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Abstract— Nonlinear model predictive control (NMPC) is an
efficient control approach for multivariate nonlinear dynamic
systems with process constraints. NMPC does however require
a plant model to be available. A powerful tool to identify such a
model is given by Gaussian process (GP) regression. Due to data
sparsity this model may have considerable uncertainty though,
which can lead to worse control performance and constraint
violations. A major advantage of GPs in this context is its
probabilistic nature, which allows to account for plant-model
mismatch. In this paper we propose to sample possible plant
models according to the GP and calculate explicit back-offs
for constraint tightening using closed-loop simulations offline.
These then in turn guarantee satisfaction of chance constraints
online despite the uncertainty present. Important advantages of
the proposed method over existing approaches include the cheap
online computational time and the consideration of closed-loop
behaviour to prevent open-loop growth of uncertainties. In
addition we show how the method can account for updating
the GP plant model using available online measurements. The
proposed algorithm is illustrated on a batch reactor case study.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
method that has found a wide range of applications in indus-
try. The success of MPC can be largely attributed to its ability
to deal with multivariate plants and process constraints [1].
Linear MPC theory is relatively mature and well-established
in practice. Many systems however display strong nonlinear
behaviour motivating the use of nonlinear MPC (NMPC)
[2]. NMPC is being progressively more utilized due to the
advent of improved non-convex optimization algorithms [3],
for example in chemical engineering [4].

An important requirement for NMPC is the availability
of an accurate plant model. The development of an ad-
equate model has been cited to take up to 80% of the
MPC commissioning effort [5]. NMPC algorithms exploit
numerous different models, commonly developed by first
principles [6]. These are however often too complex and
in addition frequently accompanied by high development
costs. Alternatively, black-box dynamic models can be used
instead, such as support vector machines [7], neural network
models [8], or Gaussian processes (GP) [9].

GPs are an interpolation technique developed by [10] that
were popularized by the machine learning community [11].
GP predictions take the form of Gaussian distributions. The
mean of this distribution can be interpreted as a deterministic
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prediction, while the variance of the distribution can be seen
as a corresponding measure of uncertainty. In particular, an
appropriate measure of uncertainty is difficult to obtain by
nonlinear parametric models [9]. In control this uncertainty
measure can be exploited for efficiently learning a dynamic
model by exploring unknown regions or obtaining robust-
ness by avoiding regions that have an uncertainty that is
too high. GPs have found various applications in control,
such as reinforcement learning [12], designing probabilistic
robust linear controllers [13], or for adaptive control [14].
In particular, GPs have been applied in NMPC to notable
success as approximate plant models.

The use of GPs for NMPC was first proposed in [15], in
which a GP model is updated online for reference tracking
without constraints. In [9] the GP is instead identified offline
and used online. The variance is constrained to prevent the
NMPC from steering the dynamic system into regions with
high uncertainty. In [16] GPs are updated online to overcome
unmodelled periodic errors, while in [17] the GP is used to
update the dynamic model online after a fault has occurred.
GPs have also been shown as a useful tool to approximate
the mean and variance required in stochastic NMPC [18].
While generally these and other works show the feasibility
of GP-based NMPC, there is a lack of efficient methods to
account for this uncertainty. Model uncertainty can lead to
worse performance and feasibility issues of MPC algorithms,
which has led to the development of robust MPC [19] and
stochastic MPC [20] approaches.

Most works on GP-based NMPC do consider this uncer-
tainty, however the vast majority of proposed algorithms use
stochastic uncertainty propagation to accomplish this, see
for example [9], [21], [22]. A recent overview of different
stochastic uncertainty propagation approaches can be found
in [23]. These approaches have some considerable disad-
vantages. Firstly, there are no known methods to exactly
propagate stochastic uncertainties through the GP model,
such that only approximate methods exist usually based on
linearization or moment-matching. Secondly, the computa-
tional time is often increased significantly due to the stochas-
tic propagation itself. Lastly, most works consider open-
loop propagation of uncertainties, which can be prohibitively
conservative due to open-loop growth of uncertainties.

