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Abstract— We consider the problem of computing
minimum and maximum probabilities of satisfying an
ω-regular property in a bounded-parameter Markov
decision process (BMDP). BMDP arise from Markov
decision processes (MDP) by allowing for uncertainty
on the transition probabilities in the form of inter-
vals where the actual probabilities are unknown. ω-
regular languages form a large class of properties,
expressible as, e.g., Rabin or parity automata, en-
compassing rich specifications such as linear tempo-
ral logic. In a BMDP the probability to satisfy the
property depends on the unknown transitions prob-
abilities as well as on the policy. In this paper, we
compute the extreme values. This solves the prob-
lem specifically suggested by Dutreix and Coogan
in CDC 2018, extending their results on interval
Markov chains with no adversary. The main idea is to
reinterpret their work as analysis of interval MDP and
accordingly the BMDP problem as analysis of an ω-
regular stochastic game, where a solution is provided.
This method extends smoothly further to bounded-
parameter stochastic games.

I. Introduction

Markov decision processes (MDP) are a classical
formalism encompassing both probabilistic and non-
deterministic features: in each state some actions are
enabled and each action is assigned a distribution over
the successor states. In other words, each action cor-
responds to a set of transitions, each of which is as-
signed a transition probability. Bounded-parameter MDP
(BMDP) [18] are like MDP, but to each transition is
instead assigned an interval of possible transition proba-
bilities. Thus each BMDP specifies a set of MDP. There
are two interpretations of these intervals. Firstly, in the
uncertain interpretation, the BMDP specifies MDP with
unknown but constant transition probabilities in the
intervals. An MDP is thus derived from the BMDP by
picking a value in each interval once for all. Secondly, in
the adversarial interpretation, the BMDP specifies a de-
cision process where the transition probabilities may be
different numbers (in the intervals) every time we come
to a state. Each interpretation found its use. The former
can model, for instance, various degrees of uncertainty
for each action or confidence intervals for the transition
probabilities learnt from experience. In this case there is
one true transition probability, however unknown. The
latter can be used as a formalism for abstracting MDP:
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states with different outgoing transition probabilities can
be abstracted into a single state with an interval covering
all the values [18]. In this case, the interval can stand for
any of the values whenever visiting the state. As such
BMDP extend interval Markov chains (IMC) [23], [26]
by an adversary (or an underspecified/non-deterministic
controller). The uncertain interpretation of IMC then
yields uncertain Markov chains (UMC), while the adver-
sarial interpretation of IMC yields interval MDP (IMDP),
as distinguished in [37].

ω-regular languages, e.g. [40], form a robust class of
rich specifications, which can be represented in various
ways, e.g., by formulae of monadic second-order logic
or by automata over infinite words. In the setting of
probabilistic systems, it is often advantageous to use de-
terministic Rabin automata (DRA) or their variations. In
particular, this class encompasses properties expressible
in linear temporal logic (LTL) [31] and there are efficient
ways of translating LTL to DRA [27]. Control of MDP
with LTL specifications is widely studied, e.g. [39], [25],
[44], [34], [46], and typically uses the DRA representa-
tion.

In [15], Dutreix and Coogan argue for computing
minimum and maximum probabilities of satisfying an
ω-regular property in an IMC interpreted as IMDP. In
future work, they wish to apply the technique to solve
the problem for BMDP, the controllable counterpart of
IMC. In this paper, we re-interpret their technique in a
different light and using that perspective give a solution
to BMDP, in both the uncertain and the adversarial un-
derstanding of the intervals. We consider both the upper
bound (also called design choice of values in intervals
[15]) and the lower bound (antagonistic in [15]). We
present the results for controllers that try to maximize
the probability to satisfy the ω-regular property; mini-
mization is analogous as ω-regular languages are closed
under complement.

The main idea of our approach is to not only view the
IMC as an IMDP, but also as an MDP, since an IMDP is
a special case of MDP where the adversary chooses the
transition probabilities. We show the standard analysis
on the respective MDP coincides with the tailored algo-
rithm of [15] applied to the IMC. Our main contribution
is taking this perspective on BMDP, yielding a stochastic
game. Since we can solve the stochastic game with an
ω-regular objective we can obtain also the solutions.
Moreover, for the upper bound, the two players play co-
operatively and we can solve the problem in polynomial
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time using adapted MDP techniques. Finally, we show
how the game extension of IMC with two competing
agents can be solved analogously to BMDP, this time
without the need of introducing an additional agent.

