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Abstract— This paper deals with model predictive control prob-
lems for large-scale dynamical systems with cyclic symmetry.
Based on the properties of block circulant matrices, we use the
discrete Fourier transformation to block diagonalize and trun-
cate the original finite-horizon optimal control problem. Using
this coordinate transformation, we develop a modified alter-
nating direction of multipliers method (ADMM) algorithm for
general constrained quadratic programs with block circulant
blocks. We test our modified algorithm using random data and
in a traffic flow control example and show that the coordinate
transformation significantly increases the computation speed.
Index Terms— Model Predictive Control (MPC), Alternating
Direction of Multipliers Method (ADMM), Block Circulant
Systems, Quadratic Program, Traffic Flow Control

I. INTRODUCTION

The advantages of model predictive control (MPC) for
constraint handling and feedforward disturbance modelling
are widely recognised. However, its applicability is limited
by the requirement to solve optimization problems in real-
time to compute the control law. This constraint has inhib-
ited the application of MPC to large-scale and high speed
applications. While some approaches for accelerating the
computing speed have focused on implementing optimization
routines on specialised high-performance hardware [1], other
approaches have exploited the particular symmetric structure
encountered in some classes of large-scale problems [2].
Block circulant (BC) matrices are a subclass of Toeplitz ma-
trices and have been extensively studied in the past [3]. These
matrices are known to be amenable to decompositions that
are kept throughout optimal control problems [4], [5]. The
projection into the Fourier domain leads to an advantageous
structure that can be exploited to significantly increase the
computation speed of matrix operations.
In this paper we address systems with cyclic symmetry
resulting in a BC structure. These systems can be inter-
preted as the symmetric interconnection of many subsystems,
where each subsystem interacts in an identical way with
its neighbors [4]. Circulant systems can be found in a
variety of applications, including traffic flow control [6],
cross-directional control [7], particle accelerator control [8]
and in the approximation of partial differential equations
[9]. The mathematical properties of these systems have
already been exploited in controller design [5], [10], stability
analysis [11] and subspace identification [12]. We investigate
the properties that a constrained quadratic program (CQP)
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inherits from a block circulant MPC (BCMPC) problem. The
main results of the paper show how exploiting the properties
of the resulting CQP, such as projecting the problem into
Fourier space and truncating the vector of decision variables,
can reduce the computational cost when it is solved using
the alternating direction of multipliers method [13].

This paper is structured as follows. In Section II, the linear
MPC problem and the alternating direction of multipliers
method (ADMM) – an algorithm which is particularly suit-
able for solving the latter optimization problem – are intro-
duced. Since we are concerned with the analysis of systems
with BC symmetry, we introduce the notion of BC matrices
in Section III. Furthermore, the BCMPC problem is formally
defined and necessary conditions for its decomposition are
stated. In Section IV, we define a CQP with BC blocks and
show how MPC problems with BC data can be written in
this form. The BC decomposition is then applied to the CQP
and a modified ADMM algorithm is then formulated for
this problem. In Section V, we compare the performance of
the original and modified ADMM algorithms. For the sake
of comparison, both algorithms have been implemented in
Matlab and tested on two illustrative examples.

Notation and Definitions Let ⊗ denote the Kronecker prod-
uct and ⊕ denote the direct sum (i.e. the block diagonal
concatenation) of two matrices. Let In represent the identity
matrix in Rn×n. For a scalar, vector or matrix a, let ā denote
its complex conjugate; Let Re(a) and Im(a) denote its real
and imaginary part, respectively; Let aH denote its Hermitian
transpose. Let diag{a1, . . . , an} denote a diagonal matrix
with diagonal elements a1, . . . , an.

II. PROBLEM STATEMENT

A. Model Predictive Control

Given a discrete-time linear dynamical system and an initial
condition x(t) at time t, a standard MPC scheme computes
a control law by predicting the future evolution of the
system and minimizing a quadratic objective function over
some planning horizon T . This can be achieved via repeated
solution of the following quadratic program (QP):

min

T−1∑
k=0

xT
kQxk + uT

kRuk + xT
NPxN (1a)

s.t. xk+1 = Axk +Buk x0 = x(t) (1b)
yk = Cxk +Duk (1c)
y
¯
≤ yk ≤ ȳ, (1d)



for k = 0, . . . , T − 1, returning at each step the optimal
first input stage u∗0 as a control law. The constraints on the
states xk ∈ Rnx and the inputs uk ∈ Rnu are lumped
into the variable yk ∈ Rny . The stability of the state is
guaranteed if P = P T � 0 is obtained from the discrete-
time algebraic Riccati equation (DARE) associated to the
unconstrained infinite horizon regulator problem. The QP (1)
has a unique solution if R � 0, Q � 0 and the pairs (A,B)
and (A,Q

1
2 ) are controllable and observable, respectively

[14, Chapter 12]. Throughout the paper, we will assume that
(1) admits a unique solution and is recursively feasible.

