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ABSTRACT

This paper builds on recent work on Simultaneous Localisation and Mapping (SLAM) in the non-
linear observer community, by framing the visual localisation and mapping problem as a continuous-
time equivariant observer design problem on the symmetry group of a kinematic system. The state-
space is a quotient of the robot pose expressed on SE(3) and multiple copies of real projective space,
used to represent both points in space and bearings in a single unified framework. An observer with
decoupled Riccati-gains for each landmark is derived and we show that its error system is almost
globally asymptotically stable and exponentially stable in-the-large.

1 Introduction

Simultaneous Localisation and Mapping (SLAM) is a well-known problem in mobile robotics and has been an active
area of research for the last 30 years [9]. Visual localisation and mapping refers to the particular case of the SLAM
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problem where the only exteroceptive sensors available are cameras. The visual localisation and mapping problem,
and particularly the case where only a single monocular camera is available, continues to be of substantial interest
due to the low cost and low weight, as well as the ubiquity of single camera systems [9]. While visual localisation
and mapping is an established research topic with a rich history [7], it remains an active research topic, especially
in the area of low-cost light-weight embedded systems [8]. State-of-the-art filters and observers approach the SLAM
problem through linearisation, and do not deal well with poor initial estimation or choice of linearisation point [7].
Additionally, these methods suffer from high computational complexity and poor scalability [9, 19].

Both the SLAM and visual localisation and mapping problems have attracted interest recently in the non-linear ob-
server community. Approaches to these problems have emerged from earlier work on attitude estimation [17, 5] and
pose estimation [2, 20, 14]. Bonnabel et al. [3] exploited a novel Lie group to design an invariant Kalman Filter for the
SLAM problem. Parallel work by Mahony et al. [18] developed the same Lie group and proposed a quotient manifold
structure for the state-space of the SLAM problem. Work by Zlotnik et al. [21] derives a geometrically motivated
observer for the SLAM problem that includes estimation of bias in linear and angular velocity inputs. For the visual
localisation and mapping problem, where only bearing measurements are available, Lourenco et al. [15, 16] proposed
an observer with a globally exponentially stable error system using depths of landmarks as separate components of the
observer. Grabe et al. [10] derived a non-linear observer for the case where a significant number of the bearings mea-
sured are of coplanar landmarks by using the instantaneous homography constraint. Bjorne et al. [4] uses an attitude
heading reference system (AHRS) to determine the orientation of the robot, and then solves the SLAM problem using
a linear Kalman filter. A similar approach to the visual localisation and mapping case is undertaken in [6]. Hamel et
al. have also introduced a Riccati observer [12] for the case where the orientation of the robot is known.

In this paper we present a novel non-linear geometric observer for the visual localisation and mapping problem.
The approach extends the SLAM manifold presented in [18] to include bearings (such as magnetometer or gravity
measurements) and landmark points in the same formulation by exploiting the structure of the real-projective space
RP3 and homogeneous coordinates for bound and free vectors. The proposed RP3 state-space also allows modelling
of visual features as a simple linear projection of RP3 onto RP2. A novel Lie group termed the VSLAMn(3) group is
introduced and shown to be a symmetry on the measurement function of the visual localisation and mapping problem.
The proposed observer uses decoupled gain matrices for each landmark point that satisfy a simple Riccati equation. As
a consequence of decoupling the Riccati observer for each landmark, the computational complexity of our approach
is only O (n). Finally, the innovation on the pose of the robot is determined through finding the minimum of a novel
cost function on the tangent space of RP3, and is based on the static environment assumption common in SLAM
algorithms. The resulting observer is shown to have an error system that is almost globally asymptotically stable (the
basin of attraction excludes a set of measure zero) and exponentially stable in-the-large (exponentially stable on any
compact set contained in the basin of attraction).

