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A Quantum Karhunen-Loeve Expansion and Quadratic-Exponential

Functionals for Linear Quantum Stochastic Systems

Igor G. Vladimirov, Ian R. Petersen, Matthew R. James

Abstract— This paper extends the Karhunen-Loeve represen-
tation from classical Gaussian random processes to quantum
Wiener processes which model external bosonic fields for open
quantum systems. The resulting expansion of the quantum
Wiener process in the vacuum state is organised as a series of
sinusoidal functions on a bounded time interval with statistically
independent coefficients consisting of noncommuting position
and momentum operators in a Gaussian quantum state. A
similar representation is obtained for the solution of a linear
quantum stochastic differential equation which governs the
system variables of an open quantum harmonic oscillator.
This expansion is applied to computing a quadratic-exponential
functional arising as a performance criterion in the framework
of risk-sensitive control for this class of open quantum systems.

I. INTRODUCTION

The Karhunen-Loeve (KL) representation [4] provides

a series expansion of a classical random process over a

bounded time interval in terms of an orthonormal basis of

deterministic functions with random coefficients. The basis

is usually formed from the eigenfunctions of a self-adjoint

integral operator whose kernel is the covariance function

of the process, in which case, the resulting coefficients

are uncorrelated (and hence, independent for Gaussian pro-

cesses). Similarly to the Ritz-Galerkin methods [13], the KL

approach employs the idea of meshless approximation of

continuous time functions (as opposed to the time discretiza-

tion in finite-difference schemes for numerical solution of

ordinary differential equations).

The covariance kernel of the standard Wiener process

[11] has sinusoidal eigenfunctions, which makes its KL

representation with such a basis particularly suitable for the

solution of a linear stochastic differential equation (SDE)

driven by the Wiener process. The action of a linear input-

output operator, associated with the SDE, reduces to a

linear transformation of the random coefficients of the KL

expansion [4].

The present paper extends this idea to linear quantum

SDEs (QSDEs), which are driven by quantum Wiener pro-

cesses whose role in the Hudson-Parthasarathy quantum

stochastic calculus [6], [17], [19] (not only in regard to

linear QSDEs) is similar to that of the standard Wiener
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process in the classical case. The quantum Wiener process

on a symmetric Fock space [16] represents bosonic quantum

fields (such as quantised electromagnetic radiation), and the

QSDEs model the interaction of open quantum systems with

such fields. Both the system and field variables are time-

varying operators on a system-field tensor-product Hilbert

space, and their evolution is specified by the system Hamil-

tonian and system-field coupling operators. Because of the

noncommutative nature of these quantum variables, their

statistical properties are described in quantum probabilistic

terms [7], [12] which do not reduce to classical joint prob-

ability distributions.

The quantum KL (QKL) representation, which is con-

sidered here for the quantum Wiener process, inherits the

sinusoidal basis from its classical predecessor. However, the

coefficients of the QKL expansion consist of noncommuting

operators which satisfy the canonical commutation relations

(CCRs) of the quantum mechanical position and momentum

operators [22]. We apply this QKL expension to the system

variables of an open quantum harmonic oscillator (OQHO)

(with a quadratic Hamiltonian and linear coupling), governed

by a linear QSDE, which constitutes a building block of

linear quantum systems theory [14], [21]. A more natural

QKL expansion for the system variables is also obtained

by using the orthonormal eigenfunctions of the two-point

quantum covariance kernel for the invariant Gaussian state

of the stable OQHO with vacuum input fields.

We then outline a combination of the QKL expansion

of the system variables with symplectic techniques [26] in

application to computing a quadratic-exponential functional

(QEF) [24]. The QEF is an alternative (though closely

related [27]) version of the original quantum risk-sensitive

cost [8], [9]. Its minimization (by an appropriate choice of

a quantum controller or filter for a given quantum plant)

makes the closed-loop system more conservative in the sense

of large deviations of quantum trajectories [24] and more

robust to quantum statistical uncertainties described in terms

of quantum relative entropy [15], [30] with respect to the

nominal system-field state [25]. These properties of the

QEF make its computation an important robust performance

analysis problem in addition to the fact that similar problems

arise in regard to the characteristic (or moment-generating)

functions for quadratic Hamiltonians [20] and the quantum

Lévy area [1], [7].

The paper is organised as follows. Section II develops

a QKL representation for a multichannel quantum Wiener

process. Section III considers the statistical properties of the

QKL coefficients when the quantum Wiener process is in the

http://arxiv.org/abs/1904.03265v1


vacuum state. Section IV obtains a sinusoidal representation

for the system variables of an OQHO as the solution of a

linear QSDE driven by the quantum Wiener process in the

QKL form. Section V develops a QKL expansion for the

system variables of the OQHO using their invariant multi-

point Gaussian quantum state. Section VI applies the QKL

representation to computing the QEF for linear quantum

stochastic systems. Section VII provides concluding remarks.