By eliminating the state variables (x1, . . . , xN ) and defining
z := (u0, . . . , uT−1)T and v := (y0, . . . , yT−1)T, (1) can be
reformulated as

min
1

2
zTJz + qTz (2a)

s.t. Kz − v = 0 (2b)
v
¯
≤ v ≤ v̄. (2c)

Note that (v̄, v
¯
, q) depend on x0. The matrices (J,K) and

vectors (v
¯
, v̄, q) in (2) are defined as

J := GT ((IT ⊗Q)⊕ P )G+ (IT ⊗R), (3a)
K := [IT ⊗ C | 0]G+ (IT ⊗D), (3b)
v
¯

:= (1T ⊗ y
¯
)− [IT ⊗ C | 0]Hx0, (3c)

v̄ := (1T ⊗ ȳ)− [IT ⊗ C | 0]Hx0, (3d)

q := GTHx0, (3e)

where 1T is a vector of ones of length T and G and H
arise from elimination of the equality constraints in (1b), i.e.
from setting X = (x0, . . . , xT )T and writing (1b) as X =
Gz+Hx0. Note that J � 0 because R � 0 by assumption.

B. ADMM Algorithm

We consider application of the ADMM to the solution of (2),
and will follow the specific ADMM formulation presented in
[13] throughout. The method is summarized in Algorithm 1.
The augmented Lagrangian for (2) can be written as

L(z, v, γ) =
1

2
zTJz + qTz +

ρ

2
‖Kz − v‖22

+ γT(Kz − v) + I[v
¯
,v̄](v),

(4)

where I[v
¯
,v̄] is the indicator function for the set

{v | v
¯
≤ v ≤ v̄ } and the penalty parameter ρ > 0 and

the dual variables γ are associated with the constraint (2b).
ADMM solves (2) by repeatedly minimizing (4) w.r.t. z and
v and updating the dual variables γ using an approximate
gradient ascent method. Even though the assumptions in
section II-A guarantee the convergence of Algorithm 1, it
is common practice to limit it to a maximum number of
iterations imax.

After initialization1, Algorithm 1 first minimizes (4) w.r.t. to

1Note that we assume that ADMM is cold-started in Algorithm 1 at each
time step for simplicity, but in practice one would warm start the variables
(v0, γ0) from a previous solution.

Algorithm 1 ADMM for MPC

Input: State x(t)
Output: Input u(t)

1: Set x0 = x(t) and v0, γ0 = 0; compute v
¯
, v̄ and q

2: for i = 1 to imax do
3: Update zi using (SP1)
4: Update vi using (SP2)
5: Update γi using (SP3)
6: if ‖vi − vi−1‖22 < ε and ‖γi − γi−1‖22 < ε then
7: break
8: end if
9: end for

10: return u(t) = (z1, . . . , znu)T

z, which, after completing the square, is equivalent to

zi = arg min
z

1

2
zTJz + qTz +

ρ

2
‖Kz − vi−1 + ρ−1γi−1‖22,

(5)

with iteration index i = 1, . . . , imax. Since (5) is an uncon-
strained QP, its derivative can be set to zero and the resulting
linear system can then be solved from(

J + ρKTK
)
zi = KT(ρvi−1 − γi−1)− q. (SP1)

The linear system (SP1) always admits a solution because
J + ρKTK � 0 under the assumptions from section II-A.

With zi obtained, Algorithm 1 then minimizes (4) w.r.t. v by
solving

vi = arg min
v
¯
≤v≤v̄

‖Kzi − v + ρ−1γi−1‖22. (6)

The solution to (6) can be written as

vi = sat
[v
¯
,v̄]

{
Kzi + ρ−1γi−1

}
, (SP2)

where the saturation function limits its argument to v
¯

and v̄.