Recently there have been some works that do consider
other robust control methods. In [24] a robust GP-based
NMPC algorithm is developed for learning by propagating
ellipsoidal sets using linearization, that provides closed-
loop stability guarantees. This approach may however suffer
from increased computational times, since the ellipsoidal sets



need to be propagated online. In [25] an alternative proce-
dure is proposed, which establishes closed-loop stability by
bounding the one-step ahead error, however determining the
required parameters seems to be non-trivial. Lastly, in [26]
a robust control approach is proposed for linear systems, in
which the GP is used to represent unmodelled non-linearities.
The method robustly stabilizes the linear system despite the
unmodelled non-linearities, which may however not have a
solution if these uncertainties are too large in magnitude.

In this paper we propose a new approach to account
for the uncertainty of GP state space models for NMPC
for finite-horizon control problems. The method exploits
recent results using so-called explicit back-offs, which can
be used to account for stochastic uncertainties to design the
NMPC [27], [28]. These rely on generating Monte Carlo
(MC) closed-loop simulations of possible plant models. The
back-offs are then used to tighten the constraints of the
NMPC to obtain probabilistic constraint satisfaction despite
the stochastic uncertainties present. Further, to generate the
required MC samples of the GPs we employ results from
[29], [30], where it is shown how to obtain exact samples of
GPs. There are several advantages of the proposed method.
Firstly, the back-offs are determined using closed-loop sim-
ulations, such that the problem of open-loop uncertainty
growth is avoided. Further, the required computations are
carried-out offline, such that the online computational time
is nearly unaffected. In addition, the back-offs are designed
based on the empirical cumulative distribution function (cdf),
which considers the true underlying distribution [31]. Lastly,
due to the independence of the samples some probabilistic
guarantees can be given. An extended journal paper of this
approach can be found in [32].

The paper is structured as follows. In section II the
problem to be solved is outlined. In section III we give an
overview of GPs for our purposes. Section IV then outlines
the solution approach using GPs. Section V describes the
semi-batch reactor case study, for which the results and
discussions are given in section VI. Subsequently, section
VII concludes the paper.

II. PROBLEM DEFINITION

In this paper we consider a nonlinear discrete-time system:

xt+1 = f(xt,ut) (1)

where t denotes the discrete time, x ∈ Rnx denotes the
states, u ∈ Rnu represents the control inputs, and f : Rnx ×
Rnu → Rnx denotes the corresponding nonlinear dynamics.

It is assumed that the full state is measurable with a noisy
output measurement of the next state given by:

y = f(x,u) + ν (2)

where ν ∼ N (0,Σν) is independent Gaussian distributed
measurement noise with zero mean and a corresponding
covariance function Σν = diag(σ2

ν1 , . . . , σ
2
νnx

).
Let z = (x,u) for convenience with joint dimension

nz = nx + nu. We assume we are given N noisy function

evaluations of f(z) in Eq.(1) according to Eq.(2) denoted as
Y with corresponding input data Z:

Z := [z1, . . . , zN ]T ∈ RN×(nx+nu) (3)

Y = [y1, . . . ,yN ]T ∈ RN×nx (4)

We aim to minimize a finite-horizon cost function:

VT (x0,U) =

T−1∑
t=0

`(xt,ut) + `f (xT ) (5)

where T ∈ N is the time horizon, U = [u0, . . . ,uT−1]
T is

a collection of control inputs, ` : Rnx × Rnu → R is the
stage cost, and `f : Rnx → R is the terminal cost.

We assume that the control inputs are subject to hard-
constraints, while the states are subject to a joint chance
constraint, which can be stated as:

ut ∈ Ut ∀t ∈ {0, . . . , T − 1} (6)

P

{
T⋂
t=0

{xt ∈ Xt}

}
≥ 1− ε (7)

where Xt are defined as nonlinear constraint sets
Xt = {x ∈ Rnx | g(t)j (x) ≤ 0, j = 1, . . . , ng}

The joint chance constraints are formulated such that the
joint event of all xt fulfilling the nonlinear constraint sets Xt
is greater than 1− ε. It should be noted that the uncertainty
in this problem arises from the fact that we do not know
f(x,u) and are instead given noisy observations of f(x,u).
We aim to solve this OCP by utilizing GPs to model the
unknown dynamics and use the GP approximation to obtain
probabilistic guarantees for the closed-loop system.