II. KARHUNEN-LOEVE REPRESENTATION OF

QUANTUM WIENER PROCESSES

Let W := (Wk)16k6m be a multichannel quantum Wiener

process, organised as a column-vector of an even number of

self-adjoint operators W1(t), . . . ,Wm(t) on a symmetric Fock

space F [17], which depend on time t > 0 and represent

bosonic fields. In accordance with its continuous tensor-

product structure [16], F is endowed with a filtration in the

form of an increasing family of subspaces Ft , so that Wk(t)
acts effectively on Ft for any t > 0 and k = 1, . . . ,m. The

component quantum Wiener processes satisfy the two-point

CCRs

[W (s),W (t)T] := ([Wj(s),Wk(t)])16 j,k6m

= 2imin(s, t)J, s, t > 0. (1)

Here, [α,β ] := αβ −β α is the commutator of linear opera-

tors,

J := J⊗ Im/2 (2)

is an orthogonal real antisymmetric matrix (so that J2 =
−Im), where ⊗ is the Kronecker product, Im is the identity

matrix of order m, and

J :=

[
0 1

−1 0

]
(3)

spans the subspace of antisymmetric matrices of order 2.

If q and p := −i∂q are the quantum mechanical position

and momentum operators acting on the Schwartz space [23],

the vector v :=
[

q

p

]
has the CCR matrix 1

2
J in the sense

that [v,vT] = iJ (in view of [q, p] = i). Therefore, if (qk, pk),
with k = 1, . . . , m

2
, are conjugate position-momentum pairs

on an appropriate tensor-product Hilbert space, then the

vector r :=
√

2[q1, . . . ,qm/2, p1, . . . , pm/2]
T of m self-adjoint

operators satisfies [r,rT] = 2iJ with the same matrix J as in

(1), (2).

The two-point CCR structure (1) of the continuous-time

quantum Wiener process W can be achieved by using an aux-

iliary sequence of pairwise commuting vectors of quantum

variables. More precisely, let w0,w1,w2, . . . be vectors of m

self-adjoint operators on a complex separable Hilbert space

F satisfying the CCRs

[w j ,w
T
k ] = 2iδ jkJ, j,k = 0,1,2, . . . , (4)

where δ jk is the Kronecker delta. In particular, the commuta-

tivity between the entries of w j, wk for all j 6= k holds when

the entries of w0,w1,w2, . . . are defined on different Hilbert

spaces F0,F1,F2, . . ., respectively (which can be copies of

a common Hilbert space) and are extended to the infinite-

tensor-product space F :=
⊗+∞

k=0 Fk.

Now, for a fixed but otherwise arbitrary time horizon T >
0, consider the eigenfunctions

fk(t) :=
√

2
T

sin(ωkt), ωk := π
T
(k+ 1

2
), k = 0,1,2, . . .

(5)

of the integral operator whose kernel is the covariance

function of the standard Wiener process:
∫ T

0
min(s, t) fk(t)dt = λk fk(s), 0 6 s 6 T, (6)

with the eigenvalues related to the frequencies ωk by [4, p.

229]

λk =
1

ω2
k

. (7)

The eigenfunctions (5) are orthonormal in the Hilbert space

L2([0,T ]) of square integrable functions on the time interval

[0,T ]:

〈 f j, fk〉 :=

∫ T

0
f j(t) fk(t)dt = δ jk, j,k = 0,1,2, . . . . (8)

The kernel function in (6) is represented by an absolutely

and uniformly convergent series

min(s, t) =
+∞

∑
k=0

λk fk(s) fk(t), 0 6 s, t 6 T, (9)

with ∑+∞
k=0 λk =

∫ T
0 tdt = 1

2
T 2. Similarly to the KL represen-

tation of the standard Wiener process [4, Eq. (16) on p. 229],

consider its quantum counterpart

W (t) = I +
+∞

∑
k=0

√
λk fk(t)wk

= I +
√

2
T

+∞

∑
k=0

1
ωk

sin(ωkt)wk, (10)

where I is a vector of m copies of the identity operator

on F . This infinite linear combination of the functions (5)

(whose “coefficients” are the vectors wk with operator-valued

entries) is a vector of m time-varying self-adjoint operators

on F . Its two-point commutator matrix is computed1 by

combining the bilinearity of the commutator with (4), (9) as

[W (s),W (t)T] =
+∞

∑
j,k=0

√
λ jλk f j(s) fk(t)[w j ,w

T
k ]

= 2i
+∞

∑
k=0

λk fk(s) fk(t)J

= 2imin(s, t)J, 0 6 s, t 6 T, (11)

which is identical to the commutation structure of the quan-

tum Wiener process in (1). In view of (7), the orthonormality

(8) allows the coefficients wk to be recovered from W in (10)

as

wk = ωk

∫ T

0
fk(t)(W (t)−I )dt, k = 0,1,2, . . . . (12)