Finally, algorithm 1 updates the dual variable γ according to

γi = γi−1 + ρ(Kzi − vi). (SP3)

Subproblems (SP1) - (SP3) are repeated until some con-
vergence criterion or the maximum number of iterations is
reached. Proofs and other variants of the ADMM can be
found in [13], [15].

III. BLOCK CIRCULANT SYSTEMS

A. Preliminaries

Definition 1 (Block Circulant Matrices [3, Chapter 5]):
Let BC(n, p,m) ⊆ Rnp×nm denote the set of real block
circulant matrices in the form

B =


b0 b1 b2 . . . bn−1

bn−1 b0 b1 . . . bn−2

...
...

b1 b2 b3 . . . b0

 , (7)



where bi ∈ Rp×m. If p = m = 1, then B is simply called a
circulant matrix.

The set of BC matrices BC(n, p,m) has a number of
very useful basic properties [3, Chapter 5.6], including clo-
sure under matrix addition, multiplication and transposition.
Moreover, if A ∈ BC(n, p,m) and B ∈ BC(n,m, r) then
AB ∈ BC(n, p, r).

Definition 2 (Fourier Matrix): Let Fn ∈ Cn×n with
FnF

H
n = In denote the Fourier matrix, defined as

Fn =
1√
n

[
w0 w1 . . . wn−1

]
, (8)

where the vectors wj =
(
1 ρj ρ2

j . . . ρn−1
j

)T
are

mutually orthogonal and ρj = ei
2π
n j are complex roots of

unity.

The matrix (8) is called the Fourier matrix since the Fourier
coefficients of the discrete Fourier transformation of a vector
x ∈ Rn can be obtained from the product Fnx (or more
efficiently using a fast Fourier transformation [16]).

A fundamental property of BC matrices is that every BC
matrix B ∈ BC(n, p,m) is diagonalized by the same pair of
matrices:

Theorem 1 (Block Diagonalization [12]): For B ∈
Rnp×nm, it holds that B̂ = (Fn ⊗ Ip)HB(Fn ⊗ Im)
is block diagonal iff B ∈ BC(n, p,m). The blocks
νj ∈ Cp×m of B̂ = diag{ν0, . . . , νn−1} are obtained as

νj = bo + b1ρj + · · ·+ bn−1ρ
n−1
j , j = 0, . . . , n− 1. (9)

From the structure of Fn, the following corollary can be
established on the structure of the blocks ν0, . . . , νn−1:

Corollary 1 (Pattern of Complex Conjugates [12]): Define
nc := n

2 for even and nc := n−1
2 for odd n, respectively.

The blocks νj , j = 0, . . . , n − 1, from (9) have the
following pattern of complex conjugates: If n is odd, then
ν0 is real while (ν1, . . . , νnc) = (ν̄n−1, . . . , ν̄n+1

2
).

If n is even, then ν0 and νnc are real while
(ν1, . . . , νn2−1) = (ν̄n−1, . . . , ν̄n2 +1).

Using the shuffle permutation matrix Πm
n from [16], we can

rewrite Fn ⊗ Im as Fn ⊗ Im = (Πm
n )T(Im ⊗ Fn)Πm

n . As a
consequence, (Fn⊗Im)x with x ∈ Rnm can be computed by
permuting the vector, applying a sequence of m fast Fourier
transformations (FFTs) and applying the inverse permutation.
This implies that (Fn⊗ Im)x is of complexity O (mn log n)
compared to O

(
m2n2

)
for general matrix-vector multiplica-

tion. Note that the pattern of complex conjugates also holds
for the n blocks of the vector (Fn ⊗ Im)x.

A consequence of Corollary 1 for some matrix B ∈
BC(n, p,m) is that, after block diagonalization, its data is
uniquely determined by the first nc + 1 blocks of the block
diagonal matrix B̂. It is therefore sufficient to examine
the first nc + 1 blocks of B̂, which will be exploited in
the subsequent analysis. For this reason, the truncation and
its counterpart operation, the augmentation, are formally
defined:

Definition 3 (Truncation and Augmentation): Given A =
diag{a1, . . . , an} ∈ Cnp×nm, x ∈ Cnp and n even (odd),
let trunc be the operator that extracts the first n

2 (n−1
2 )

blocks of A and the first n
2 p (n−1

2 p) rows of x. Con-
versely, let aug be the inverse operator which accepts a
truncated vector ⊥x = (x1, . . . , xn2 )T ∈ Cn

