measure in the n-th term:

[Pnθ (δx − µ∗θ)− Pnθ′ (δx − µ∗θ)] + [Pnθ′ (µ
∗
θ′ − µ∗θ)].



The second term of the right hand side can be readily handled
by (33), while the first term can be dealt with using Lemma
2 setting η = δx − µ∗θ . The rest of the proof is analogous to
the proof of Theorem 1.

IV. RELAXATIONS OF THE UNIFORM DRIFT CONDITION

A delicate condition of Propositions 1-3 is Assumption
1, requiring the existence of a common Lyapunov function.
This requirement may be too restrictive even in the case of
linear stochastic systems as discussed in Section II. However,
assuming that (Aθ), θ ∈ Θ is a compact set of stable
matrices we can find a positive integer r such that ‖Arθ‖ ≤
γr < 1 for all θ ∈ Θ. This example motivates the following
relaxation of the drift condition, given as Assumption 1:

Assumption 5 (Uniform Drift Condition for P rθ ):
There exists a positive integer r, a measurable function
V : X→ [0,∞) and constants γr ∈ (0, 1) and Kr ≥ 0 such
that for all θ ∈ Θ and x ∈ X, we have

(P ∗rθ V )(x) ≤ γrV (x) +Kr, (37)

and the following uniform one-step growth condition holds:

(P ∗θ V )(x) ≤ γ1V (x) +K1, (38)

where we can and will assume that γ1 > 1 and K1 ≥ 0.

Note that (38) implies that for any β > 0 there exist C ′ >
0 such that for any function ϕ ∈ LV we have

|||P ∗θ ϕ|||β ≤ α
′|||ϕ|||β , (39)

for all θ with α′ = max(1 +βK1, γ1). From here, repeating
the arguments leading to Proposition 2, we get:

Lemma 3: Assume (38), then for any pair of probability
measures µ1, µ2 on X such that µ1(V ), µ2(V ) <∞ and any
β > 0, we have for all θ,

σβ(Pθµ1, Pθµ2) ≤ α′σβ(µ1, µ2), (40)

Assumption 6 (Uniform Local Minorization for P rθ ): Let
Rr > 2Kr/(1 − γr) where γr and Kr are the constants
from Assumption 5 and Cr = {x ∈ X : V (x) ≤ Rr}. There
exist a probability measure µ̄r and a constant ᾱr ∈ (0, 1)
such that for all θ ∈ Θ, x ∈ Cr and measurable A it holds

P rθ (x,A) ≥ ᾱrµ̄r(A). (41)

The main results cited in Section II can be extended, with
minor modifications, assuming the above relaxed conditions.
For now we fix any θ ∈ Θ and write Pθ = P . Proposition 1
can be restated as follows:

Theorem 3: Under Assumptions 5 and 6 there exist α ∈
(0, 1), β > 0 and C > 0 such that for any measurable ϕ and
n > 0 we have

|||P ∗nϕ|||β ≤ Cα
n|||ϕ|||β ,

where we can choose β = βr, given by Proposition 1 applied
to P r, α = α

1/r
r with some C > 0.

Proof: By Proposition 1 there exist β = βr > 0, and
αr ∈ (0, 1) such that |||P ∗rϕ|||β ≤ αr|||ϕ|||β , implying for
any positive integer m

|||P ∗rmϕ|||β ≤ α
m
r |||ϕ|||β . (42)

For a general positive integer n write n = rm + k with
0 ≤ k ≤ r − 1 to get

|||P ∗nϕ|||β ≤ α
m
r

∣∣∣∣∣∣P ∗kϕ∣∣∣∣∣∣
β
. (43)

To complete the proof apply (39) and obtain

|||P ∗nϕ|||β ≤ α
m
r (C ′)r−1|||ϕ|||β . (44)

Now m = (n−k)/r > n/r−1, hence αmr < α
n/r
r α−1

r , and
thus the claim follows.

Proposition 2 takes now the following modified form:
Theorem 4: Under Assumptions 5 and 6 there exist α ∈

(0, 1), β > 0 and C > 0 such that for any n > 0,

σβ(Pnµ1, P
nµ2) ≤ Cαnσβ(µ1, µ2), (45)

for every pair of probability measures µ1, µ2 on X, where
α and C are given in Theorem 3.

Finally, we have the following extension of Proposition 3:
Theorem 5: Under Assumptions 5 and 6 there exists a

unique probability measure µ∗ on X such that
∫
X
V dµ∗ <

∞ and Pµ∗ = µ∗. Denoting the unique invariant probability
measure for P r by µ∗r we have µ∗ = µ∗r .

Proof: Let µ∗r be the unique invariant probability mea-
sure for P r the existence of which is ensured by Proposition
3. Then

∫
X
V dµ∗r <∞ implies

∫
X
V d(P kµ∗r) <∞ for any

k > 0 by the one-step growth condition, see (39). It follows
that the probability measure µ defined by

µ =
1

r
(I + P + . . . P r−1)µ∗r

also satisfies
∫
X
V dµ < ∞, and it is readily seen that it is

invariant for P. Since any probability measure invariant for
P is also invariant for P r, we have µ = µ∗r . The uniqueness
of an invariant probability measure for P follows by noting
once again if µ′ is invariant for P then it is also invariant
for P r, and hence we must have µ′ = µ∗r .