1without using the particular sinusoidal structure of the eigenfunctions



In fact, similarly to the classical case, by starting from the

quantum Wiener process W on the Fock space F (so that

the entries of the vectors wk in (12) are also defined on F),

it follows that the CCRs (1) lead to (4). Indeed, since the

identity operator commutes with any operator, (1), (6)–(8)

imply

[w j,w
T
k ] = ω jωk

∫

[0,T ]2
f j(s) fk(t)[W (s),W (t)T]dsdt

= 2iω jωk

∫

[0,T ]2
min(s, t) f j(s) fk(t)dsdtJ

= 2i
ω j

ωk

〈 f j, fk〉J = 2iδ jkJ, (13)

which reproduces the CCRs (4). Therefore, in view of (11),

(13), in the framework of the expansion (10), the CCRs

(1) are equivalent to (4), with both CCRs remaining valid

regardless of a particular quantum state for the Wiener

process.

III. STATISTICAL PROPERTIES OF THE

COEFFICIENTS

We will be concerned mainly with the case of fields in

the vacuum state [17]. In terms of their behavior over the

time interval [0,T ], this means that the quasi-characteristic

functional (QCF) of the quantum Wiener process W takes

the form

Eei
∫ T

0 f (t)TdW(t) = e−
1
2 ‖ f‖2

, f ∈ L2([0,T ],Rm), (14)

where Eξ := Tr(ρξ ) is the expectation of a quantum vari-

able ξ over an underlying density operator ρ , and ‖ f‖ :=√∫ T
0 | f (t)|2dt is the L2-norm for square integrable vector-

valued functions on [0,T ].
Theorem 1: Suppose the quantum Wiener process W is in

the vacuum state in the sense of (14). Then the vectors wk in

(12) are statistically independent and are in a joint Gaussian

quantum state with zero mean and common covariance

matrix

Ω := Im + iJ, (15)

with the matrix J given by (2), (3), so that

Ewk = 0, E(w jw
T
k ) = δ jkΩ, j,k = 0,1,2, . . . . (16)

�

Proof: In view of (5), the integration by parts in (12)

leads to

wk = ωk

√
2
T

∫ T

0
sin(ωkt)(W (t)−I )dt

=
∫ T

0
(I −W(t))dgk(t)

=
∫ T

0
gk(t)dW (t), (17)

where use is also made of the initial condition W (0) = I

together with the functions

gk(t) :=
√

2
T

cos(ωkt), k = 0,1,2, . . . , (18)

which satisfy gk(T ) =
√

2
T

cos(π(k+ 1
2
)) = 0 and are also

orthonormal in L2([0,T ]). For any N > 0 and u0, . . . ,uN ∈Rm,

the joint QCF of the vectors w0, . . . ,wN in (17) is computed

as

Eei∑N
k=0 uT

k wk = Eei∑N
k=0 uT

k

∫ T
0 gk(t)dW (t)

= Eei
∫ T

0 f (t)TdW(t)

= e−
1
2‖ f‖2

. (19)

Here, (14) is used, and the function f : [0,T ]→R
m is given

by

f (t) =
N

∑
k=0

gk(t)uk. (20)

In view of the orthonormality of (18), it follows from (20)

that

‖ f‖2 =
N

∑
j,k=0

〈g j,gk〉uT
j uk =

N

∑
k=0

|uk|2. (21)

Substitution of (21) into (19) shows that w0, . . . ,wN are in a

Gaussian quantum state [18] with zero mean and the joint

covariance matrix IN+1⊗Ω, with Ω given by (15) in view of

(4). An equivalent form of these two moments is provided

by (16).

The matrix Ω in (15) is the Ito matrix of the quantum

Wiener process W in the sense that dWdW T = Ωdt. A

reasoning, similar to that in the proof of Theorem 1, shows

that if W is in a more general Gaussian state, then so also are

the vectors w0,w1,w2, . . ., except that the latter are no longer

statistically independent. Therefore, the representation (10)

relates the commutation structure and statistical properties of

the quantum Wiener process W with those of the coefficients

w0,w1,w2, . . .. This representation is a quantum counterpart

of the Karhunen-Loeve expansion [4] of classical random

processes.