Further related work: The general model of MDP
with imprecise parameters (MDPIP) was introduced
in [36]. BMDP [18] are then a subclass where the
parametrization is limited to independent intervals.
BMDP have been investigated with respect to various
objectives, such as stochastic shortest path (minimum
expected reward) [4], expected total reward [30], [45],
[20], discounted reward [30], [17], LTL [43], PCTL [32],
[21], or mean payoff [38].

The special non-controlled case of IMC has also been
investigated for various objectives, e.g. PCTL [37], [5],
LTL [3] ([2] observes this algorithm may not converge to
the optimum) or ω-regular properties [9].

Recent improvements include importance sampling
techniques for IMC [22] or topological policy iteration for
BMDP [35]. IMC and BMDP are used as abstractions of
systems in [29].

Organization of the paper: After recalling the used
formalisms in Section II, we state our problem in Sec-
tion III. We provide the solution in Section IV and an
illustrative case study (adjusted from [15]) in Section V.
Section VI concludes and presents ideas for future work.

II. Preliminaries

In this section, we recall basics of probabilistic systems
and set up the notation. As usual, N refers to the natural
numbers (including 0). A probability distribution on a
finite set X is a mapping p : X → [0, 1], such that∑

x∈X p(x) = 1. We use D(X) to denote the set of all
probability distributions on the set X . Given some set
S, we use S⋆ and Sω to denote the set of all finite and
infinite sequences comprising elements of S, respectively.

A. Markov Decision Processes

Definition 1 A Markov decision process (MDP) is a
tuple M = (S, s0, A, Av, ∆, Acc), where S is a finite set
of states, s0 ∈ S is the initial state, A is a finite set of
actions, Av : S → 2A \ {∅} assigns to every state a non-
empty set of available actions, ∆ : S × A → D(S) is a
transition function that for each state s and (available)
action a ∈ Av(s) yields a probability distribution over suc-
cessor states, and Acc ∈ 2S ×2S is the Rabin acceptance.
Furthermore, for ease of notation we assume w.l.o.g. that
actions are unique for each state, i.e. Av(s) ∩ Av(s′) = ∅
for s 6= s′.1 An element (Fi, Ii) ∈ Acc is called Rabin
pair. We assume w.l.o.g. that Fi ∩ Ii = ∅ for all pairs.

In figures, we denote a Rabin pair (F, I) by F I .

An MDP with |Av(s)| = 1 for all s ∈ S is called
Markov chain (MC). For ease of notation, we overload
functions that map to distributions f : Y → D(X)

1The usual procedure to achieve this in general is to replace A
by S × A and to adapt Av and ∆ appropriately.

by f : Y × X → [0, 1], where f(y, x) := f(y)(x). For
example, instead of ∆(s, a)(s′) we write ∆(s, a, s′) for
the probability of transitioning from state s to s′ using
action a.

An infinite path in an MDP is an infinite sequence ρ =
s0a0s1a1 · · · , such that ai ∈ Av(si) and ∆(si, ai, si+1) >

0 for every i ∈ N. We use ρi to refer to the i-th state si in
a given path. A finite path is a finite prefix of an infinite
path. Inf(ρ) ⊆ S denotes the set of all states which are
visited infinitely often in the path ρ.

A path ρ is accepted, denoted ρ |= Acc, if an only if
there exists a Rabin pair (Fi, Ii) ∈ Acc such that all
states in Fi are visited finitely often, i.e. Fi ∩ Inf(ρ) = ∅,
and at least one state of Ii is visited infinitely often, i.e.
Ii ∩ Inf(ρ) 6= ∅. We call such a Rabin pair accepting for
ρ.

Remark 1 Often, system and specification are modelled
separately, e.g., by a labelled MDP together with a descrip-
tion of an ω-regular property such as an LTL formula
[31] or an automaton. The common approach then is
to build the product of the system, the BMDP, and an
automaton describing the specification; this results in a
system as described in Definition 1. Since our work is
largely independent of this construction’s details we omit
this step for simplicity. We highlight that indeed [15] only
refers to the product throughout the main body of their
work. Details can be found in Section VII and, e.g., [1].

