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Time Scale Design for Network Resilience

Dillon R. Foight, Mathias Hudoba de Badyn, and Mehran Mesbahi

Abstract— In this paper we consider the H2-norm of net-
worked systems with multi-time scale consensus dynamics. We
develop a general framework for such systems that allows
for edge weighting, independent agent-based time scales, as
well as measurement and process noise. From this general
system description, we highlight an interesting case where the
influences of the weighting and scaling can be separated in the
design problem. We then consider the design of the time scale
parameters for minimizing the H2-norm for the purpose of
network resilience.

I. INTRODUCTION

Dynamical systems operating over networks appear in

many natural and cyber-physical systems. A popular model

of such dynamic processes is consensus, which has been

widely used for a variety of control and estimation appli-

cations, ranging from robotics and swarm deployment [1],

[2], distributed Kalman filtering [3], [4], and multi-agent

systems [5]–[7]. A natural question in such scenarios is

how the underlying network topology affects the behavior

of the dynamics operating over the network. This question

has attracted significant interest in systems and control com-

munities, particularly as certain notions of performance and

control can be directly related to graph theoretic properties of

the network. Of particular interest for this work are system-

theoretic measures such as H2 and H∞ system norms.

For networked dynamical systems, the H2-norm can be

interpreted as a measure of how input energy is attenuated

over the network, or how noise drives deviations from the

natural consensus state [8].

In light of these interpretations, there have been several

works investigating the characterization of H2 performance

for consensus networks. In [9]–[11], the performance of

leader-follower networks is considered, and algorithms for

rewiring and reweighting the network for optimal noise

rejection are discussed. Similarly, [12]–[14] have utilized

the H2-norm as a measure of coherence in networks and

considered problems such as local feedback laws and leader

selection to promote coherence. Most relevant to the present

contribution, the works [15], [16] investigated the impact

of cycles on the H2 performance of noise-driven consensus

networks. The examination of networks under noise inputs is

important for real-world implementation of consensus onto

physical systems, and for considering network resilience in

the presence of adversarial noise injections.
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A fully general model of performance of agents operating

over a network should also include consideration of their

individual dynamics. However, a common assumption within

the consensus dynamics literature is that the agent dynamics

are identical single or double integrators. This common

model can be extended to encompass a class of hetero-

geneous agents by considering the case where individual

agents’ states evolve at differing rates. This is inherently a

multi-time scale problem, and the analysis of such problems

has historically offered techniques for formal description

and controller synthesis for complex systems [17]. Similar

formulations arise in areas such as electrical networks [18]

and power networks with generator inertia [19]. Thus, anal-

ysis of such multiple time scale models can increase the

applicability of the consensus protocol to a wider range of

real-world systems. There is a growing body of literature

that addresses the complications that naturally arise from

the integration of multiple time scales into consensus, start-

ing with the discussion of the consensus value for multi-

rate integrators in [20]. Issues such as convergence [21],

stability [22], [23], controller design [24], [25], as well

as single-influenced consensus performance [26] have since

been addressed for such multi-scale networks. This existing

literature has demonstrated that the inclusion of time scales

into the consensus protocol can have a significant impact

on the networked system, as well as shown that graph-

theoretic interpretations of system-theoretic properties are

not completely lost.

In this paper, we consider design problems for networked

problems using the H2 system norm as a metric of network’s

resiliency: a small H2-norm characterizes a network that is

resilient to external input. We consider a general formula-

tion for single-integrator consensus that includes both edge

weighting and nodal time scales, as well as process and

measurement noises. Drawing from the work in [15], we

transform the general consensus problem to one over the

edge states, and consider design of the agent time scales with

a focus on network resiliency. The main contributions of the

paper are a similarity transformation yielding the dynamics

of the edge states for scaled and weighted single integrator

consensus, a method for separating the contributions of edge

weighting and node time scales on the H2 performance, and

design problems for time scale assignment.

The paper is organized as follows. In §II, we outline

the notation and terminology used in the paper. We then

introduce the problem setup in §III, followed by the main

results of the H2 performance metric formulation in §IV-A,

and the design problems for time scales in §IV-B and §IV-C.