IV. SINUSOIDAL EXPANSION FOR SOLUTIONS

OF LINEAR QSDES

Consider an OQHO, which interacts with external bosonic

fields and is endowed with an even number of system

variables X1(t), . . . ,Xn(t). These quantum variables are time-

varying self-adjoint operators, acting on the system-field

tensor-product space H := H0 ⊗F (where H0 is a complex

separable Hilbert space playing the role of the initial system

space for X1(0), . . . ,Xn(0)). Also, the system variables satisfy

the Weyl CCRs [3] whose infinitesimal Heisenberg form is

given by

[X(t),X(t)T] = 2iΘ, X := (Xk)16k6n, (22)

for any t > 0, where Θ is a constant real antisymmetric matrix

of order n, which is assumed to be nonsingular. The vector X

of the system variables evolves according to a linear QSDE

dX = AXdt+BdW (23)

(the time arguments are omitted for brevity), driven by the

quantum Wiener process W of Section II. Here, the matrices



A ∈ Rn×n, B ∈ Rn×m satisfy the physical realizability (PR)

condition [10]

AΘ+ΘAT+BJBT = 0, (24)

which is closely related to the preservation of the CCRs (22)

in time. The property (24) follows from the parameterization

of the matrices

A = 2Θ(R+MTJM), B = 2ΘMT (25)

in terms of the energy and coupling matrices R = RT ∈
Rn×n, M ∈ Rm×n which specify the system Hamiltonian
1
2
XTRX and the vector MX of m system-field coupling

operators. Moreover, if the matrix A in (25) is Hurwitz,

then the CCR matrix is uniquely recovered as the solution

Θ =
∫+∞

0 etABJBTetAT
dt of (24) as an algebraic Lyapunov

equation (ALE).

In addition to the input fields W1, . . . ,Wm and the internal

dynamic variables X1, . . . ,Xn, the OQHO also has output

field variables Y1, . . . ,Ym whose evolution is affected by the

system-field interaction. However, the output fields will not

be considered in what follows.

Now, due to linearity of the QSDE (23), its solution is

given by

X(t) = etAX0 +

∫ t

0
e(t−s)ABdW (s), t > 0, (26)

with its entries acting on the corresponding system-field sub-

space Ht :=H0 ⊗Ft , where X0 := X(0) for brevity. Similarly

to classical linear systems, the following Laplace transforms2

X̂(v) :=

∫ +∞

0
e−vtX(t)dt, Ŵ (v) :=

∫ +∞

0
e−vtdW (t), (27)

which are well-defined for any v∈C satisfying Rev> 0 (with

A being Hurwitz), are related by

X̂(v) = F(v)(BŴ (v)+X0), F(v) := (vIn −A)−1 (28)

(see also [31]). Here, FB is the Cn×m-valued transfer function

from W to X , which is specified by the pair (A,B). The

matrices F(u), F(v)∈Cn×n in (28) commute with the matrix

A and with each other (as functions of a common matrix [5])

for any u,v ∈C which are not eigenvalues of A.

The following theorem establishes a representation for

the system variables over the time interval [0,T ] by using

the QKL expansion (10) of the driving quantum Wiener

process and making advantage of the sinusoidal nature of

the eigenfunctions in (5). Its formulation employs auxiliary

matrices

℧k := (ω2
k In +A2)−1, (29)

Ak :=
√

2
T

A℧k

(
(−1)keTA − 1

ωk
A
)

(30)

(also commuting with each other and the matrix A), where

ωk are the frequencies from (5).

2note that the integrals in (27) have different structure

Theorem 2: For the OQHO, described by (22)–(25), with

A Hurwitz, the vector of the system variables can be repre-

sented as

X(t) = ξ +
+∞

∑
k=0

( fk(t)αk + gk(t)βk), 0 6 t 6 T. (31)

Here, the functions fk, gk are given by (5), (18), and αk,

βk are vectors of n self-adjoint quantum variables which are

related to the initial system variables in (26) and the QKL

coefficients in (10) by

αk := Akξ +ωk℧kBwk, βk :=−A℧kBwk (32)

where ξ is also such a vector given by

ξ := X0 +
√

2
T

+∞

∑
k=0

A℧kBwk, (33)

and use is also made of the matrices ℧k, Ak from (29), (30).

�

Proof: By substituting (10) into (26) and using an

operator version of the complex impedance technique, it

follows that

X(t) = etAX0 +
√

2
T

+∞

∑
k=0

Re
(
(eiωkt In − etA)F(iωk)

)
Bwk

= etAξ +
√

2
T

+∞

∑
k=0

Re
(
eiωktF(iωk)

)
Bwk

= etAξ +
+∞

∑
k=0

(ωk fk(t)In − gk(t)A)℧kBwk, (34)

where ℧k are the matrices from (29). Here, we have also used

the property of the function F in (28) that F(iω)F(−iω) =
(ω2In +A2)−1, whereby F(iω) =−(ω2In +A2)−1(A+ iωIn)
(and is well-defined for any ω ∈R since A is Hurwitz). Also,