A policy (also called controller, strategy) on an MDP is
a function π : (S × A)∗ × S → D(A) which given a finite
path ̺ = s0a0s1a1 . . . sn yields a probability distribution
π(̺) ∈ D(Av(sn)) on the actions to be taken next. We call
a policy memoryless randomized (or stationary) if it is of
the form π : S → D(A), and memoryless deterministic
(or positional) if it is of the form π : S → A. Later
in the paper, we prove that positional strategies are
indeed sufficient for all considered problems. We denote
the set of all policies of an MDP by Π. By fixing the
policy π in an MDP M, we naturally obtain a MC
and thus a probability measure P

π
M over potential runs

[33]. Throughout this work, we are interested in finding
policies which maximize the probability of accepting
runs, i.e. supπ∈Π P

π
M [ρ |= Acc].

An end component in an MDP is a pair (T, A) of a set
of states T and a set of actions A such that the system
can remain within the states T indefinitely, using only
actions from A. Formally, a pair (T, A), where ∅ 6= T ⊆ S

and ∅ 6= A ⊆
⋃

s∈T Av(s), is an end component of an
MDP M if (i) for all s ∈ T, a ∈ A ∩ Av(s) we have
{s′ | ∆(s, a, s′) > 0} ⊆ T , and (ii) for all s, s′ ∈ T there
is a finite path ̺ = sa0 . . . ans′ ∈ (T × A)∗ × T , i.e. the
path stays inside T and only uses actions in A. An end
component (T, A) is a maximal end component (MEC)
if there is no other end component (T ′, A′) such that
T ⊆ T ′ and A ⊆ A′. The set of MECs of an MDP M is
denoted by MEC(M) and can be obtained in polynomial
time [13]. For further detail, see [1, Sec. 10.6.3].
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(b) MDPs consistent with the BMDP

Fig. 1. Examples of an BMDP and its instantiations. The acceptance is Acc = { q2 q1 }.

B. Bounded-parameter Markov Decision Processes

Definition 2 A bounded-parameter Markov decision
process (BMDP) is a tuple M = (S, s0, A, Av, q∆, ∆̂, Acc),
where S, s0, A, Av and Acc are as in the definition of
MDP, and q∆, ∆̂ : S × A × S → [0, 1] are lower and
upper bounds on the transition probability in each state.
Again, we assume that actions are unique for each state.
For consistency, we require that

∑
s′∈S

q∆(s, a, s′) ≤ 1 ≤∑
s′∈S ∆̂(s, a, s′) for each state s and action a ∈ Av(s).

Given a BMDP M = (S, s0, A, Av, q∆, ∆̂, Acc), we call a
Markov decision process M = (S, s0, A, Av, ∆, Acc) con-
sistent with M, denoted M ∈ M, if and only if M’s tran-
sition probabilities satisfy M’s bounds, i.e. q∆(s, a, s′) ≤
∆(s, a, s′) ≤ ∆̂(s, a, s′) for all states s, s′ ∈ S and actions
a ∈ Av(s). Note that in general there are uncountably
many MDPs consistent with a BMDP M. A BMDP with
|Av(s)| = 1 for all s ∈ S is called Interval Markov chain
(IMC) (e.g., [9]).

See Fig. 1a for an example BMDP and Fig. 1b for two
MDPs consistent with this BMDP.

C. Stochastic Games

For our analysis, we additionally need the concept of
stochastic games. These can be understood as an MDP
where, instead of a single agent controlling the process,
we have two antagonistic players. Intuitively, the first
player’s aim is to obtain an accepted path, while the
second player aims to stop the first player from doing
so. Each state in the game is “owned” by one of the two
players and the owner of a particular state can decide
which action to take in that state.

Definition 3 A stochastic game (SG) is a tuple G =
(S, s0, A, Av, ∆, Acc, O), where (S, s0, A, Av, ∆, Acc) is an
MDP and O : S → {1, 2} is an ownership function,
assigning each state to either player 1 or player 2. This
naturally gives rise to the sets of states S1 and S2, which
are controlled by the respective player.

The definitions of (in)finite paths directly extend to
stochastic games. Policies are slightly modified, since
each player can only make decisions in a part of the
game. Formally, we have two kinds of policies π1 : (S ×
A)∗ × S1 → D(A) and π2 : (S × A)∗ × S2 → D(A),

one for each player.We denote the set of all policies of
the respective players by Π1 and Π2. Fixing the policy
of a single player yields an MDP, denoted G(πi); fixing
both players’ policies π1 and π2 again yields an MC and
measure over the set of runs, denoted P

π1,π2

G
[12].