III. GAUSSIAN PROCESSES

A. Gaussian process regression

In this section we give an introduction to GP regression.
For a more general overview refer to [11]. GP regression
aims to describe an unknown function f : Rnz → R using
noisy observations y:

y = f(z) + ν (8)

where z ∈ Rnz is the argument of f() and ν ∼ N (0, σ2
ν) is

Gaussian distributed measurement noise with zero mean and
variance σ2

ν .
GPs consider a distribution over functions, and they can

be seen as a generalization of multivariate Gaussian distri-
butions, which can be expressed as:

f(·) ∼ GP(m(·), k(·, ·)) (9)

where the mean function m(·) can be interpreted as the ”av-
erage” shape of the function, while the covariance function
k(·, ·) accounts for correlations between function values.

The prior GP is defined by the choice of mean function
and covariance function. In this study we apply a zero



mean function and the squared-exponential (SE) covariance
function [11] 1:

m(z) := 0 (10)

k(z, z′) := α2 exp

(
−1

2
(z− z′)TΛ−2(z− z′)

)
(11)

where z, z′ ∈ Rnz are arbitrary input vectors, α2 is the
covariance magnitude, and Λ−2 := diag(λ−21 , . . . , λ−2nz

) is
a scaling matrix.

Maximum likelihood estimation is commonly ap-
plied to infer the unknown hyperparameters Ψ :=
[α, λ1, . . . , λnz , σν ]

T, including σν in case the measurement
noise variance is also unknown. Consider N noisy func-
tion evaluations, denoted by Y := [y1, . . . , yN ]T ∈ RN ,
with corresponding inputs collected in the matrix Z :=
[z1, . . . , zN ] ∈ Rnz×N . The log-likelihood of the observed
data, ignoring constant terms, is given by:

L(Ψ) := −1

2
log(det(K))− 1

2
YT K−1 Y (12)

with Kij := k(zi, zj) + σ2
νδij for each pair (i, j) ∈

{1, . . . , N}2 and the Kronecker delta function δij .
The posterior distribution of f(z) at an arbitrary input

z, given the input-output data (Z,Y) and the maximum-
likelihood estimates of Ψ, follows the Gaussian distribution:

f(z)|Z,Y ∼ N (µf (z;Z,Y), σ2
f (z;Z,Y)) (13)

with

µf (z;Z,Y) := k(z)K−1 Y (14)

σ2
f (z;Z,Y) := α2 − k(z)K−1 k(z)T (15)

and k(z) := [k(z, z1) · · · k(z, zN )]. The mean function
µf (z;Z,Y) in this context is the prediction made by the
GP at z, while the variance σ2

f (z;Z,Y) provides a measure
of uncertainty around this predictor.

Fig. 1. Illustration of a GP of a 1-dimensional function perturbed by noise.
On the top the prior of the GP is shown, while on the bottom the Gaussian
process was fitted to several observations to obtain the posterior. The dashed
lines show GP samples.

1The zero-mean assumption can be achieved by normalizing the data.
Also the method presented can be used on any chosen covariance function.

B. Gaussian process state space models

In this section we introduce GP state space models. We
aim to identify an unknown state space model from input-
output data. GP methodology is usually used to model scalar
functions with vector inputs, while for the case of vector
functions it is common to build a separate, independent GP
for each dimension [12]. Let the function in Eq.(1) be given
by f(xt,ut) = [f1(xt,ut), . . . , fnx