ξ in (34) is a vector of n self-adjoint quantum variables

on the system-field space H, related to the initial system

variables and the QKL coefficients as

ξ := X0 −
√

2
T

+∞

∑
k=0

ReF(iωk)Bwk = X0 +
√

2
T

+∞

∑
k=0

A℧kBwk,

in accordance with (33). We will now use the Fourier

expansion of the fundamental matrix of the linear system

ẋ = Ax over the functions (5):

etA = In +
+∞

∑
k=0

fk(t)Ak = In +
√

2
T

+∞

∑
k=0

sin(ωkt)Ak (35)

for all 0 6 t 6 T , with the coefficients Ak ∈ Rn×n computed

as

Ak =

∫ T

0
fk(t)(e

tA − In)dt

=
√

2
T

∫ T

0
sin(ωkt)(etA − In)dt

=
√

2
T

(
Im

(
F(−iωk)(In − eT(iωkIn+A))

)
− 1

ωk
In

)

=
√

2
T

(
℧k((−1)kAeTA +ωkIn)− 1

ωk
In

)

=
√

2
T

A℧k

(
(−1)keTA − 1

ωk
A
)
, (36)



in accordance with (30), where the matrices ℧k from (29)

are used together with the identity eiωkT = (−1)ki for the

frequencies ωk in (5). Substitution of (35) into (34) leads to

(31), (32).

The vectors αk, βk in (32) satisfy CCRs whose structure

is more complicated than that of the QKL coefficients wk in

(4) because of the presence of the vector ξ given by (33).

More precisely,

[α j ,β
T
k ] = [A jξ +ω j℧ jBw j,(−A℧kBwk)

T]

=−(A j[ξ ,w
T
k ]+ω j℧ jB[w j,w

T
k ])B

T
℧

T
k AT

=−2i
(√

2
T

AA j℧k + δ jkω j℧ j

)
BJBT

℧
T
k AT. (37)

Here, we have used the commutativity between the initial

system variables on H0 and the operators on the Fock space

F, whereby [X0,w
T
k ] = 0 for all k = 0,1,2, . . ., which, in view

of (4), (33), implies

[ξ ,wT
k ] = [X0,w

T
k ]+

√
2
T

+∞

∑
j=0

A℧ jB[w j ,w
T
k ] = 2i

√
2
T

A℧kBJ.

In (37), the commutativity between the matrices A and Ak,

given by (30), has also been used. As opposed to (4), the

vectors α j , βk, which play the role of coefficients in (31),

have a nonvanishing CCR matrix for j 6= k. This more

complicated commutation structure comes from the fact that

Theorem 2 describes the response of the system variables

X1, . . . ,Xn to the QKL expansion of the driving quantum

Wiener process W , which employs the eigenbasis associated

with W rather than X1, . . . ,Xn themselves.

V. QUANTUM KARHUNEN-LOEVE

REPRESENTATION OF SYSTEM VARIABLES

Since the matrix A in (25) is assumed to be Hurwitz,

then, in the case of vacuum input fields, the system variables

X1, . . . ,Xn of the OQHO have a unique invariant multipoint

Gaussian quantum state [24] with zero mean and the two-

point quantum covariance matrix

E(X(s)X(t)T) = K(s− t), s, t > 0, (38)

where

K(τ) =

{
eτAV if τ > 0

Ve−τAT
if τ < 0

= K(−τ)∗, (39)

with (·)∗ := (·)T
the complex conjugate transpose. Here,

V := Σ+ iΘ (40)

is the invariant one-point quantum covariance matrix of the

system variables satisfying the ALE

AV +VAT+BΩBT = 0, (41)

whose imaginary part is equivalent to the PR condition (24)

in view of (15). Accordingly, the imaginary part of (39)

describes the two-point CCR matrix

[X(s),X(t)T] = 2iΛ(s− t), (42)

where

Λ(τ) := ImK(τ)

=

{
eτAΘ if τ > 0

Θe−τAT
if τ < 0

=−Λ(−τ)T. (43)

The commutation structure (42), (43) of the system variables

of the OQHO remains valid regardless of their particular

quantum state.

In view of (41), (15), the matrix Σ = ReV in (40) is the

controllability Gramian of the pair (A,B) satisfying the ALE

AΣ+ΣAT +BBT = 0.

Being a positive semi-definite Hermitian kernel, the two-

point quantum covariance function K in (38), (39) specifies

a positive semi-definite self-adjoint linear integral operator

K which maps a square integrable function ϕ : [0,T ]→Cn

to another such function ψ as

ψ(s) :=

∫ T

0
K(s− t)ϕ(t)dt, 0 6 s 6 T. (44)

Here, the Hilbert space L2([0,T ],Cn) is endowed with the

standard inner product

〈 f ,g〉 :=
∫ T

0
f (t)∗g(t)dt.