III. Problem Statement

In this work, we are given a BMDP and want to
control it such that the probability of an accepting run
is maximized. This raises two orthogonal questions:

Firstly, the semantics of the interval constraints have
to be fixed. We consider two different popular interpreta-
tions, called uncertain and antagonistic. In the uncertain
(or design-choice) model, an external environment fixes
the transition probabilities once and for all, i.e. for a
BMDP M a particular consistent MDP M ∈ M is chosen.
In the antagonistic model, the external environment
instead is allowed to change the transition probabilities
at every step, taking into account the full path so far.
These interpretations have been shown to be yield the
same optima for reachability in interval Markov chains
[10]. In the following, we show that this also is the
case for BMDP with Rabin objectives; hence we do
not distinguish the semantics in our formal problem
statement.

Secondly, it is not specified whether the aforemen-
tioned environment is cooperative or antagonistic. We
consider both of these two extreme cases. In particular,
we are interested in finding the maximal probability of ac-
ceptance while assuming that all transition probabilities
are chosen (i) to our liking and (ii) as bad as possible.

Formally, given a BMDP M we want to compute

(i) P̂(M) = supπ∈Π supM∈M
P

π
M [ρ |= Acc], and

(ii) qP(M) = supπ∈Π infM∈M P
π
M [ρ |= Acc].

Further, we are interested in the optimal policy and the
best- / worst-case MDP consistent with the given BMDP,
if it exists, i.e. the witnesses for the above values.

Case (i) can be understood as a “design challenge”.
We are interested in building our system, i.e. finding
an optimal assignment for all transitions, such that we
maximize the probability of acceptance. On the other
hand, Case (ii) can be thought of as uncertainty about
the real world or measurement imprecisions. Here, we
rather are interested in optimizing the worst case and



want to find a safe strategy, able to reasonably cope with
any concrete instantiation of the intervals.

Consider the situation depicted in Fig. 1. We are
interested in finding the upper and lower bounds for
the BMDP given in Fig. 1a. The upper bound, 1.0, is
exhibited by the left MDP of Fig. 1b. There, we end up
in q1 with probability 1 and, by always playing action
b, get an accepting run with probability 1. The right
MDP shows the lower bound of 0.5, since we get stuck
in state q2 with probability 0.5. Observe that if action d

in state q2 had a non-zero probability of moving to q0,
the resulting run would be accepting with probability 1,
since we would almost surely eventually reach q1.

In the following, we re-interpret existing approaches,
and present our unified approach for solving BMDP.

IV. Solution approach

In order to explain our approach, we first shed some
light on the simpler case of interval Markov chains (IMC),
handled in [15], and provide a different perspective on
their approach.

In [15], the authors present a specialized algorithm for
dealing with IMCs. In essence, they compute maximal
sets of (non)accepting states and then obtain the final
value by solving a reachability query for these states.
We now provide a different viewpoint on their algorithm
which will help us solve the more general case of BMDPs.

The key observation is the following. We can view the
intervals in an IMC as a player (the external environ-
ment) picking the transition probabilities at every step.
This can be understood as an MDP, where in every state
the player has an action for each distribution satisfying
the interval constraints. This MDP has uncountably
many actions in general, as there are infinitely many
possibilities to choose the probabilities. However, all
possible distributions can be constructed as a convex
combination of finitely many special cases which are basic
feasible solutions (BFS) of a linear program [9], [19] (also
known as corner-point abstraction). We can identify each
of these special solutions and use them to construct a
finite MDP. This MDP is often called interval Markov
decision process (IMDP); not to be confused with BMDP.
By model checking the IMDP, using established methods,
we obtain the desired result for the IMC.

Indeed, the algorithm presented in [15, Sec. IV-C]
actually can be interpreted as a symbolic adaption of the
standard model checking procedure for Rabin objectives
on the MDP, namely an adapted MEC decomposition
together with a reachability query [1, Sec. 10.6.4]. Sim-
ilar to the methods presented in [19], their specialized
algorithm cleverly avoids explicit computation of the ex-
ponentially large IMDP, achieving polynomial runtime.

Before we can extend these ideas to BMDP, we explain
some details of the basic feasible solutions, since they are
essential to our idea.
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(a) Example IMC
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(b) Visualized constraints.
Fig. 2. Visualization of the set of basic feasible solutions. The
left picture shows a state together with its transition constraints
in an IMC, the right picture depicts a geometric representation of
the inequalities induced by the interval constraints. The light grey
plane corresponds to the distribution constraints (Item I), while
the dashed box represents the interval constraints (Item II). Finally,
the dark grey area shows the set of consistent distributions and the
diamonds mark the basic feasible solutions.