II. MATHEMATICAL PRELIMINARIES

Here, we provide a brief overview of the notation and

terminology used throughout the paper, as well as relevant
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graph theoretic concepts. Column vectors are denoted as x ∈
R

n. Special vectors include the vector of all ones (zeros), 1

(0), the vector of diagonal elements in a matrix, diag(M),
and Euclidean basis vectors, ei ∈ R

n, where the i denotes

the index of the non-zero element. Matrices will be denoted

as M ∈ R
m×n. The identity matrix will be denoted by I .

Time-dependent quantities will be denoted as x(t).
This paper considers dynamics governed by the intercon-

nections of multi-rate, single integrator agents over con-

nected, undirected, weighted communication graphs. In this

formulation, we can consider a graph object defined by

G = (V , E), where V is the set of agents (nodes), E is the

set of edges. Associated with each graph are W , a diagonal

matrix of edge weights, and E, a diagonal matrix of node

time scaling factors. Individual agents will be indexed by

subscripts, e.g. νi ∈ V to represent the i-th agent where

1 ≤ i ≤ |V|. If (i, j) ∈ E , the i-th and j-th agents

are connected by an edge (i ∼ j), and they are referred

to as adjacent agents or neighbors. For a given agent, νi,
N(i) = {j | i ∼ j ∀j ∈ V} denotes the neighbors of

i, and deg(νi) = |N(i)| denotes the unweighted degree

of i. The edge set can be ordered by a mapping, κ(·),
such that l = κ(ij) if and only if (i, j) ∈ E . By this

mapping, we can denote the weight on edge κ(ij) by wl

or wij , interchangeably. The edge weights are assumed to

be non-negative and symmetric, that is wij = wji. The

scaling parameter of the i-th node is denoted by ǫi > 0.

The incidence matrix, D(G) is a |V|× |E| matrix, where the

l-th column denotes an edge between two nodes in the form

of an edge vector, aκ(ij) = ei − ej (equivalently, ej − ei).
Of particular interest will be the Laplacian-type matrices

associated with the graph, which will be denoted by L(G)
or Le(G), where the subscript e denotes an edge Laplacian.

These matrices will be formally defined in §III.

III. PROBLEM SETUP

In this section, we describe a general formulation for

consensus over a network with non-negative edge weighting,

positive node time scaling, while accounting for possible

measurement and process noise. The scaled consensus prob-

lem is derived from considering a group of n multi-rate

integrators [20], with zero-mean Gaussian process noise,

ωi(t) such that E
[

ω(t)ω(t)T
]

= diag(σ2
ωi
) for all i ∈ V ,

ǫiẋi(t) = ui(t) + ωi(t), (1)

where xi is the (scalar) state of the i-th agent, ǫi is the

associated time scaling parameter, ui is the control input,

and ωi is the process noise that pollutes the control signal at

the node level. A weighted, decentralized feedback controller

that seeks to bring agents into consensus, but is impeded by

measurement noise between adjacent agents, vij(t) such that

E
[

v(t)v(t)T
]

= diag(σ2
vij ) for all (i, j) ∈ E , is given by,

ui(t) =
∑

j∈N(i)

[wij(xj(t)− xi(t)) + vij(t)]

u(t) = −D(G)WD(G)T x(t) +D(G)v(t), (2)

where W is the matrix of edge weights with properties

detailed in §II, v(t) is the stacked vector of measurement

noises, and u(t) is the vector-valued input to all states.

Applying (2) to the matrix version of (1) gives the general,

time scaled and weighted consensus problem with process

and measurement noise,

ẋ(t) = −E−1Lw(G)x(t)+
[

E−1 −E−1D(G)
]

[

ω(t)
v(t)

]

(3)

where Lw(G) = D(G)WD(G)T is the weighted Laplacian

matrix. Later in this section, we will consider two different

options for output from (3), which will allow us to assess

how the available system output impacts the network perfor-

mance.