The operator K , given by (39), (44), is of trace class and

its kernel K is represented as

K(s− t) =
+∞

∑
k=0

µkhk(s)hk(t)
∗, 0 6 s, t 6 T, (45)

in terms of orthonormal eigenfunctions hk : [0,T ] → Cn

satisfying
∫ T

0
K(s− t)hk(t)dt = µkhk(s), 0 6 s 6 T, k = 0,1,2, . . . ,

(46)

where µk > 0 are the corresponding eigenvalues, with

∑+∞
0 µk = TrK = TTrK(0) = T TrΣ, since TrV = TrΣ in (40)

due to TrΘ = 0. Accordingly,

〈 f ,K g〉=
+∞

∑
k=0

µk〈 f ,hk〉〈hk,g〉, 〈 f ,K f 〉=
+∞

∑
k=0

µk|〈 f ,hk〉|2

(47)

for any f ,g ∈ L2([0,T ],Cn). In what follows, we will also

use the Rn-valued functions ϕk := Rehk, ψk := Imhk, so that

hk = ϕk + iψk. (48)

Now, let ζ0,ζ1,ζ2, . . . be a sequence of vectors

ζk :=

[
ξk

ηk

]
(49)

which consist of self-adjoint quantum variables ξk, ηk on H

and satisfy the CCRs

[ζ j,ζ
T
k ] = 2iδ jkJ, j,k = 0,1,2, . . . , (50)

where the matrix J is given by (3). Up to a factor of
√

2, the

operators ξk, ηk are organised as the quantum mechanical



positions and momenta, mentioned in Section II. This gives

rise to the annihilation operators

γk := ξk + iηk, (51)

satisfying the CCRs

[γ j,γk] = 0, [γ†
j ,γ

†
k ] = 0, [γ j,γ

†
k ] = 4δ jk, j,k = 0,1,2, . . . ,

where (·)† denotes the operator adjoint. Now, consider the

series

X(t) =
+∞

∑
k=0

√
µkRe(hk(t)γk)

=
+∞

∑
k=0

√
µk(ϕk(t)ξk −ψk(t)ηk)

=
+∞

∑
k=0

√
µk

[
ϕk(t) −ψk(t)

]
ζk, 0 6 t 6 T, (52)

defined in terms of the eigenvalues and eigenfunctions from

(46), (48) and the annihilation operators (51), with the real

part extended from complex numbers to operators as Reξ :=
1
2
(ξ + ξ †). It follows from (50), (52) that

[X(s),X(t)] =
+∞

∑
j,k=0

√
µ jµk

[
ϕ j(s) −ψ j(s)

]
[ζ j,ζ

T
k ]

[
ϕk(t)

T

−ψk(t)
T

]

= 2i
+∞

∑
k=0

µk

[
ϕk(s) −ψk(s)

]
J

[
ϕk(t)

T

−ψk(t)
T

]

= 2i
+∞

∑
k=0

µk(ψk(s)ϕk(t)
T −ϕk(s)ψk(t)

T)

= 2i
+∞

∑
k=0

µkIm(hk(s)hk(t)
∗)

= 2iΛ(s− t), 0 6 s, t 6 T,

where use is made of (3), (43), (45), (48). Therefore, (52)

has the same two-point CCRs (42) as the system variables

of the OQHO.

Theorem 3: Suppose the vectors ζk in (49) with the CCRs

(50) are statistically independent and are in a joint Gaussian

quantum state with zero mean and common covariance

matrix

Γ := I2 + iJ, (53)

so that

Eζk = 0, E(ζ jζ
T
k ) = δ jkΓ, j,k = 0,1,2, . . . . (54)

Then the process (52), defined in terms of the eigenvalues

and eigenfunctions (46), (48) for the kernel (39) and the anni-

hilation operators (51), has the invariant multipoint Gaussian

quantum state of the system variables of the OQHO driven

by the vacuum input fields. �

Proof: The pairwise commutativity of the vectors (49),

their statistical independence and the structure (53), (54) of

their Gaussian quantum states allow the QCF of the process

(52) to be computed as

Eei
∫ T

0 f (t)TX(t)dt = Eei∑+∞
k=0

√
µk(〈 f ,ϕk〉ξk−〈 f ,ψk〉ηk)

=
+∞

∏
k=0

Eei
√

µk(〈 f ,ϕk〉ξk−〈 f ,ψk〉ηk)

=
+∞

∏
k=0

e−
1
2 µk(〈 f ,ϕk〉2+〈 f ,ψk〉2)

= e−
1
2 ∑

+∞
k=0

µk(〈 f ,ϕk〉2+〈 f ,ψk〉2)

= e−
1
2 〈 f ,K f 〉 (55)

for any function f ∈ L2([0,T ],Rn). Here, use is also made of

(47) together with the identity |〈 f ,hk〉|2 = 〈 f ,ϕk〉2 +〈 f ,ψk〉2

in view of (48). The relation (55) establishes the multipoint

Gaussian quantum state, described in the theorem, for the

process X in (52).