(xt,ut)]
T, such that we

aim to build a separate GP for each function fi(xt,ut).
We then build a separate GP according to section III-A
with observations Yi = [yi1, . . . , yiN ]T and inputs Z for
i ∈ {1, . . . , nx}, where yi refers to the ith dimension of the
measurement y in Eq.(2). The posterior Gaussian distribution
of f(x,u) given the data-set (Z,Y) in Eq.(3) and Eq.(4)
respectively at an arbitrary input z = (x,u) is given by:

f(z)|Z,Y ∼ N (µf (z;Z,Y),Σf (z;Z,Y)) (16)

with

µf (z;Z,Y) = [µf (z;Z,Y1), . . . , µf (z;Z,Ynx
)]T (17)

Σf (z;Z,Y) = diag
(
σ2
f (z;Z,Y1), . . . , σ

2
f (z;Z,Ynx

)
)
(18)

C. Gaussian process samples

Each sample or realization of a GP in theory yields a
deterministic function, however this would require sampling
an infinite dimensional stochastic process and hence there
are no known methods to obtain an exact sample from a
GP. Instead approximate sampling methods have been used,
see for example spectral sampling [33]. Exact samples of
GPs can however be obtained in the case that the function
needs to be evaluated at only a finite number of points, which
is commonly the case for state space models. The exact
sampling approach was first proposed in [29] and has been
applied in [30] for the optimal design of linear controllers.

Assume we are given a GP state space model as in section
III-B built from an input data-set Z and corresponding
observations Y. We then wish to create a single GP sample
from an initial state x0 for a finite-horizon T given a
known control input sequence U = [u0, . . . ,uT−1]. A finite
dimensional GP state space model sample over time-horizon
T is then represented by a sequence of states. The posterior
Gaussian distribution of x1 is given according to Eq.(16) as:

x1 = f(z0) ∼ N (µf (z0;Z,Y),Σf (z0;Z,Y)) (19)

Now to obtain a sample of x1, we draw from the Gaussian
distribution in Eq.(19). Let x

(s)
1 refer to this realization of x1,

which is considered a realization of the sampled function. To
obtain x

(s)
2 we then need to first condition on this realization

x
(s)
1 , since it is part of the sampled function path. The

realization x
(s)
1 is treated similar to a new training point,

however without observation noise (i.e. no σ2
ν is added to

the kernel evaluation k(z0, z0)) and without updating the
hyperparameters. If the sampled function revisited the same
input, it would lead to the exact same outcome due to the
conditioning on a noiseless output.



Now given this new point x
(s)
1 , we next draw x

(s)
2 ac-

cording to the GP obtained from the updated data-sets. This
procedure is recursively repeated until the required time-
horizon T has been reached. The overall sampling method
is summarized in Algorithm 1 below and is illustrated in
Fig.2. This gives us a single GP sample and hence needs to
be repeated multiple times to obtain multiple samples.

Algorithm 1: Gaussian process trajectory sampling

Input : z
(s)
0 = z0, U, K, K−1, Z, Y, k(z) T

for each sampling time t = 1, 2, . . . , T do
1) Draw x

(s)
t from

N (µf (z
(s)
t−1;Z,Y),Σf (z

(s)
t−1;Z,Y))

2) Update Z := [ZT, z
T(s)
t−1 ]

T, Y := [YT,x
T(s)
t ]T

3) Update K =

[
K k(z

(s)
t−1)

k(z
(s)
t−1) k(z

(s)
t−1, z

(s)
t−1)

]
4) Determine K−1

5) Define k(z) = [k(z), k(z, z
(s)
t−1)]

end
Output : State sequence x

(s)
1 , . . . ,x

(s)
T

Fig. 2. Illustration of GP sampling scheme for a 1-dimensional function.

IV. SOLUTION APPROACH

Given the input-output data-sets Z and Y we fit a GP
state space model, see section III-B. We aim to solve the
problem defined in section II using NMPC based on this
GP model. Now the mean model of the GP defines a state
trajectory itself, which we will refer to as the nominal case.
Each sample of the GP defines further deterministic solutions
to the GP state space model. Overall each sample of the GP
over a finite horizon T is defined by drawing T independent
random states as shown in section III-C, which we will refer
to as ∆. For convenience we introduce the notation:

xt = φ(t,Y,Z;x,U,∆) (20)

where φ(t,Y,Z;x,U,∆) corresponds to the state at time t,
when the initial state is x, the control sequence U is applied,
and the GP realization is given by ∆ given the initial input-
output dataset (Z,Y). Further, by convention let ∆ = 0

refer to the nominal scenario defined by setting the state
space model to the mean function µf (z;Y,Z).