A. Basic feasible solutions

Given an IMC (S, s0, q∆, ∆̂, λ) and a state s ∈ S, we
are interested in the set of all successor distributions
p ∈ D(S) consistent with the constraints imposed by the
IMC. In particular, the following constraints have to be
satisfied:

(I)
∑

s′∈S p(s′) = 1, and

(II) q∆(s, s′) ≤ p(s′) ≤ ∆̂(s, s′) for all s′ ∈ S.

Geometrically, Item I constrains the solution set to a
plane, while Item II bounds it in a box, as shown in
Fig. 2. Since each point in the solution corresponds to a
valid transition distribution and vice versa, we identify
solutions of the constraints with their corresponding
distributions. Observe that the resulting solution set
(and the corresponding set of distributions) is convex
and any element of this set can be obtained by a convex
combination of the corner-points, which are the basic
feasible solutions.

There is one dimension per successor state and thus
at most exponentially many basic feasible solutions. This
set can be computed in exponential time using standard
theory of linear programs or simple geometric computa-
tions. Due to lack of space we refer the reader to, e.g.,
[19, Sec. 4] for further detail.

B. Solving BMDP

When solving Rabin objectives on BMDPs, we observe
one central problem: The set of end components depends
on the choice of intervals. For example, consider the
BMDP in Fig. 1a. This BMDP comprises only one
MEC containing all three states. However, depending
on the choice of probabilities, edges may be removed
from the underlying graph, as for example in the right
MDP of Fig. 1b. This MDP contains two MECs, namely
({q1}, {b}) as well as ({q2}, {d}).

In [15], a similar problem was encountered, as in IMC
the set of bottom strongly connected components can be
modified by the choice of intervals. The authors solved
the problem implicitly by considering states where the
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Fig. 3. The stochastic game obtained from the BMDP in Fig. 1a
by the construction in the proof of Theorem 2. States owned by
the system are depicted by rectangles, while environment states
have rounded corners. For readability, we omit all action labels.
Furthermore, we omit action nodes for probability 1 transitions.

Rabin objective is not satisfied as “leaky”, i.e. not part
of any strongly connected component.

In contrast to that, our general solution relies on
making the possible choices of the probabilities explicit.
We utilize the key observation that the non-determinism
induced by intervals essentially corresponds to adding
a player, who picks the probabilities for the intervals.
Thus, we reduce the BMDP to a stochastic game that can
be solved by known model checking methods. However,
in the next section we introduce a more sophisticated
approach inspired by the ideas of [15].

Intuitively, the reduction from BMDP to SG amounts
to replacing every action in the BMDP with an additional
state owned by the new player. In this state, the new
player can choose from the corresponding basic feasible
solutions, allowing him to construct any consistent dis-
tribution over the successors. An example of this con-
struction is shown in Fig. 3, where the game constructed
from the BMDP in Fig. 1a is depicted. This new player
can play against the system (yielding qP) or cooperate
(yielding P̂).

Theorem 1 For every BMDP M, there exists an SG
G(M) such that

(i) P̂(M) = supπ1∈Π1
supπ2∈Π2

P
π1,π2

G(M) [ρ |= Acc], and

(ii) qP(M) = supπ1∈Π1
infπ2∈Π2

P
π1,π2

G(M) [ρ |= Acc]

Proof: Let M = (S, s0, A, Av, q∆, ∆̂, λ) be a BMDP.
In contrast to IMC, where we found the basic feasible
solutions for a state, in BMDP we have to consider state-
action pairs. Recall that we assumed that each action
belongs to a single state. Hence, each a ∈ A induces a set
of basic feasible solutions, given by the constraints q∆(s, a)

and ∆̂(s, a), where s is the unique state with a ∈ Av(s).
We denote this set by BFS(a), and it can be computed
as described in Section IV-A. Recall that any p ∈ BFS(a)
corresponds to a distribution over states.

The SG G(M) = (S′, s0, A′, Av
′, ∆, Acc, O) is con-

structed from M as follows.

• S′ = S ∪ {(s, a) | s ∈ S ∧ a ∈ Av(s)},
• A′ = A ∪ {(a, p) | a ∈ A, p ∈ BFS(a)}, and

• O(s) = 1 if s ∈ S and 2 otherwise, i.e. all newly
introduced states (s, a) belong to the environment.

• For every old state s ∈ S we set

– Av
′(s) = Av(s) and

– ∆(s, a, (s, a)) = 1 (and 0 for all other states) for
all actions a ∈ Av(s).