This paper consists of five sections alongside the introduction and conclusion. Section 2 introduces key notation and
identities, and provides an in-depth explanation of the application of RP3 to representing points and bearings in 3d
space. In Section 3, we formulate the kinematics, state-space and output of the visual localisation and mapping system,
and in Section 4 we introduce the new Lie group VSLAMn(3) that acts on the state-space. In Section 5 we derive
a non-linear observer on the Lie group, and in Section 6 we provide the results of a simulation. The experimental
results are designed to verify the theory developed throughout the paper, not to provide a comprehensive evaluation of
performance.

2 Preliminaries

2.1 Notation

The special orthogonal group and special Euclidean group are denoted SO(3) and SE(3) respecively, with Lie al-
gebras so(3) and se(3). For any Ω = (Ω1,Ω2,Ω3) ∈ R3, the corresponding skew-symmetric matrix is denoted
by

Ω× :=

(
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

)
∈ so(3).

This matrix has the property that, for any v ∈ R3, Ω×v = Ω× v where Ω× v is the vector (cross) product between Ω
and v.
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Consider a matrix P ∈ SE(3). The notations RP ∈ SO(3) and xP ∈ R3 are used to represent the rotation and
translation components of P respectively, and P may be written as

P =

(
RP xP
0 1

)
.

Likewise, for a matrix U ∈ se(3), the notations ΩU ∈ so(3) and VU ∈ R3 represent the rotational and translational
velocity components of U respectively, and U may be written as

U =

(
ΩU VU
0 1

)
.

For any y ∈ R3 \ {0} the projector Πy is given by

Πy := I3 −
yy>

|y|2
.

The operator Πy projects vectors onto the subspace of R3 orthogonal to y. The projector and the skew-symmetric
matrix are related by

Πy = −y
×y×

|y|2
, (1)

for any y ∈ R3 \ {0}. For any ȳ ∈ R4 \ {0} the projector is similarly defined as

Πȳ := I4 −
ȳȳ>

|ȳ|2
.

2.2 Real Projective Space

For x ∈ R4 \ {0}, define the set of equivalence classes

[x] := {ax a ∈ R \ {0}} .

Given two elements x, y ∈ R4 \ {0}, the notation x ' y indicates x = ay for some a ∈ R \ {0}. The 3-dimensional
real-projective space RP3 = {[x] x ∈ R4\{0}} is a smooth quotient manifold [1]. For any full rank matrixA ∈ R4×4,
the operation

A[x] := [Ax] (2)

is well-defined.

Let x ∈ R4 \ {0}, and define an horizontal space Hx = {v ∈ R4 v>x = 0}. Define an equivalence relationship
(x, v) ≡ (ax, av) for a ∈ R \ {0} between elements of Hx and Hax. A tangent vector v[x] ∈ T[x]RP3 is the
equivalence class [x, v] = {(ax, av) v ∈ Hx}.
For any [x] ∈ RP3, define the projector

Π[x] := Πx.

To see this is well-defined, let a ∈ R be a non-zero scalar, and check

Πax = I4 −
(ax)(ax)>

|(ax)|2
= I4 −

a2

a2

xx>

|x|2
= Πx.

Analogously, the projector Π[y] := Πy is well-defined for any y ∈ RP2.

Let p ∈ R3 be a vector representing the position of a point in space. Define the homogeneous coordinates

p :=

(
p
1

)
as an embedding R3 ↪→ R4 and refer to such points p as bound vectors with foot at the origin of the reference frame
and tip at the R3 point it represents. Let b ∈ S2 = {b ∈ R3 | |b| = 1} be a vector representing a bearing or direction
and define homogeneous coordinates

b
◦

b =

(
b
0

)

3
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as an embedding S2 ↪→ R4. We term b
◦

b a free vector. Using these embeddings it is possible to define a map α :
R3 t S2 → RP3

α(p) := [p], p ∈ R3,

α(b) := [b
◦

b], b ∈ S2.