As noted by [15], for a connected graph, the zero eigen-

value of the Laplacian matrix precludes reasoning about the

H2 performance of (3). This property of the Laplacian matrix

persists in the scaled, weighted case [26], so as in [15], we

will appeal to a similarity transformation that isolates the

zero eigenvalue, presented in the following theorem.

Theorem 1: The scaled, weighted graph Laplacian for a

connected graph, G, with time scale matrix E and weight

matrix W , given by Lw,s = E−1D(G)WD(G)T , is similar

to
[

Le,sRWRT 0
0 0

]

,

where Le,s = D(Gτ )
TE−1D(Gτ ) is the edge Laplacian for

a spanning tree Gτ which is symmetrically “weighted” by

the time scaling parameters, and R is the basis of the cut

space of G as defined as in [15]: R(G) =
[

I T c
τ

]

with,

T c
τ = (D(Gτ )

TD(Gτ ))
−1D(Gτ )

TD(Gc).

Here, the τ and c subscripts denote the incidence matrices

for a spanning tree and the complementary edges in G,

respectively.

Proof: Following [15], we define the similarity trans-

forms,

Sv(G) =
[

E−1D(Gτ )
(

D(Gτ )
TE−1D(Gτ )

)−1
1

]

Sv(G)
−1 =

[

D(Gτ )
T

1
ǫs
diag(E)T

]

,

where ǫs :=
∑n

i=1 ǫi is the sum of the time scale parameters.

Then, denoting Dτ := D(Gτ ), D := D(G) (and adopting an

analogous notation for other system matrices), we have,

S−1
v Lw(G)Sv

=

[

DT
τ E

−1DτRWRTDT
τ E

−1Dτ

(

DτE
−1Dτ

)−1
0

1
ǫs
1
TDDTDτ

(

DτE
−1Dτ

)−1
0

]

=

[

Le,sRWRT 0
0 0

]

,

as desired.

By noting that Svxe(t) = x(t), the scaled, weighted

consensus model with noise in (3) is equivalent to,

ẋe(t) =

[

−Le,s(Gτ )R(G)WR(G)T 0
0 0

]

xe(t)

+

[

DT
τ E

−1 −Le,s(Gτ )R(G)
1
T

ǫs
0

]

[

ω(t)
v(t)

]

,

(4)



where Le,s(Gτ ) is again the scaled edge Laplacian for a

spanning tree Gτ . We can note that the form of (4) naturally

suggests a partitioning of the edge state variable into a set of

states in the spanning tree and those in the consensus space

(span(1)), xe(t) =
[

xτ (t) x1(t)
]

. The resulting dynamics

for the spanning tree states is taken from (4) as,

Στ :=











ẋτ (t) = −Le,s(Gτ )R(G)WR(G)Txτ (t)

+DT
τ E

−1Ωω̂ − Le,s(Gτ )R(G)Γv̂

z(t) = R(G)Txτ (t),

(5)

where v̂ and ŵ are normalized error signals, Ω =
E
[

w(t)w(t)T
]

, and Γ = E
[

v(t)v(t)T
]

. An important note

is that the output of (5) contains information of the cycle

states due to the inclusion of R(G) and the fact that the

cycle states are linear combinations of the tree states [15].

We can also consider the same edge state model with output

given solely by the spanning tree states,

Σ̂τ :=











ẋτ (t) = −Le,s(Gτ )R(G)WR(G)Txτ (t)

+DT
τ E

−1Ωω̂ − Le,s(Gτ )R(G)Γv̂

z(t) = xτ (t).

(6)

The H2 performance of (5) and (6) are given by tr(RTX⋆R)
and tr(X⋆), respectively [27], where X⋆ is the positive-

definite solution to the Lyapunov equation,

−Lτ
e,sRWRTX −XRWRTLτ

e,s +DT
τ E

−1ΩΩTE−1Dτ+

Lτ
e,sRΓΓTRTLτ

e,s = 0. (7)

In general, the addition of the weighting and scaling pre-

cludes a closed form solution to (7) (which is desirable to

find X’s dependence on E,W ), and numeric results yield

a nonlinear mixing of weights and scaling parameters in

the entries of X . However, in the following section we will

outline a case when analytic solutions to (7) exist, providing

insights for design of edge weights and scaling parameters

for optimal performance.