The proofs of Theorems 1 and 3 employ the property

that linear transformations of quantum variables in Gaussian

states lead to Gaussian quantum variables. Also note that,

regardless of a particular form of the eigenfunctions hk in

(52), the QKL expansion of the system variables (under the

conditions of Theorem 3) is mean square convergent, with

the remainder process rN(t) := ∑+∞
k=N

√
µkRe(hk(t)γk) satis-

fying
∫ T

0 E(rN(t)
TrN(t))dt = ∑+∞

k=N µk for any N = 0,1,2, . . ..
Furthermore, the relatively simple commutation structure and

the statistical properties of the coefficients (49) of the QKL

expansion (52) of the system variables are similar to those

for the QKL expansion (10) of the quantum Wiener process.

VI. APPLICATION TO

QUADRATIC-EXPONENTIAL FUNCTIONALS

For the OQHO, described by (22)–(25), and assuming the

time horizon T to be fixed as before, consider the following

QEF [24]:

Ξ := EeQ. (56)

Here, Q is a positive semi-definite self-adjoint quantum

variable given by

Q :=
∫ T

0
X(t)TΠX(t)dt, (57)

where Π is a real positive semi-definite symmetric matrix of

order n. The exponential in (56) is usually evaluated at θQ

(instead of Q), where the factor θ > 0 is a risk-sensitivity

parameter, which is “absorbed” here by the matrix Π. The

cost functional Ξ imposes an exponential penalty on Q in

(57) (which is a quadratic function of the system variables

over the time interval [0,T ]) and involves the mean square

cost EQ as its limiting case in view of the asymptotic relation

lnΞ = EQ+ o(Π), as Π → 0.

The QEF Ξ in (56) (when θ is reinstated and Ξ = EeθQ

is considered for different θ > 0) gives rise to an upper

bound [24] for the tail distribution of the quantum variable

Q. Furthermore, Ξ also leads to an upper bound for the

worst-case value supρ∈R Tr(ρQ) of the mean square cost

EQ over a class R of those actual density operators ρ



whose quantum relative entropy [15], [30] with respect to

the nominal system-field state

ρ0 := ϖ ⊗υ (58)

does not exceed a given level [25]. Here, ϖ is the initial

system state on the space H0, and υ is the vacuum field

state on the Fock space F. This allows the QEF Ξ to be

used as a finite-horizon cost for a closed-loop quantum

system, resulting from the connection of a quantum feedback

controller and a quantum plant (both modelled as OQHOs),

such as in Fig. 1. More precisely, even if Ξ is evaluated at

quantum

plant

quantum

controller

W (1) ���� ❅❅❅❅

❅❅❅❅ ���� W (2)

Fig. 1. A field-mediated feedback connection of a quantum plant and
a quantum controller subject to the augmented quantum Wiener process

W := [W (1)T
,W (2)T

]T, where W (1), W (2) represent the input fields for the
plant and controller, respectively.

the nominal system-field density operator ρ = ρ0 (with ϖ in

(58) being, for example, the invariant Gaussian quantum state

for the plant-controller system variables), the minimization

of the nominal value of Ξ by an appropriate choice of

the controller provides a robust performance criterion for

finite-horizon quantum control problems. This makes the

development of state-space methods for computing the QEF

an important analysis problem.

For what follows, we assume that the OQHO has a

Hurwitz matrix A in (25), is driven by vacuum input fields

and initialised in the invariant Gaussian quantum state. Then,

by Theorem 3, the QKL series (52), associated with the

eigenfunctions of the invariant covariance kernel (39), has the

invariant multipoint Gaussian quantum state of the system

variables. Hence, the QEF in (56) can be represented by

substituting (52) into (57):

Q =
∫ T

0

+∞

∑
j,k=0

√
µ jµkζ T

j

[
ϕ j(t)

T

−ψ j(t)
T

]
Π
[
ϕk(t) −ψk(t)

]
ζkdt

=
+∞

∑
j,k=0

√
µ jµkζ T

j G jkζk, (59)

where

G jk :=

∫ T

0

[
ϕ j(t)

T

−ψ j(t)
T

]
Π
[
ϕk(t) −ψk(t)

]
dt

=

[
〈ϕ j,Πϕk〉 −〈ϕ j,Πψk〉
−〈ψ j,Πϕk〉 〈ψ j,Πψk〉

]
= GT

k j (60)

are real (2× 2)-matrices consisting of the weighted inner

products of the real and imaginary parts of the eigenfunctions

(48). Therefore, (59) allows the cost functional Ξ in (56) to

be represented as a QEF for the sequence of coefficients ζk

of the QKL expansion (52) of the continuous-time process

X :

Ξ = Ee
∑+∞

j,k=0

√
µ j µkζ T

j G jkζk = lim
N→+∞

ΞN , (61)

where

ΞN := EeQN , (62)

with

QN :=
N−1

∑
j,k=0

√
µ jµkζ T

j G jkζk (63)

being a truncation of the infinite series in (59). In addition

to providing a “meshless discretization” for the QEF Ξ,

the representations (61)–(63) employ quadratic forms of

statistically independent Gaussian vectors ζ0,ζ1,ζ2, . . . which

have relatively simple commutation and covariance structures

(50), (54).