The main results of Section III can now be extended, with
minor modifications, assuming the above relaxed conditions.
For the extension of Theorem 1 we fix once again any θ ∈ Θ
and write Pθ = P :

Theorem 6: Assume that the kernel P r satsifies Assump-
tions 5 and 6. Let β > 0 be as given in Proposition 1 w.r.t.
the kernel P r. Let f be a measurable function such that
|||f |||β < ∞. Let µ∗ denote the unique invariant probability
measure of P, and h = µ∗(f). Then, the Poisson equation

(I − P ∗)u(x) = f(x)− h (46)

has a unique solution u up to additive constants, and con-
sidering the particular solution u with µ∗(u) = 0, we have

|u(x)| ≤ K(1 + βV (x))|||f |||β (47)



for some constant K > 0 depending only on the constants
appearing in Assumptions 5 and 6.

Outline of the proof: The starting point is the Poisson
equation for P ∗r, noting that h = µ∗(f) = µ∗r(f),

(I − P ∗r)v(x) = f(x)− h. (48)

Consider the particular solution

v(x) =

∞∑
n=0

(P ∗nrf(x)− h). (49)

It is easy to see that

u(x) := (I + P ∗ + . . .+ P ∗(r−1))v(x) (50)

is a solution of (46) and satisfies (47). Considering the
uniqueness of the solution, for the difference of two solutions
∆u we have P ∗∆u(x) = 0, for all x. Then applying r − 1
times P ∗ we get P ∗r∆u(x) = 0, for all x, and thus by
Theorem 1 we conclude that ∆u is a constant function.

A straightforward extension of Theorem 2 is the following:
Theorem 7: Assume that the kernels (P rθ ) satsify As-

sumptions 5 and 6. Let β > 0 be as given in Proposition 1
w.r.t. the kernel (P rθ ). Assume (Pθ) also satisfy Assumption
3. Finally, let (fθ) be a family of measurable functions X→
R such that Assumption 4 holds. Let µ∗θ denote the unique
invariant probability measure of Pθ, and let hθ = µ∗θ(fθ).
Consider the parameter-dependent Poisson equation

(I − P ∗θ )uθ(x) = fθ(x)− hθ. (51)

Then, hθ is Lipschitz continuous in θ:

|hθ − hθ′ | ≤ Lh|θ − θ′|, (52)

and the particular solution uθ(x) =
∑∞
n=0(P ∗nθ fθ(x)− hθ)

is well-defined for all θ, and Lipschitz continuous in θ,

|uθ(x)− uθ′(x)| ≤ Lu|θ − θ′|(1 + βV (x)), (53)

where the constants Lh and Lu are independent of x.

Outline of the proof: First we prove that hθ = µ∗θ,r(fθ)
is Lipschitz-continuous referring to Theorem 2 with P rθ
replacing Pθ. For this we will have to verify Assumption
3 (with P rθ replacing Pθ). This is done by extending (31)
assuming only the validity of Assumption 3 for Pθ and the
uniform one-step growth condition, see Assumption 5. We
get for any pair θ, θ′ ∈ Θ, for any probability measure µ
such that µ(V ) <∞ and for any n > 0 we have

σβ(Pnθ µ, P
n
θ′µ) ≤ L′′P |θ − θ′|(α′)n (1 + βµ(V )) , (54)

choosing α′ > γ1, with L′′P depending only on n and the
constants appearing in the conditions of the theorem.

It follows, in view of Theorem 2, that the particular
solution of the Poisson equation

(I − P ∗rθ )vθ(x) = fθ(x)− hθ (55)

given by vθ(x) =
∑∞
n=0 P

∗nr
θ (fθ(x) − hθ) is Lipschitz-

continuous and satisfies

|vθ(x)− vθ′(x)| ≤ Lv|θ − θ′|(1 + βV (x)). (56)

Recalling that (P ∗mθ fθ)(x) = Pmθ δx(f), using (54) it is
readily seen that the solution of (51) defined by

uθ(x) := (I + P ∗θ + . . .+ P
∗(r−1)
θ )vθ(x) (57)

is Lipschitz continuous in θ, and due to the one-step growth
condition it satisfies (53), completing the proof.

V. DISCUSSION

The verification of Assumption 5 may seem to be too
demanding. We propose a simple alternative criterion:

Assumption 7 (Individual Drift Conditions): There exists
a family of measurable functions Vθ : X → [0,∞) and
constants γ ∈ (0, 1) and K ≥ 0 such that for all x and θ

(P ∗θ Vθ)(x) ≤ γVθ(x) +K, (58)

moreover, there exists a measurable V : X → [0,∞) and
constants a, b, c, d with a, c > 0, such that

aV (x) + b ≤ Vθ(x) ≤ cV (x) + d. (59)

Under Assumption 7, for any sufficiently large r Assump-
tion 5 is satisfied with the function V. It is also easily seen
that Theorem 7 remains valid under conditions imposed on
the one-step kernels (Pθ), namely Assumptions 7 and 2.

A possible alternative set of conditions under which the
problems of the paper may be worth studying is provided by
the theory developed in [10], extended in later works, such as
[6] and [7]. However, the extension of Assumption 3 on the
Lipschitz-continuity of Pθ, so that the Lipschitz-continuity
of (I − Pθ)−1 is implied, does not seem obvious.
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Radhakrishnan. Diffusion approximations and control variates for
MCMC. arXiv:1808.01665, 2018.
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