IV. MAIN RESULTS

In this section, we investigate analytic results for the H2

performance of (5) and (6), as well as design problems for

time scale assignment.

A. Analytic Solutions to the Lyapunov Equation

As previously noted, the inclusion of time scale param-

eters and weighting precludes a by-inspection solution for

arbitrary covariances Ω and Γ. Let us investigate, then, the

impact that the choice of covariance has on the performance

of the system. We can observe that (5) and (6) have identical

input matrices, B := [DT
τ E

−1Ω − Le,sRΓ]. Also, recall

that we can parameterize the H2-norm in terms of the

observability gramian and the input matrix for a system,

H2
2 = tr(BTPOB) = tr(BBTPO), where PO is the

observability gramian for (5) or (6) [27]. The observability

gramian is independent of any choice of covariance; thus,

in the following lemma we can bound the H2 performance

while isolating terms that depend on the covariances.
Lemma 1: Under the assumption that (5) and (6) are

observable, the H2 performance can be bounded by,

λmin(BBT )tr(PO) ≤ tr(BTPOB) ≤ λmax(BBT )tr(PO),

where B = [DT
τ E

−1Ω −Le,sRΓ] and PO is the observabil-

ity gramian for (5) or (6).

Proof: From the assumption of observability, PO is

positive definite, and BBT is symmetric. Applying [28,

Theorem 1] then gives the result.

The above observation leads to a bound for the H2

performance for any choice of covariances. In order to further

separate out the effect of covariances, however, we will find

the following lemma useful, whose proof is omitted for

brevity.

Lemma 2: Given Hermitian M ∈ R
n×n, and Z ∈ R

n×m,

if for x ∈ R
m, Zx = 0 ⇒ x = 0, then,

λmax(Z
TMZ) ≤ λmax(M)λmax(Z

TZ),

and

λmin(Z
TMZ) ≥ λmin(M)λmin(Z

TZ).
Now, we can combine Lemmas 1 and 2 to give a bound on

the H2 performance based on the properties of the covariance

matrices.

Lemma 3: Given observable edge consensus dynamics of

the form (5) or (6), the H2 performance can be bounded by,
[

λmin(ΩΩ
T )λmin(BτB

T
τ ) + λmin(ΓΓ

T )λmin(BcB
T
c )
]

≤
H2

2

P
≤
[

λmax(ΩΩ
T )λmax(B

T
τ ) + λmax(ΓΓ

T )λmax(B
T
c )
]

where BT
τ := DT

τ E
−1, BT

c := Le,sR and P = tr(PO) is

the trace of the associated observability gramian.

Proof: Expand BBT as,

BBT = DτE
−1ΩΩTE−1DT

τ + Le,sRΓΓTRTLe,s

:= BT
τ QBτ +BT

c GBc,

where Q = ΩΩT , G = ΓΓT , Bc = RTLe,s, and Bτ =
E−1DT

τ . Observe that BT
τ QBτ and BT

c GBc are Hermitian.

Thus, via Weyl’s Inequality [29, Theorem 4.3.1],

λmin(B
T
τ QBτ ) + λmin(B

T
c GBc)

≤ λmin(B
T
τ QBτ +BT

c GBc),

λmax(B
T
τ QBτ +BT

c GBc)

≤ λmax(B
T
τ QBτ ) + λmax(B

T
c GBc).

Lemma 2 can be applied to the individual λmin(·) and

λmax(·) terms by noting that the spanning tree edge Lapla-

cian has null space spanned by 0, so Bc and Bτ satisfy

the condition on Z in Lemma 2. Combining the resultant

eigenvalue bounds with Lemma 1 leads to the desired result.