Now, the computation of the “incomplete” QEF ΞN in

(62), which involves only a finite number of quantum

variables, can be carried out by using the results of [26,

Section 7]. To this end, (63) is represented for any N =
1,2,3, . . . as

QN =ϒT
NHNϒN , ϒN :=




ζ0

...

ζN−1


= [ξ0,η0, . . . ,ξN−1,ηN−1]

T,

(64)

where the vector ϒN consists of 2N self-adjoint quantum

variables from (49) and satisfies the CCRs

[ϒN ,ϒ
T
N ] = 2iJN , JN := IN ⊗ J (65)

in view of (50). Also,

HN := (
√

µ jµkG jk)06 j,k<N (66)

is a real positive semi-definite symmetric matrix of order 2N,

which is assumed to be nonsingular for what follows. Since

HN ≻ 0, Williamson’s symplectic diagonalization theorem

[28], [29] (see also pp. 244–245 of [2]) guarantees the

existence of a symplectic matrix UN ∈ R2N×2N (satisfying

UNJNUT
N = JN , with the symplectic structure matrix JN from

(65)) such that

UT
N HNUN = SN ⊗ I2, SN := diag

16k6N

(σk), (67)

where σ1, . . . ,σN are positive real numbers (the symplectic

eigenvalues of the matrix HN). The vector

ZN :=U−1
N ϒN

inherits the CCR matrix JN from ϒN in (64), and, in view of

(53), (54), its quantum covariance matrix takes the form

CN := E(ZNZT
N)

=U−1
N (I2N + iJN)U

−T
N

= (UT
NUN)

−1 + iJN, (68)

where (·)−T := ((·)−1)T. In order to formulate the theorem

below, we associate

ak =
1

2
tanh(2σk), bk =

1

2
sinh(4σk), k = 1, . . . ,N, (69)



with the symplectic spectrum of HN in (67), and define

auxiliary matrices

ΦN := IN ⊗




1 0

0 1

1 0


 , ΨN := blockdiag

16k6N

(ak,bk,ak). (70)

Also, for any matrix D := (d jk)16 j,k6s, we denote by D⋄ the

matrix of the same order with the entries

(D⋄) jk :=

{
d jk if j 6 k

dk j if j > k
, (71)

so that D⋄ is a symmetric matrix which inherits its upper

triangular part (including the main diagonal) from D. The fol-

lowing theorem is established by applying [26, Theorem 7.1].

Theorem 4: Suppose the matrix HN in (66) is positive

definite, and its symplectic eigenvalues σ1, . . . ,σN and the

symplectic matrix UN in (67) satisfy

r((UT
NUN)

−1 blockdiag
16k6N

(2ak,bk))< 1, (72)

where r(·) is the spectral radius. Then the incomplete QEF

in (62) can be computed as

ΞN =
1√

det(I3N − (ΦNCNΦT
N)

⋄ΨN)
(73)

in terms of (68)–(71). �

The condition (72) (which reflects the “smallness” of the

matrix Π in (57) needed for the QEF Ξ in (56) and its

approximations ΞN in (61) to be finite) and the representation

(73) admit a recursive form with respect to N = 1,2,3, . . .. In

view of (66), application of Theorem 4 involves the matrices

(60) and requires the knowledge of the eigenvalues and

eigenfunctions for the invariant covariance kernel (39) of the

system variables of the OQHO on the time interval [0,T ].
The eigenanalysis problem (46) can be tackled by using the

matrix exponential structure of the covariance function K,

which will be discussed elsewhere.

VII. CONCLUSION

We have considered a quantum counterpart of the

Karhunen-Loeve expansion for the quantum Wiener pro-

cesses and for system variables of an OQHO, driven by

vacuum fields. A sinusoidal expansion has been obtained

for the system variables as their response to the QKL

representation of the driving Wiener process. We have also

discussed a more natural QKL expansion of the system

variables using the eigenvalues and eigenfunctions of the

invariant covariance kernel. The common feature of these

QKL expansions is the orthonormality of the basis functions

and statistical independence of the pairwise commuting

Gaussian coefficients each of which consists of conjugate

pairs of noncommuting position and momentum operators.

We have outlined an application of the QKL representation of

the system variables to computing the QEF as a finite-horizon

robust performance criterion for linear quantum stochastic

systems.
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