A. Gaussian process model predictive control

In this section we define the NMPC OCP based on the GP
nominal model given the data-set (Z,Y). Let the optimization
problem be denoted as PT (t,Y,Z;x) for the current state x
at discrete-time t:

minimize
Ut:T−1

VT (x,Ut:T−1) =

T−1∑
k=t

`(xk,uk) + `f (xT )

subject to
xk+1 = φ(k,Y,Z;x,Ut:k,0) ∀k ∈ {t, . . . , T − 1}
xk+1 ∈ Xk+1, uk ∈ Uk ∀k ∈ {t, . . . , T − 1}

(21)
where Xk+1 is a tightened constraint set denoted by:
Xk+1 = {x ∈ Rnx | g(k)j (x) + b

(k)
j ≤ 0}, and

Ut:k = [ut, . . . ,uk].
The variables b(k)j denote so-called back-offs, which aim

to tighten the original constraints Xt to obtain constraint sat-
isfaction for the real plant model using nominal predictions
of the state trajectory as in Eq.(21).Let U∗t:T (t,Y,Z;x) =
[u∗t (t,Y,Z;x), . . . ,u∗T−1(t,Y,Z;x)] be the optimal control
sequence by solving PT (t,Y,Z;x). Only the first of these
control actions is applied to the plant at time t. This defines
our implicit model predictive control law as κ(t,Y,Z;x) =
u∗t (t,Y,Z;x), where the OCP in Eq.(21) needs to be re-
solved for each new measurement of xt.

Applying this closed-loop control policy to a GP sample
then leads to the following closed-loop response:

xMPC
t (∆,Y,Z) = φ(t,Y,Z;x0,K,∆) (22)

where K = [κ(0,Y,Z;x0), . . . ,κ(t − 1,Y,Z;xMPC
t−1 )] is

a collection of control actions from the NMPC controller
based on observations from the GP plant model given by the
realization ∆.

At each time t we are however given a new measurement
of xt from Eq.(2) and we know the previous input, since
it is given by zt−1 = (xt−1,ut−1). Therefore, it may be
reasonable to update the mean/nominal GP model of the
MPC using this data online. This leads to the following
alternative GP NMPC closed-loop response based on the
updated models:

xMPC,l
t (∆,Y,Z) = φ(t,Y,Z;x0,Kl,∆) (23)

where the collection of control actions from the GP learning
NMPC controller is given as Kl = [κ(0,Y,Z;x0), . . . ,κ(t−
1,Y(t−1),Z(t−1);xMPC,l

t−1 )] based on observations from the
GP plant model given by GP realization ∆. The datasets
Z(t) and Y(t) are recursively defined as:

Z(t) = [ZT(t−1), zTt−1]
T ∀t ∈ {1, . . . , T} (24)

Y(t) = [YT(t−1),yT
t ]]

T ∀t ∈ {1, . . . , T} (25)

where yt is a measurement obtained from Eq.(2).
Note the sampling procedure of the plant model is un-

changed, but the learning GP NMPC algorithm is updated



based on the most recent measurements. This leads to the
mean function being updated in a similar procedure to the
GP sampling in Algorithm 1, however in this case the noise
σ2
ν is included in the kernel evaluation. The hyperparameters

are kept at their nominal value due to the excessive com-
putational cost required to update these. The closed-loop
trajectories defined by Eq.(22) and Eq.(23) are tied to the
choice of the tightened constraint set X.