With Lemma 3, given any Ω and Γ, the H2 performance

can be bounded by the minimum and maximum eigenvalues

of the covariances. Furthermore, if a convenient choice of Ω
and Γ exists, the bound illustrates that any other covariances

sharing minimum and maximum eigenvalue properties will

be covered by the same performance bounds. With that in

mind, we propose the following covariance selection: Ω =
σωE

1/2 and Γ = σvW
1/2. By inspection, (7) then has the

following solution,

X⋆ =
1

2

(

σ2
w(RWRT )−1 + σ2

vL
τ
e,s

)

. (8)



Equation (8) is of particular interest as it shows that by

associating the covariances with the magnitudes of the edge

weights and the time scale parameters, the edge and node

weightings are completely separated in their effect on the

H2 performance, save for the placement of the σω and σv

parameters. This choice does have the peculiar interpretation

of seeming to remove the effects of the weighting and

scaling, but the bound provided by Lemma 3 allows this

choice to apply to a wide range of more general covariance

choices. Hereafter, then, we will investigate this separable

solution. To aid in the consideration of these independent

contributions later, we can define,

H2(Σ) =
σ2
ω

2
tr(RT (RWRT )−1R) +

σ2
v

2
tr(RTLτ

e,sR)

:= H2(Σ,W ) +H2(Σ, E), (9)

and similarly,

H2(Σ̂) =
σ2
w

2
tr((RWRT )−1) +

σ2
v

2
tr(Lτ

e,s)

:= H2(Σ̂,W ) +H2(Σ̂, E). (10)

Furthermore, we can note that the tree-edge state and cycle

state information can be separated. First, we start with the

edge weight term,

H2(Σ,W ) =
σ2
ω

2
tr(RT (RWRT )−1R)

=
σ2
ω

2
tr

([

I

(T c
τ ))

T

]

(RWRT )−1
[

I T c
τ

]

)

=
σ2
ω

2
tr

([

(RWRT )−1 (RWRT )−1T c
τ

(T c
τ )

T (RWRT )−1 (T c
τ )

T (RWRT )−1T c
τ

])

= H2(Σ̂,W ) +
σ2
ω

2
tr
(

(T c
τ )

T (RWRT )−1T c
τ

)

. (11)

A similar relation can be found for the time scale term (10),

H2(Σ, E) =
σ2
v

2
tr(RTLτ

e,sR)

=
σ2
v

2
tr

([

Lτ
e,s Lτ

e,sT
c
τ

(T c
τ )

TLτ
e,s (T c

τ )
TLτ

e,sT
c
τ

])

= H2(Σ̂, E) +
σ2
v

2
tr
(

(T c
τ )

TLτ
e,sT

c
τ

)

. (12)

The simplifications to (9) and (10) show that the H2 perfor-

mance of the Σ system, which has output containing infor-

mation from the cycle edge states, predictably contains the

H2 performance for the Σ̂ system as an isolated term. Taken

together, (11) and (12) illustrate how the output information

differences between (4) and (5) influence the overall H2

performance for identical tree-edge-state dynamics.

Finally, we can note that, similar to [15], the weighted

cycles make closed-form solutions for terms containing

(RWRT )−1 difficult. However, analytic results are tractable

in the case of tree graphs.

1) Tree Graphs: When the underlying graph topology is

a tree, R = I , and (8) simplifies to,

X⋆ =
1

2

(

σ2
ωW

−1 + σ2
vL

τ
e,s

)

.

Furthermore, in this case H2(Στ ) = H2(Σ̂τ ) = tr(X⋆). A

closed form solution for the performance in this case is given

in the following lemma.

Lemma 4: For a tree graph, the H2 performance of the

system is given by,

H2(Στ ) =
1

2
tr
(

σ2
ωW

−1 + σ2
vL

τ
e,s

)

=
1

2

(

σ2
ω

n−1
∑

k=1

1

wk
+ σ2

v

n
∑

i=1

deg(νi)

ǫi

)

, (13)

where deg(νi) is the unweighted degree of agent νi, and k
is an index over the edges.

Proof: The first term follows from the fact that W
is a diagonal matrix of weights, so the trace of the inverse

is simply the sum of the inverted weights. For the second

term, consider one of the diagonal elements [Lτ
e,s]kk =

aTkE
−1ak = ǫ−1

i + ǫ−1
j , where ak is the edge vector

corresponding to the edge between nodes i and j, that is,

k = κ(ij). Now consider a node νi. In the sum over all

edges of the graph, ǫ−1
i will appear once for every edge that

connects νi to its neighbors, which is the unweighted degree

of νi. Considering all other nodes yields the second term.