A point-type element of RP3 is any element in the subset {[x] | x4 6= 0}. A bearing-type element of RP3 is any
element in the subset {[x] | x4 = 0}. A full inverse of α is not uniquely defined due to the sign ambiguity of elements
of RP3. However, it is possible to define a unique map γ : RP3 → R3 t RP2 by

γ([x]) :=

{
x1:3/x4 ∈ R3, if x4 6= 0
[x1:3] ∈ RP2, if x4 = 0

, (3)

where x1:3 ∈ R3 denotes the first three elements of x and [x1:3] = {ax1:3 | a ∈ R \ {0}}, analogous to the R4

definition. Define a projection β : R3 t S2 → R3 t RP2 by

β(x) :=

{
x ∈ R3, if x ∈ R3

[x] ∈ RP2 if x ∈ S2 .

The following commutative diagram holds

R3 t S2

α

%%
β
��

R3 t RP2 RP3
γ
oo

The map γ is smooth under restriction to either point-type elements or bearing-type elements of RP3. Although γ
is unable to reconstruct the full direction vector b from a bearing-type RP3 element, the unsigned direction [b] is
sufficient for the observer construction that we undertake in the sequel.

3 Problem Formulation

3.1 VSLAM Total Space

The formulation of the total space for the VSLAM problem is an extension of the formulation in [18] to include not
only points in 3D space but also bearings through their RP3 representations.

Raw coordinates for the VSLAM problem can be defined by fixing an arbitrary reference frame {0}. Let P ∈ SE(3)
and ηi ∈ RP3 represent the robot pose and landmark coordinates respectively, defined with respect to {0}. Note that
each ηi ∈ RP3 is either point-type or bearing-type depending on whether its last entry is zero. The total space of the
VSLAM problem is the product space

Tn(3) = SE(3)× RP3 × · · · × RP3,

with elements

(P, η1, ..., ηn).

The notation (P, ηi) ≡ (P, η1, ..., ηn) is used to simplify notation in the sequel.

Given (P, ηi) ∈ Tn(3), recalling (2) define

bP, ηic :=
{

(S−1P, S−1ηi) | S ∈ SE(3)
}
.

Given two elements (P, ηi), (Q, θi) ∈ Tn(3), the notation (P, ηi) ' (Q, θi) means that (P, ηi) = (S−1Q,S−1θi) for
some S ∈ SE(3). The SLAM manifold is the set

Mn(3) = {bP, ηic | (P, ηi) ∈ Tn(3)} ,

with quotient manifold structure [18].

An expression is well-defined on the SLAM manifold Mn(3) if it is invariant to the action of a rigid-body transforma-
tion of the reference frame. An important example is (P, ηi) 7→ P−1ηi. Given any S ∈ SE(3), one has

(S−1P, S−1ηi) 7→ (S−1P )−1S−1ηi = P−1SS−1ηi = P−1ηi. (4)

4
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3.2 VSLAM Kinematics

The assumption will be made that the robot is moving through a static environment. Consider the velocity input space
V = se(3). The kinematics of the VSLAM system are given by the function

f :Tn(3)× V→ TTn(3),

((P, ηi), U) 7→ (PU, 0). (5)

3.3 System Output

The physical measurements taken by our robot in the VSLAM system are the bearings of landmarks. Let η′i = P−1ηi
be the body-fixed frame coordinates of a landmark ηi 6= α(xP ). Using the basic pinhole camera model as described in
[13] with invertible 3 × 3 camera matrix K, the measurement of η′i taken by the camera is (K 03×1) η′i. Assuming
the camera is calibrated matrix K, it is easy to recover the element

K−1 (K 03×1) η′i = (I3 03×1) η′i
although the scale of this element is arbitrary and cannot be known. If ηi is a bearing-type element, then θi,4 = 0
and no information is lost through the camera projection. However, if ηi is a point-type element, then the scale of
the vector is not recoverable. In this formulation the sign of the landmark measurement (representing whether the
landmark is in front of or behind the camera) is ambiguous, but this is sufficient for the observer design undertaken in
Section 5. The choice of bearing-type or point-type for a particular landmark ηi is a modelling choice based on the
requirements for the resulting map of the environment.