B. Back-off constraints

In this section we outline how to determine the back-
off constraints in Eq.(21) to obtain probabilistic constraint
satisfaction of the real plant as defined in the problem
definition in section II based on the GP description of the
plant. The GP provides both a nominal model, but also
describes a distribution of many possible plant models based
on the initial data-set given. The overall aim is to determine
back-off constraints and corresponding tightened constraint
sets Xt, such that the closed-loop response given by either
Eq.(22) for GP NMPC without learning or Eq.(23) for GP
NMPC with learning satisfies the constraint set Xt with a
high probability. Note that the learning GP NMPC has a
different closed-loop behaviour from the GP NMPC without
learning, such that these yield different back-off values.

We propose to use S independent samples of the GP
generated using the procedure in section III-C, which then in
turn describe S different possible plant models. The closed-
loop response of these is then given by either the GP NMPC
without learning:

xMPC
t (∆(s)) = φ(t;x0,K,∆(s)) ∀s ∈ {1, . . . , S} (26)

or the GP NMPC with learning:

xMPC,l
t (∆(s)) = φ(t;x0,Kl,∆(s)) ∀s ∈ {1, . . . , S} (27)

The aim is now to ensure that xMPC
t (∆(s)) satisfies Xt for

all t, for all but a few samples to attain a high probability
of constraint satisfaction.

It is however very difficult to derive an update rule for
the back-off constraints on joint probabilities, i.e. based
on the intersection of Xk. Instead, we propose an update
rule that is applied point-wise to each nonlinear constraint
g
(t)
j (xMPC

k (∆(s))) following a procedure proposed in [28].
Assume we aim to determine back-off constraints that imply:

g
(t)
j (xMPC

k (0)) + b
(t)
j = 0 =⇒ P{g(t)j (xMPC

k (∆)) ≤ 0} ≥ δ
(28)

i.e. the back-offs are adjusted such that the satisfaction of
the constraints given the nominal model predictions implies
satisfaction of the other possible plant models according to
the GP distribution with a probability of at least δ.

We then define the empirical cumulative distribution func-
tion (ecdf) as:

F̂
g
(t)
j

=
1

S

S∑
i=1

1{g(t)j (xMPC
t (∆(s))) ≤ 0} (29)

where F̂
(t)
gj is a sample approximation of the chance con-

straint given in Eq.(28) on the RHS.

In [28] it is proposed to iteratively update the back-offs
based on Eq.(28) using the inverse of the ecdf in Eq.(29) 2.
We then iterate over nb back-off iterations using the approach
given in algorithm 2.

Algorithm 2: Back-off iterative updates

for nb back-off iteration do
for each sampling time t = 1, 2, . . . , T and
constraints j = 1, . . . , n

(t)
g do

Initialize: Set b(t)j to some reasonable values
1) Run S simulations of either Eq.(26) without

learning or Eq.(27) with learning
2) Update b(t)j := F̂−1

g
(t)
j

(δ)− g(t)j (xMPC
k (0))

end
end
Output : b(t)j

C. Probabilistic guarantees
In this section we give some probabilistic guarantees for

the problem definition in section II given fixed back-off
values. It should be noted that our problem is posed as a
finite-horizon control problem, such that the NMPC imple-
mentation has a shrinking horizon. Given S independent GP
samples, we can define the following ecdf to approximate
the joint probability in Eq.(7):

F̂X =
1

S

S∑
i=1

1

{
T⋂
t=0

{xt ∈ Xt}

}
(30)

where F̂X is essentially equal to the fraction of trajectories,
which violate the joint constraint given in Eq.(7).

Theorem 1 below, which was derived in [31] can be
used to obtain probabilistic guarantees based on the ecdf
of independent samples. It is therefore important that the
sampling of the GP is carried-out using independent MC
samples as shown in section III-C.

Theorem 1. If βcor = F̂X based on S independent MC
samples, then the following lower bound holds on the true
probability β = P

{⋂T
t=0 {xt ∈ Xt}

}
with a probability of

at least 1− α:

βlb = 1− betainv (α, S + 1− bβcorSc, bβcorSc) ≥ β (31)

The operator bc denotes rounding towards −∞, and betainv
denotes the inverse of the cumulative Beta-distribution.

Feasibility of the original chance constraint in Eq.(1) then
follows trivially from Theorem 1 as stated below.