Lemma 4 shows a trade-off between the time scales and

the network topology, determining the overall performance

of the network. Also, note that for a given distribution of

scaling parameters and edge weights, changing the assign-

ment of edge weights does not affect the H2 performance,

while the assignment of scaling parameters does. This is in

line with results in the context of single-input influenced

consensus [26], and shown in the following example.

Example: Consider the tree graph on six nodes in Fig-

ure 1. Assume that we have some distribution of edge

weights and node scaling parameters such that
∑

iw
−1
i =

2α,
∑

i ǫi = 1, and further, that ǫi ∈ (0.1, 0.2, 0.4). Also, let

σv = σω = 1.

Fig. 1: Tree graph T for six agents. Each agent i has an

associated scaling parameter, ǫi, and each jth edge is labeled

wj . Agent 3 has the highest degree.

Now, for any assignment of weights, the first term in (13)

will be 2α, but the second term depends on the assignment

of the scaling parameters. Consider the two following assign-

ments: (1) set ǫ1,4,5,6 = 0.1, ǫ2 = 0.2, ǫ3 = 0.4. In this case,

the second term is equal to
∑6

i=1 deg(i)/ǫi = 60.0 resulting

in a combined H2 = 30 + α. Now, consider a different

distribution of scaling parameters. (2) set ǫ1,3,4,5 = 0.1,

ǫ2 = 0.2, ǫ6 = 0.4. We can see that with agent 3 on a faster

time scale, the second term suffers,
∑6

i=1 deg(i)/ǫi = 82.5,

resulting in a comparatively higher performance value of

H2 = 41.25 + α. Thus, we can see that high-degree nodes

with slower time scales results in lower H2 performance.



B. Timescale Design For H2 Resilience

The results of the previous section suggest that a heuristic

for minimizing the H2 performance is to assign slower

timescales to high-degree agents. To investigate whether this

holds in the presence of cycles, note that the minimization

of H2(Σ) can be formulated as a convex problem,

min
ǫ−1

1
,...,ǫ−1

n

tr
(

RXRT
)

s.t. ǫ−1
max ≤ ǫi

−1 ≤ ǫ−1
min, ∀i ∈ N

µ ≤
n
∑

i=1

ǫ−1
i ,

X =
1

2

(

(RWRT )−1 + Lτ
e,s

)

,

(P1)

where we have taken the effective variances, σω and σv , to be

unity. The objective is convex in the optimization variables

(1/ǫ1, . . . , 1/ǫn), and the constraints are linear. The design

parameter of µ serves to ensure that not all the agents can

operate on the slowest time scale (the trivial solution).
We solved Problem (P1) on random graphs (with probabil-

ity of an edge between any two nodes as 0.15) that featured

multiple independent cycles. For n = 10, ǫmin = 0.01,

ǫmax = 2.0 and µ = 510.5 (which can be interpreted

as the value allowing up to a third of the nodes to be

slow), the results and graph topology for one such graph

are presented Figure 2a. These results (which appear to hold

over a wide range of randomly generated graphs) suggest

that the presence of cycles do not detract from the heuristic

developed for tree graphs; that high degree nodes should

be assigned slow time scales (high scaling parameters) to

minimize H2(Σ).
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(a) Random graph topology for 10 agents.

0.01

0.01

0.01

0.01

0.010.32

0.320.32

2.00

2.00

(b) Original spanning tree.
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(c) Spanning path graph.

Fig. 2: Time scale assignment by (P1) are printed in each

node, showing the slowest time scales are assigned to nodes

with highest degree.