The output space of the VSLAM system is defined as
N n(3) := RP2 × · · · × RP2.

The output function of the VSLAM system is defined as
h : Tn(3)→ N n(3),

(P, ηi) 7→ (I3 0)P−1ηi. (6)

The output function transforms each ηi into body-fixed frame coordinates, and projects the result into RP2, represent-
ing bearing-type of point-type landmark measurements with a calibrated pinhole camera.

4 Symmetry of the VSLAM Problem

4.1 Symmetry of the Total Space

We introduce a group we term Scaled Orthogonal Transformations SOT(n), a subgroup of the group of similarity
transforms on Rn.
Lemma 4.1. For any n ∈ N, the set

SOT(n) =

{(
R 0
0 a

)
R ∈ SO(n), a ∈ R \ {0}

}
,

with matrix multiplication is a subgroup of SIM(n).

Proof. Assigning matrix multiplication as the group action it is clear that SOT(n) is the direct product of SO(3)×R∗,
where R∗ is the Lie group formed by assigning multiplication as the operation on R \ {0}. It is straightforward to
verify that SOT(n) is a subgroup of SIM(n) by considering the action x 7→ 1

aRx for x ∈ Rn.

The action of SOT(3) on landmarks is a rotation combined with a scaling for point-type landmarks. Recalling (2)
and taking advantage of the equivalence class structure of RP3,(

R 0
0 a

)[
p
1

]
=

[
Rp
a

]
=

[
1
aRp

1

]
,

(
R 0
0 a

)[
b
0

]
=

[
Rb
0

]
.

There are exactly three orbits of SOT(3) acting on RP3, defined by

RP3
p :=

{
[x] ∈ RP3 | x4 6= 0, [x] 6= α(0)

}
,

RP3
b :=

{
[x] ∈ RP3 | x4 = 0

}
,

RP3
0 := {α(0) = e4} , (7)

5
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where x4 refers to the fourth coordinate of x.

The symmetry group VSLAMn(3) for the VSLAM problem with n landmarks in 3 dimensions is defined as a Lie
group

VSLAMn(3) = SE(3)× SOT(3)× · · · × SOT(3),

with product Lie group structure. The associated Lie algebra is denoted vslamn(3).

Lemma 4.2. The mapping Υ : VSLAMn(3)× Tn(3)→ Tn(3) defined by

Υ((A,Qi), (P, ηi)) = (PA,PAQ−1
i P−1ηi), (8)

where the right-hand expression depends on definition (2), is a right group action of VSLAMn(3) on Tn(3).

Proof. Trivially, Υ((I4, I4), (P, ηi)) = (P, ηi) for any (P, ηi) ∈ Tn(3). Let (A1, Qi,1), (A2, Qi,2) ∈ VSLAMn(3)
and (P, ηi) be arbitrary. Then

Υ((A1, Qi,1),Υ((A2, Qi,2), (P, ηi)))

= Υ((A1, Qi,1), (PA2, PA2Q
−1
i,2P

−1ηi)),

= (PA2A1, PA2A1Q
−1
i,1 (PA2)−1PA2Q

−1
i,2P

−1ηi),

= (P (A2A1), P (A2A1)(Qi,2Qi,1)−1P−1ηi),

= Υ((A2, Qi,2) · (A1, Qi,1), (P, ηi)).

This demonstrates that Υ is a right action as required.