• For every new state (s, a) ∈ S′ \ S we set

– Av
′((s, a)) = {(a, p) | p ∈ BFS(a)} and

– ∆((s, a), (a, p), s′) = p(s′) for all p ∈ BFS(a).

For any consistent MDP M ∈ M, there exists a policy
for the other player π2 inducing the transition function
of M, i.e. for all π1 ∈ Π1 we have P

π1

M
[ρ |= Acc] =

P
π1,π2

G(M) [ρ |= Acc], and vice versa. This can be proven

completely analogously to the proof for IMC, see, e.g., [9,
Thm. 8]. Intuitively, randomizing over the BFS exactly
yields the set of valid distributions. This immediately
yields the desired equality.

Corollary 1 Positional policies suffice to achieve opti-
mal solutions in BMDP. Consequently, the uncertain and
antagonistic semantics are equivalent for the optima.

Proof: Positional policies are sufficient for Rabin
objectives in SG [8], and thus by the reduction of Theo-
rem 1 also for BMDP. Hence the best policy for choosing
the intervals is positional both for maximization and
minimization, and there is no benefit in switching.

Remark 2 This result relies on the fact that the objective
Acc is already part of the BMDP. See Appendix VII-C for
further discussion.

To solve ω-regular objectives for SGs, we use the strategy
improvement algorithm presented in [7] and the reacha-
bility algorithm for MDPs from [1], which yields both
the maximum and minimum probability, as well as the
optimal controller. Given a BMDP M, our procedure
works as follows:

1) Lower bound:

a) Use [7, Alg. 2] to solve G(M) with the given Rabin
objective Acc. This yields the optimal player 1
policy π1, which induces an MDP Mπ1

. Note
that the actions of the system, the original non-
determinism of the BMDP, are fixed in Mπ1

, and
the remaining non-determinism belongs to the
environment player choosing the intervals.

b) Compute the minimum reachability probability
with the algorithm from [1, Sec. 10.6.4], to obtain
the the value qP and the worst-case environment
policy π2 for Mπ1

, and thus the worst-case instan-
tiation of the intervals.

2) Upper bound:

a) Let M(M) be the MDP obtained by assigning all
nodes in G(M) to player 1.

b) Use standard model checking procedures to obtain
the best policy π for M(M) and the value P̂; the
policy handles both the non-determinism of the
system and the instantiation of the intervals.



Theorem 2 This procedure correctly computes

1) qP(M), the optimal policy π1 to achieve it and the
worst-case MDP, and

2) P̂(M), and π, describing the best-case system con-
troller as well as the best choice of intervals.

It terminates in time exponential in the size of the G(M),
which in turn is exponential in the size of M.

Proof: The correctness follows directly from Theo-
rem 1 and the correctness of the the used algorithms [7,
Thm. 3], [1, Sec. 10.6.4]. The complexity is dominated
by the computation of the game G(M) and its solution
process. The SG is exponential in the size of the BMDP
(see Section IV-A) and the solution algorithm takes time
exponential in the size the game [7, Thm. 3].

Remark 3 We can immediately apply the presented
methods to “bounded-parameter stochastic games”, i.e.
stochastic games with transition probability intervals. In
particular, we do not need to introduce another player,
as the states added by the construction in the proof of
Theorem 1 can be assigned to one of the existing players –
player 1 in the uncertain and player 2 in the antagonistic
setting. Thus the system remains a stochastic game.

C. Improving computation of upper bounds

Note that for the computation of the upper bounds, we
did not make use of the second player, but instead only
introduced new states for the existing player, yielding
an exponentially large MDP. By adapting observations
from [15], we can improve on this algorithm by directly
analysing the MC and avoiding the explicit construction
of the SG, yielding a polynomial time algorithm for
computing the upper bound.

Intuitively, the improved procedure symbolically iden-
tifies for each Rabin pair in (F, I) ∈ Acc the winning
end components. It does so by computing MECs while
temporarily excluding states in F . After obtaining all
states that are in a winning end-component for some pair,
we compute the probability to reach any of these states.
The structure of this improved procedure is similar to
[15, Alg. 1], and relies on methods to compute the MEC
decomposition on a BMDP from [19] and the reachability
algorithm from [32].2

Given a BMDP M, our procedure works as follows:

1) For each Rabin pair (Fi, Ii) ∈ Acc:

a) Construct a modified copy Mi of M where all (s, q)
with q ∈ Fi absorbing, i.e. all outgoing transitions
are replaced with a self-loop.

b) Compute the MEC decomposition of the resulting
BMDP using [19, Alg. 3].

c) If a MEC (T, A) has a non-empty intersection with
Ii, then it is winning and all states T are added
to the set of winning states W .