A note of further interest is that, due to the inclusion

of the cycle information in the output in (5), the optimal

distribution from (P1) is independent of the selected spanning

tree. We can see this by generating spanning trees with a

variety of degree distributions, such as those in Figures 2b

and 2c. However, we can recall from (12) and (11) that the

H2 performance for the Σ system can be viewed as the

performance for the Σ̂ system with an additive term that

encompasses the contribution of the cycle states. Consider

then, the quantity

K =
H2(Σ̂, E)

H2(Σ, E)
,

which is a measure of how well the performance as measured

by the spanning tree states represents the graph performance

including cycle information. For the spanning tree in Fig-

ure 2b we have K ≃ 0.66, and for the spanning tree in

Figure 2c we have K ≃ 0.24. Intuitively, this reflects that

spanning trees which more accurately reflect the true degree

distribution of the parent graph will have a higher K . In

line with [15], this also shows a significant portion of the

H2 performance can come from the cycle contributions. In

general, then, the performance of a given spanning tree may

not be a good indicator of the full network performance,

however, for graphs with few cycles, spanning trees that

reproduce the full graph degree distribution closely can be a

good approximation for the full network performance.
The time scale assignment problem considered here

demonstrates that while the heuristic developed from results

on tree graphs appears to hold for more complex graph

topologies, the performance of a given spanning tree does

not necessarily reflect the performance of the full tree. In the

next section, we will consider a reformulation of this problem

that allows for an analytic result to the optimal assignment

while also reformulating the performance constraint.

C. Decentralized Updates for Optimal H2 Performance

In the previous section, (P1) included a design parameter

to ensure that the trivial solution was avoided, however, com-

putation of that parameter required complete knowledge of

the global topology and time scale distribution. In response to

an adversarial attack, such as malicious noise being injected

into the system, it is of interest for the network to be able

to quickly and autonomously adapt to minimize the effect of

this influence. In light of this desire, consider (P2),

min
ǫ−1

1
,...,ǫ−1

n

1

2
tr
(

RTLτ
e,sR

)

+
h

2

n
∑

i=1

ǫri

s.t. ǫ−1
max ≤ ǫi

−1 ≤ ǫ−1
min ∀i ∈ N .

(P2)

This is a minimization of the time scale portion of the

separated H2 performance. In lieu of the sum constraint µ ≤
∑

i ǫ
−1
i , we introduce a regularization term 2−1h

∑n
i=1 ǫ

r
i

which achieves a similar goal of penalizing large timescales

for all nodes assuming positive, integer r.
Proposition 1 (Analytic Optimal Time Scale Assignment):

Consider (P2). Let the region defined by the box constraints

on 1/ǫi be denoted by C. Then, the minimizing assignment

of time scale parameters is given by,

ǫ∗i = ProjC

[

(

deg(νi)

hr

)
1

r+1

]

.

Proof: Consider the cost function without the box

constraint. Minimizing the cost alone can be achieved by

setting its gradient equal to zero,

∂f

∂ǫ−1
i

=
deg(νi)

2
−

hr

2
(ǫ−1

i )−(r+1) = 0



ǫ∗i =

(

deg(νi)

hr

)
1

r+1

.

Projecting this result onto the constraint set gives the result.

Remark 1: The assignment rule in Proposition 1 is decen-

tralized, as the optimal assignment value depends only on the

(unweighted) degree of the i-th node and the parameters h
and r, which are locally known to the i-th node without

global knowledge of the network topology.

From this result we can see that for a class of regulariza-

tion terms, the optimal time scale assignment is again driven

by the degree distribution, which is in-line with the previous

results. It is conceivable to consider using this result with

online signal identification to locally adjust time scales in

response to adversarial noise entering the system.

V. CONCLUDING REMARKS

In this paper we have investigated how independent agent-

based time scales can be designed to minimize the H2-

norm of consensus systems. We showed that for a convenient

choice of noise covariances, the performance contributions of

edge weights and time scaling are separable. This allowed

for the independent consideration of time scale design for

minimization of the H2-norm. The contributions of this

work have been an extension of previous methods into

a framework which includes weighting and time scaling.

We also identified a heuristic for the design of time scale

parameters for network resilience, namely, that nodes of high

degree have a large impact on the performance of the network

and assigning them slow time scales can mitigate this effect.
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