Recall the orbits of SOT(3) described in (7). Given a configuration (P ◦, η◦i ) ∈ Tn(3), let (P, ηi) =

Υ((A,Qi), (P
◦, η◦i )) for some (A,Qi) ∈ VSLAMn(3). Observe that if P ◦−1η◦j ∈ RP3

0 for some j, then
P−1ηj ∈ RP3

0 also, independent of the particular element (A,Qi). To overcome this, in the remainder of the pa-
per it is assumed that there is never a j such that P ◦−1η◦j ∈ RP3

0. This assumption is reasonable, in that it is equivalent
to assuming there are no landmarks coinciding precisely with the origin of the robot. Additionally, it is assumed that
the type of each landmark (point or bearing) is known, and the landmarks are enumerated such that i = 1, ..., np and
i = np + 1, ..., np + nb = n represent of point- and bearing-type landmarks respectively. The reduced total space is
defined as

T ◦np,nj
(3) := {(P, ηi) ∈Tnp+nj

(3) 1 ≤ i ≤ np ⇔ ηi ∈ RP3
p,

1 ≤ i− np ≤ nb ⇔ ηi ∈ RP3
p

}
,

and only elements (P, ηi) ∈ T ◦np,nj
(3) are considered from here going forward.

4.2 Lift of the VSLAM Kinematics

In order to consider the system on the VSLAMn(3) group, the kinematics from the state space must be lifted onto
the group. The following lemma provides the lift function.

Lemma 4.3. The function λ : T ◦np,nj
(3)× V→ vslamn(3), defined by

λ((P, ηi), U) = (U,W (U,P−1ηi)),

where W : se(3)× (RP3 ∪ RP3
p)→ sot(3) is given by

W

(
(ΩU , VU ),

[
q
r

])
=

(ΩU − r VU×q
|q|2

)×
0

0 −r V
>
U q
|q|2

 ,

is a velocity lift of the kinematics (5) onto VSLAMn(3) with respect to the group action (8).

Proof. To show that λ is a velocity lift, it is required that

DΥ(P,ηi)(id) [λ((P, ηi), U)] = f((P, ηi), U).

6
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Equivalently, it is required to show that(
PU,Πηi

(
PUP−1 − PWiP

−1
)
ηi
)

= (PU, 0), (9)

where Wi := W (U,P−1ηi).

First, it is necessary to show that W is well-defined whenever q 6= 0. To see this, let a ∈ R be any non-zero scalar,
and observe that

W

(
U,

[
aq
ar

])
=

(ΩU − ar VU×(aq)
|aq|2

)×
0

0 −ar V
>
U (aq)
|aq|2

 ,

=

(ΩU − r VU×q
|q|2

)×
0

0 −r V
>
U q
|q|2

 = W

(
U,

[
q
r

])
. (10)

Recalling the expression for f provided in (5), it is clear that the first terms on both sides of (9) are equal. Let[
qi
ri

]
:= P−1ηi. (11)

In order to aid in the readability of the following equations, qi and ri in (11) are chosen such that |qi| = 1. However,
it is important to note this choice is arbitrary as shown in (10). To show (9), consider that

ΠηiPUP
−1ηi = ΠηiPU

[
qi
ri

]
,

= ΠηiP

[
Ω×Uqi + riVU

0

]
,

= Πηi

[
P

(
Ω×Uqi + riVU

0

)
− riV >U qiP

(
qi
ri

)]
,

= ΠηiP

[
Ω×Uqi + ri

(
I3 − qiq>i

)
VU

−riV >U qiri

]
.

= ΠηiP

[
Ω×Uqi − riq

×
i q
×
i VU

−riV >U qiri

]
,

using the identity (1). This further reduces to

ΠηiPUP
−1ηi = ΠηiP

[
Ω×Uqi − ri(V

×
U qi)

×qi
−riV >U qiri

]
,

= ΠηiP

(
(ΩU − riVU × qi)× 0

0 −riV >U qi

)[
qi
ri

]
,

= ΠηiPWiP
−1ηi,

where the last step follows from (11) and the choice of |qi| = 1. From here, (9) clearly resolves to

DΥ(P,ηi)(id) [(U,Wi)] = (PU, 0)

= f((P, ηi), U),

as required. This completes that proof that λ is a velocity lift.