Corollary 1. For an unknown plant model that follows the
GP distribution identified exactly, such that the uncertainty
description of the GP is accurate, and given a βlb ≥ 1 −
ε with a probability of 1 − α that fulfills Theorem 1, then
the chance constraint in Eq.(1) holds with a probability no
smaller than 1− α.

2The inverse of ecdf is given by the quantile function.



D. Algorithm

Algorithm 3: Back-off GP NMPC
Offline Computations

1) Build GP state-space model from data-sets Z,Y.
2) Choose initial condition x0, stage costs ` and `f

and constraint sets Xt,Ut ∀t ∈ {1, . . . , T}
3) Determine explicit back-off constraints using

algorithm 2 with or without learning.
4) Check probabilistic guarantees as shown in section

IV-C to obtain ε.
Online Computations
for t = 0, . . . , T do

1) Solve the MPC problem in Eq.(21)
2) Apply the first control input of the optimal solution.
3) Measure the state xt and update

the GP plant model for learning GP NMPC.
end

V. CASE STUDY

In this paper we apply the approach to a challenging semi-
batch reactor case study adopted from [34], which is an
important example of a finite-horizon control problem in
chemical engineering. The following series chemical reac-
tions take place in the reactor catalyzed by H2SO4:

2A k1A−−→
(1)

B k2B−−→
(2)

3C

The reactions taking place are all first-order. Chemical
reaction (1) is an exothermic reaction, while chemical re-
action (2) is endothermic. A cooling jacket is used for
temperature control. The control variables are given by the
flowrate of pure reactant A entering the reactor and the
temperature of the cooling jacket T0. Overall there are 5
states: concentrations of reactants A, B, and C in mol/L,
reactor temperature in K, and the reactor volume in L.

The objective of the case study is to maximize the amount
of product C at the final time horizon. In addition, there are
two path constraints. Firstly, the reactor temperature needs to
be kept below 420K for safety reasons and the volume needs
to stay below 800L, which is the capacity of the reactor. The
evolution of these states can be described by a differential
algebraic equation system, which can be found in [34]. The
time horizon T is fixed to 10 with a sampling time of 0.4h
giving an overall batch run-time of 4h. The concentrations of
A, B and C is initially zero with an initial reactor temperature
of 290K and a volume of 100L.

VI. RESULTS AND DISCUSSIONS

In this section the results based on the case study outlined
in section V are presented. Overall 6 different scenarios
were run for verification of the approach. We fit an initial
GP model using data-sets with 50, 100, and 150 datapoints
(dtps) according to a space-filling Latin hypercube design.
Further, each of these was applied to the algorithm presented

in section IV-D with online learning and without online
learning. The explicit back-offs were determined using 400
GP MC samples for each back-off iteration. The back-offs
were adjusted in a total of 5 iterations using algorithm 2.
Lastly, for the final back-off values the GP NMPC was
applied to the real plant represented by the case study
equations. The results of these simulations are summarized
in Figs.3-7 and in Table I.

In Fig.3 and Fig.4 plots are shown of the closed-loop
volume and temperature trajectories according to the 400
MC samples of the plant model. The top two graphs of each
figure show the trajectories for 50 data points, while the
bottom two graphs show it for 100 data points. On the left
the graphs show the trajectories considering online learning,
while on the right without online learning. We can see that
the back-offs are adjusted such that most trajectories are kept
below the constraint shown by the red line. Nonetheless, for
the trajectories using only 50 data-points many trajectories
overshoot the temperature constraint by a significant amount
due to the inability of our method to find consistently good
back-off values due to the very high uncertainty. For 150
data-points on the other hand the frequency of constraint
violation is relatively low. In addition, it can be seen that
the learning based method is able to more quickly reach the
temperature constraint and also stay closer to it leading to
improved performance and less conservative back-offs.