2) Compute the maximal probability of reaching W ,
using the methods presented in, e.g., [32].

2In [19] and [32], the authors refer to BMDP as “IMDP”.
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Fig. 4. Graphic representation of our extension of the case study
from [15]. A robot navigates through a grid of six states according
to the BMDP, using the actions up, down, left, and right, where
enabled. For readability, all [1.0, 1.0] constraints are omitted and
the corresponding edges are drawn dashed. In our analysis, we
consider two different acceptance conditions Acc1 and Acc2.

Theorem 3 This procedure correctly computes P̂(M)
and terminates in polynomial time.

Proof: By [19, Prop. 6], we get that the MEC
computation of a BMDP M through [19, Alg. 3] is
correct, i.e. the computed MECs correspond to the MECs
of G(M).The MECs identified as winning in Step 1b
and 1c thus indeed are winning MECs in M(M), where
M(M) is as in Step 2a of the procedure of Section IV-B.
Consequently, we exactly identify the set of potentially
winning states. Finally, the correctness of the algorithms
used to compute the reachability in Step 2 yields the
overall correctness.

For the complexity, observe that each step requires
at most polynomial time ([19, Prop. 6] for Step 1b, [32,
Thm. 4.1] for Step 2) and there are only linearly many
Rabin pairs in Acc.

Remark 4 Note that in the setting of [15] a procedure
for computing the upper bound is sufficient, as the lower
bound can be computed as 1 minus the maximal probability
to satisfy the negation of the specification. However, this
idea is not applicable in the BMDP setting due to the
alternation of sup and inf in the definition of qP.

Remark 5 Our algorithm can easily be extended to use
generalized Rabin transition acceptance, allowing for
efficient practical implementation. See [6] for details.

V. Case Study

We extend the case study from [15], where an agent
moves on a coloured grid of six states. We added several
actions in each state, modelling a robot which navigates
the grid as depicted in Fig. 4. It can choose between going
down, up, left or right; it cannot leave the grid, e.g., in
q0 only down and right are available. The robot is pulled
towards the red states q3 and q5, e.g. when moving right
from q0 there is some chance to be pulled down onto q4

or even q3. The strength of the pulling force and hence
also the probability distribution over the successor states
is unknown and hence modelled by uncertainty intervals.



TABLE I

Results for the BMDP in Fig. 4

qP P̂

Acc1 0.0 0.7
Acc2 0.4 0.7

As a first example, we calculate the probability to
reach state q2 starting from q0. From q1 we can surely
reach q2 and from q3 and q5 there is no possibility of
reaching q2. From q4, it depends on the instantiation of
the BMDP. The probability to remain in q4 may equal 1,
preventing the robot from reaching q2 when it is in q4. On
the other hand, we might have ∆(q4, u4, q1) = 0.6 and q1

can almost surely be reached from q4. Consequently, q2

can be reached from q4 with probability 1. Finally, the
best strategy in q0 is to go right, as otherwise the robot
is immediately stuck in q3. Together, this gives us a lower
bound of 0.1 and an upper bound of 0.7.

Now we consider the properties from [15], adjusted to
our setting as depicted in Fig. 4. The resulting probabil-
ities are given in Table I and explained below.

Acc1 corresponds to “The agent visits a green state
infinitely often while visiting red states finitely often”.
In the antagonistic interpretation, the probability of
satisfying this property is zero, since there is no MEC
containing q1. Intuitively, actions r0, d1 and l2 all have a
positive probability of moving to the bottom row, where
we may be forced to remain forever. For the upper bound,
observe that by setting ∆(q4, u4, q1) = 0.6 we obtain the
winning MEC ({q1, q4}, {d1, u4}), which can be reached
with probability 0.7.

Acc2 corresponds to “The agent visits a red state
infinitely often only if it visits a green state infinitely
often”. Observe that in this case both q4 and q1 are
winning in any consistent MDP, as playing actions d1

and u4 always leads to a winning path. In contrast to
Acc1, remaining in q4 is winning by the second pair of
Acc2, since only white states are visited. We thus get a
lower and upper bound of 0.4 and 0.7, respectively, by
computing the probability to reach q1 or q4.