The kinematics of the true state ξ = (P, ηi) ∈ T ◦np,nj
(3) of the VSLAM system are given by

ξ̇ = f(ξ, U). (12)

Choose a reference configuration ξ◦ = (P ◦, η◦i ) ∈ T ◦np,nj
(3). By construction, the trajectories of the lifted system

kinematics

Ẋ = Xλ(Υ(X, ξ◦), U)

project to trajectories of the VSLAM kinematics (12) via ξ(t) = Υ(X(t), ξ◦).

7
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5 Observer Design

5.1 Observer Kinematics

Define the observer state to lie on the VSLAM group, X̂ = (Â, Q̂i) ∈ VSLAMn(3), with kinematics given by

d

dt
X̂ = X̂λ(Υ(X̂, ξ◦), U) + X̂∆X̂ ,

X̂(0) = id, (13)

where ∆X̂ = (∆Â,∆Q̂i
) ∈ vslamn(3) is an innovation term. The estimated state ξ̂ = (P̂, η̂i) ∈ T ◦np,nj

(3) is given by

ξ̂ = Υ(X̂, ξ◦). (14)

Additional notation is helpful in simplifying the expressions that follow in the observer design. Define

ŷi := h((P̂, η̂i)), yi := h((P, ηi)). (15)

All expressions above are well-defined for equivalence classes in the SLAM manifold.

5.2 Landmark Observer

Theorem 5.1. Let ξ = (P, ηi) ∈ T ◦np,nj
(3) be the true state of the system, evolving with the kinematics (12). Let

ξ◦ ∈ T ◦np,nj
(3) be arbitrary up to the requirement that, for all i, η◦i and ηi are members of the same orbit of RP3

under the action of SOT(3). Define X̂ = (Â, Q̂i) ∈ VSLAMn(3) to be the observer state with kinematics defined
by (13), and define ξ̂ = (P̂, η̂i) as in (14).

Now, for i = 1, ..., np, define Σi ∈ R3×3 by

Σ̇i = ΣiΩ
×
U − Ω×UΣi +Hi − ΣiΠyiGiΠyiΣi,

Σ(0)i = Σi,0 > 0, Gi = kGI3, Hi = kHI3, (16)

where kG, kH > 0 are constants, and assume that there exist δ > 0 and µ > 0 such that

1

δ

∫ t+δ

t

ΠRP (s)yi(s)ds ≥ µI3. (17)

for any time t > 0 and for any i = 1, ..., np. For i = np + 1, ..., np + nb, define

Σi ≡ I3, Gi = I3, Hi = I3. (18)

Then, for every landmark i = 1, ..., np + nb, define ∆Q̂i
as

∆Q̂i
=

((
ŷ×i KiΠyi ŷi

)×
0

0 −ŷ>i KiΠyi ŷi

)
,

Ki = kΣiΠyiGi, k > 0.5, (19)

where yi and ŷi are given by (15). Let the innovation term ∆Â be given by the least-squares solution to

min
(∆R̂,∆x̂)

n∑
i=1

∣∣∣∣∣ 1

|θ̂i|
Πθ̂i

((
−(θ̂1:3

i )× θ̂4
i I3

0 0

)(
∆R̂
∆x̂

)
+ ∆Q̂i

θ̂i

)∣∣∣∣∣ ,
∆Â =

(
∆×
R̂

∆x̂

0 0

)
, θ̂i := P̂−1η̂i. (20)

Then the estimated state coordinates ξ̂ converge to the true coordinates ξ almost-globally asymptotically and expo-
nentially in the large1 up to equivalence on the SLAM manifold Mn(3).

1For any compact set in the basin of attraction of the equilibrium, the value of the Lyapunov function converges exponentially
to zero.