In Fig.5 and Fig.6 the closed-loop response of the GP
NMPC is shown for the ”real” plant using the exact case
study equations. In the top two graphs of each figure the re-
sponse is shown using back-offs, while in the bottom figures
the response is displayed disregarding back-offs. Further, the
left figures show the trajectories without learning, while the
right figures utilize the available data. Firstly, it can be seen
that disregarding back-offs leads to constraint violations of
volume or temperature for all cases due to the mismatch
between the ”real” plant and the GP approximation. This in
turn is avoided in all cases employing back-offs, except for
50 data points, which overshoots the temperature constraint
by a significant amount. This is somewhat expected, since
as shown in Fig.4 the determined back-offs are inadequate.
Lastly, it can be seen that in all 3 cases using back-offs the
trajectories using online learning are able to stay closer to
the temperature constraint.

Apart from constraint satisfaction, it is also important to
look at the performance of the different approaches in terms
of the economic objective achieved. This is shown in Fig.7,
where box-plots are given for the 6 different cases from the
objective values obtained at the final back-off iterations. The
aim of the NMPC is to maxmize the amount of product
C. In general one would assume that more data leads to
an improved objective value, since then the GP model used
is closer to the real plant. We can see that this is mostly
true apart for the 50 data points run, which however as
mentioned has inadequate back-offs and therefore overshoots
the constraints by a large margin. In addition we can see
that for both 100 data points and 150 data points learning
performs on average better than not learning, which is as



Fig. 3. Closed-loop trajectories of volume for 400 GP MC samples for
the cases 50 and 150 data-points with and without learning.

Fig. 4. Closed-loop trajectories of temperature for 400 GP MC samples
for the cases 50 data-points and 150 data-points with and without learning.

expected since it is less conservative and should have a plant
model closer to the real plant model.

Lastly, in Table I we show the probability of constraint
violation stated as ”Probability”, which corresponds to the
fraction of the 400 GP NMPC MC trajectories that violated
either temperature or volume constraint for the final back-
off iteration. ”c-Probability” refers to the real guaranteed
probability βlb of violation using the theorem outlined in
section IV-C. We can see a clear trend that the more data
we have, the smaller the probability of constraint violation,
which is more or less as expected. In particular, for 50 data
points without learning we have more MC samples violating
the constraints than not, while for 150 data points we are able
to guarantee constraint satisfaction of nearly 0.9. In addition,
we see that for 50, 100, and 150 data points learning can
provide significantly higher probability guarantees than their
counter-parts without learning. In addition, computationally
times are on-average low in the range of seconds, however
they do rapidly increase with the number of data-points.

Fig. 5. Closed-loop trajectories of volume for the ”real” plant with
tightened constraints at the top and without tightened constraints at the
bottom.

Fig. 6. Closed-loop trajectories of temperature for the ”real” plant with
tightened constraints at the top and without tightened constraints at the
bottom.

Fig. 7. Box plot of objective values from 400 MC closed-loop simulations
of the final back-off iteration together with the obtained objectives for the
”real” plant shown in blue.



TABLE I
COMPARISON OF CLOSED-LOOP CONSTRAINT

SATISFACTION,CORRECTED GUARANTEED PROBABILITY, AND AVERAGE

OCP/NMPC SOLUTION TIME.

Set-up Probability c-Probability OCP time (s)
50 dpts 0.55 0.57 0.11
50 dpts learning 0.31 0.33 0.19
100 dpts 0.27 0.30 0.52
100 dpts learning 0.21 0.24 0.75
150 dpts 0.16 0.19 1.12
150 dpts learning 0.09 0.11 1.34

VII. CONCLUSIONS

In conclusion, a new approach has been proposed for
finite-horizon control problems using NMPC in conjunction
with GP state space models. The method utilizes the prob-
abilistic nature of GPs to sample deterministic functions of
possible plant models. Tightened constraints using explicit
back-offs are then determined, such that the closed-loop
simulations of these possible plant models is feasible to a
high probability. In addition it is shown how probabilistic
guarantees can be derived based on the number of constraint
violations from the simulations. It was in addition shown
that online learning can be accounted for explicitly in this
method, which leads to overall less conservativeness. Lastly,
the computational times could be shown to be relatively low,
since the constraint tightening is performed offline.
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