VI. Conclusion

We have presented a solution to the open problem
of bounding the probabilities to satisfy an ω-regular
property on a bounded-parameter Markov systems. A dif-
ferent perspective on previous approaches enabled us to
solve the problem by analysis of ω-regular stochastic
games. Future work includes applications of our approach
to more general settings such as MDPIP, as well as a
practical implementation. For the latter, we plan to apply
approaches based on learning and real-time dynamic
programming, see e.g. [17].
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VII. Appendix – The product construction

In this section, we briefly explain how linear objectives
usually are specified and how they are model checked
using the product construction. First, we define the
concept of ω-regular languages and automata. Fix a finite
alphabet Σ. Elements of Σω are called words and sets of

s0 s1z

x, y

y

x, z

Fig. 5. Example DRA with acceptance Acc = { s0 s1 , s1 s0 }.

words L ⊆ Σω are called languages. Such a language is
ω-regular if it can be recognized by an automaton.

A. Automata & regular languages

Definition 4 A deterministic Rabin automaton (DRA)
is a tuple A = (Q, T, q0, Acc), where Q is a finite set of
states, T : Q × Σ → Q is a transition function3, q0 ∈
Q is an initial state, and Acc ⊆ 2Q × 2Q is the Rabin
condition. An element (Fi, Ii) ∈ Acc is called Rabin pair.
We assume w.l.o.g. that Fi ∩ Ii = ∅.

Let A be a DRA and w ∈ Σω a word. A word w induces
a run, i.e. a sequence of states A(w) = q0q1q2 · · · ∈ Qω,
where qi+1 = T (qi, wi). As with MDP, let Inf(w) denote
the set of states occurring infinitely often on the run
A(w). A word is accepted by the automaton, denoted
w |= A, if there exists a Rabin pair (Fi, Ii) ∈ Acc with
Fi ∩ Inf(w) = ∅ and Ii ∩ Inf(w) 6= ∅. Such a Rabin pair
is called accepting for w.

A language L ⊆ Σω is called ω-regular if and only
if there exists a DRA A recognizing L, i.e. some word
w ∈ Σω is accepted by the automaton if and only if it
is in L. See Fig. 5 for an example of a DRA recognizing
the language “eventually only y or eventually only z”.

Remark 6 A wide variety of specifications are ω-regular.
For example, reachability and liveness constraints can
easily be translated to an automaton. Moreover, the whole
of linear temporal logic is expressible through Rabin au-
tomata and efficient translations from LTL to Rabin
automata exist [16].

B. Labelled MDPs & product

For the product construction, we modify the definition
of MDPs by replacing the acceptance by a labelling
function λ : S → Σ, assigning to each state of the MDP
a letter. We are given such a labelled MDP and a Rabin
automaton. We construct the product by tracking both
the evolution of the MDP and the automaton, where the
automaton progresses based on the letter assigned to the
current state.

Definition 5 Let M = (S, s0, A, Av, ∆, λ) be a labelled
MDP and A = (Q, T, q0, Acc) a Rabin automaton. The
product M ⊗ A = (S × Q, (s0, q0), A, Av

′, ∆′, Acc′) is an
MDP where Av

′((s, q)) := Av(s), ∆((s, q), a, (s′, q′)) :=
∆(s, a, s′) if q′ = T (q, λ(s)) and 0 otherwise, and Acc′ =
{(Fi × S, Ii × S) | (Fi, Ii) ∈ Acc}.

We analogously define this product construction for
BMDP. Observe that the product is now of the form as

3Recall that the alphabet Σ is already fixed.
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Fig. 6. Uncertain/adversarial interval interpretations are not
equal.

we defined it in Definition 5. Applying our methods to
this product yields a solution for the original system.

C. Caveat

Since this construction modifies the state space, it is
not obvious how optimal policies on the product relate to
policies on the original MDP. Indeed, while a memoryless
policy may be optimal on the product, it might be the
case that finite memory is needed to behave optimally
in the given system. Moreover, it is the case that for ω-
regular objectives, the optimal values for the uncertainty
and the antagonistic interpretation are not equal already
for IMCs.

Fix the alphabet Σ = {x, y, z} and consider the
language L = {(xyxz)ω}, i.e. a language containing a
single word w which repeats the string xyxz indefinitely.
This language is regular and is recognized by the au-
tomaton shown in Fig. 6a. Consider now the IMC in
Fig. 6b. Clearly, the probability of satisfying the property
is zero under the uncertainty interpretation – any MC
consistent with the IMC eventually violates the structure
of the property with probability 1. On the other hand,
interpreted as an IMDP, the transitions can be chosen
such that the required word is always produced.
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