8
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Proof. To verify that ∆Â is well-defined note that the cost in (20) is invariant to scale in the data θ̂i 7→ aiθ̂i for
ai ∈ R \ {0}. A Lyapunov analysis proves the desired result.

For i = 1, ..., np, recalling (3), define the error coordinates and candidate storage function as

ei := γ(P̂−1η̂i)− γ(P−1ηi),

li :=
1

2
e>i Σ−1

i ei,

respectively. The condition (17) ensures that Σi is well-conditioned, and remains bounded and positive-definite for
all time t ≥ 0 [11]. Therefore the candidate storage function li is positive definite. It remains to show that li is
monotonically decreasing. The kinematics of ei are

ėi = −Ω×Uei −KiΠyiei.

Differentiating the candidate storage function, one has

l̇i = e>i Σ−1
i ėi −

1

2
e>i Σ−1

i Σ̇iΣ
−1
i ei,

= e>i Σ−1
i (−Ω×Uei − kΣiΠyiGiΠyiei)−

1

2
e>i Σ−1

i (ΣiΩ
×
U

− Ω×UΣi +Hi − ΣiΠyiGΠyiΣi)Σ
−1
i ei,

= −1

2
e>i Σ−1

i Ω×Uei −
1

2
e>i Ω×UΣ−1

i ei

+

(
1

2
− k
)
e>i ΠyiGΠyiei −

1

2
e>i Σ−1

i HΣ−1
i ei,

≤ −1

2
e>i Σ−1

i HiΣ
−1
i ei,

≤ −1

2

σ2
i,m

σi,M
kH li,

where σm,i and σM,i denote the infinum of the smallest and the supremum of the largest eigenvalues of Σi over time,
respectively. Since kH > 0 is chosen as a constant, and Σi remains well-conditioned and bounded, the equilibrium
ei = 0 is exponentially stable. Equivalently, this provides that P̂−1η̂i → P−1ηi globally exponentially.

For i = np + 1, ..., np + nb, define the candidate storage function

li :=
1

2

(
1−

(
y>i ŷi
|yi||ŷi|

)2
)
. (21)

Observe that li is well-defined as a function of RP2 elements, since the expression is invariant to multiplication of yi
or ŷi by any non-zero scalar. Clearly li is positive definite. The kinematics of the bearing yi ∈ RP2 are given by

ẏi =
d

dt
(I3 0)P−1ηi,

= − (I3 0) ΠP−1ηiWiP
−1ηi,

= −ΠyiΩ
×
U (I3 0)P−1ηi,

= −Ω×Uyi.

This is well-defined as an element of the tangent space TyiRP2 since any scaling of yi results in the same scaling
of the expression for ẏi. Since ẏ>i yi = 0, the dynamics of the norm of any chosen representative of yi are given by
d
dt |yi| = 0. Analogously, recalling (18) and (19), the kinematics of ŷi ∈ RP2 are given by

˙̂yi = (−Ω×U −
(
ŷ×i KiΠyi ŷi

)×
)ŷi,

= −Ω×U ŷi + ŷ×i ŷ
×
i (kΣiΠyiGi)Πyi ŷi,

= −Ω×U ŷi − kΠŷiΠyi ŷi,

9
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and hence the dynamics of the norm of any representative of ŷi are given by d
dt |ŷi| = 0. As a consequence of this and

the scale invariance of (21), we may choose |yi| = |yi| = 1 for readability without loss of generality. Differentiating
the candidate storage function leads to

l̇i = −(y>i ŷi)(ẏ
>
i ŷi + y>i

˙̂yi),

= k(y>i ŷi)y
>
i ΠŷiΠyi ŷi,

= k(y>i ŷi)
2((y>i ŷi)

2 − 1)

= −k(y>i ŷi)
2li

which is negative definite as long as the initial directions yi(0) and ŷi(0) are not orthogonal. There are two situations
in which l̇i = 0. The first one corresponds to the stable case where li = 0 (ŷi and yi are parallel) while the second one
corresponds to the unstable case for which li = 1 (ŷi and yi are orthogonal). To prove the exponential stability in the
large, suppose that 0 < li ≤ ε < 1 for some fixed ε. Then,

l̇i = −k(y>i ŷi)
2li,

= −k(1− li)li,
≤ −k(1− ε)li.

Observe that, unless li = 1, such an ε can always be found. Therefore, li → 0 almost-globally asymptotically, and
exponentially in the large. Since the measurement function h is invertible on bearing-type elements, this provides the
desired result that P̂−1η̂i → P−1ηi almost-globally asymptotically and exponentially in the large.

Define the whole-of-system Lyapunov function

L :=

n∑
i=1

li. (22)

From the analysis of each individual li, it is clear that L → 0 almost-globally asymptotically and exponentially in the
large. The convergence of each L provides that

(P̂, η̂i) ' ((PP̂−1)P̂, (PP̂−1)η̂i),

= (P, P (P̂−1η̂i)),

→ (P, P (P−1ηi)),

= (P, ηi),

almost-globally asymptotically and exponentially in the large as well. This completes the proof.

6 Simulation Results

To verify the observer derived in Theorem 5.1, we conducted a simulation of a vehicle equipped with a single monoc-
ular camera, observing 4 point-type landmarks and 2 bearing-type landmarks as it moves through space. The vehicle
moves in a circular trajectory at a fixed height of 3 m. The body-fixed velocity U is fixed to be constant, with
ΩU = (0, 0,−0.5)> rad/s and VU = (1.5, 0, 0) m/s. For simplicity, the camera frame is assumed to coincide with
the body-fixed frame of the vehicle, which avoids the need for a separate computation to transform the body-fixed
velocity into the camera frame. Let the true state be (P, ηi) ∈ T ◦np,nb

(3). The reference configuration is chosen as
ξ◦ = (I4, η

◦
i ), where

η◦i = α

(
2

(
h(ηi)

|h(ηi)|
+ εi

))
where the εi terms represent errors in the initial measurements. The observer is defined on VSLAMn(3), with
kinematics given by (13) and innovation terms given by Theorem 5.1. The initial conditions and gains for the observer
are chosen as

Σi(0) = 25I3, kH = 0.5, kG = 2.0, k = 1.0.

The simulation was carried out by implementing the continuous time system with Euler integration using a time step
of dt = 0.02 s.

10
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Figure 1a shows the evolution of log10(L ), where L is the Lyapunov function of the simulated system as defined in
(22). This clearly shows exponential convergence of the observer error dynamics. Figure 1b shows the evolution of
the trajectory of the simulated system. Since the estimated state only converges to the true state up to equivalence on
the SLAM manifold Mn(3), it is necessary to assign total space coordinates to the estimate to aid the comparison. In
Figure 1b the choice of total space coordinates for the estimated state is made so that the final robot pose is aligned
with that of the true state. This shows that the landmarks have correctly converged to the true landmarks up to the
SLAM manifold equivalence.

(a) The evolution of log10 of the Lyapunov function
L (22) with respect to time.

(b) The trajectory of the simulated system (green,
blue) compared with the true system evolution (black,
red).

7 Conclusion

This paper presents an observer design posed on a novel symmetry group for the visual SLAM problem. The total
space and SLAM manifold conceptualised in [18] have been extended to include free vectors. The development
of the symmetry group VSLAMn(3) has allowed both point-type and bearing-type landmarks to be treated in a
unified framework. Riccati observers were incorporated for each of the point-type landmarks, and grant the user
refined control over their convergence. The almost-global convergence of the proposed observer on both point-type
and bearing-type landmarks is a contrast to many state-of-the-art Extended Kalman Filter systems, which suffer from
linearisation errors. While research into the development of non-linear observers for the SLAM problem is only recent,
the observer for visual SLAM presented in this paper demonstrates some of the key advantages the approach can offer.
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