2 p with xi ∈
Cp and returns x = (x1, . . . , xn2 , x̄

n
2−1, . . . , x̄2)T ∈ Cnp

for even n. For odd n, operator aug accepts a vector
⊥x = (x1, . . . , xn−1

2
)T ∈ C

n−1
2 p with xi ∈ Cp and

returns x = (x1, . . . , xn−1
2
, x̄n−1

2
, . . . , x̄2)T ∈ Cnp. Define

aug in a similar way when invoked with a truncated block
diagonal matrix ⊥A = diag{a1, . . . , an2 }. In addition, define
truncN := IN ⊗ trunc and augN := IN ⊗ aug, i.e. the
operators aug and trunc applied N times.

Note that aug and trunc are linear operators. In addi-
tion, it holds that trunc{Jz} = trunc{J} trunc{z} and
aug{⊥J ⊥z} = aug{⊥J} aug{⊥z} for block diagonal ma-
trices J,⊥J and vectors z,⊥z of compatible dimensions.

B. Block Circulant MPC

We are concerned in particular with dynamic linear systems
where the matrices present in (1) are BC. More formally, a
BCMPC problem is defined as follows:

Definition 4 (Block Circulant MPC): Consider (1) with
xk ∈ Rnnx , uk ∈ Rnnu and yk ∈ Rpnny , where p is
a positive integer, and partition matrices C and D as
C = [C1, . . . , Cp]T and D = [D1, . . . , Dp]T, respectively.
We say that (1) is a block circulant MPC problem of order
n if the following conditions holds:

A,Q ∈ BC(n, nx, nx), B ∈ BC(n, nx, nu),

R ∈ BC(n, nu, nu), Ci ∈ BC(n, ny, nx),

Di ∈ BC(n, ny, nu),

for i = 1, . . . , p.

Any model satisfying the above conditions can be interpreted
as a periodic interconnection of n identical subsystems
with identical constraints and objective function penalties.
Introducing the integer p allows for multiple constraint sets,
e.g. to restrict the state xk and the input uk separately. In
addition, note that if a system satisfies the conditions in
Definition 4, then the terminal cost matrix P solving the
corresponding DARE is BC as well, i.e. P ∈ BC(n, nx, nx)
[17], [18].

IV. BLOCK CIRCULANT ADMM ALGORITHM

A. Constrained QP with Block Circulant Blocks

Definition 5 (Constrained block circulant QP): The follow-
ing real valued constrained QP,

min
1

2
zTJz + qTz (10a)

s.t. Kz − v = 0 (10b)
v
¯
≤ v ≤ v̄, (10c)



is called a constrained block circulant QP of order n if there
exists a partitioning of vectors z and v into Nz and Nv

segments of lengths l1z , . . . , l
Nz
z and l1v, . . . , l

Nv
v , respectively,

that partition matrices J and K such that all blocks are BC
matrices of order n,

Jkj ∈ BC(n, lkz , ljz), Kwj ∈ BC(n, lwv , ljz),

for k, j = 1, . . . , Nz and w = 1, . . . , Nv .

Due to the algebraic properties of BC matrices summarized
in Section III-A, the BC structure of a BCMPC problem is
preserved when the MPC problem is formulated as a QP
such as in (2). The following corollary connects a BCMPC
problem from Definition 4 to the constrained block circulant
quadratic program (CBCQP) from Definition 5:

Corollary 2 ( [18]): A block circulant MPC problem leads
to a CBCQP with Nz = T , Nv = Tp and Jkj ∈
BC(n, nu, nu) and Kwj ∈ BC(n, ny, nu).

As the matrices in Definition 5 are composed of BC blocks,
the results from Sections III-A and III-B suggest that there
exists a coordinate transformation (z̃, ṽ) = (ψH

z z, ψ
H
v v) that

block diagonalizes each block of K and J . However, how
the complex-valued transformation affects the minimization
in (10) is not immediately obvious. The following theorem
answers this question:

Theorem 2 (Decomposition of CBCQP [18]): Given a
CBCQP of order n, then the following CBCQP,

min
z̃∈Sz,ṽ∈Sv

1

2
z̃H J̃ z̃ + q̃H z̃ (11a)

s.t. K̃z̃ − ṽ = 0 (11b)
v
¯
≤ ψv ṽ ≤ v̄, (11c)

where q̃ = ψH
z q, J̃ = ψH

z Jψz, K̃ = ψH
v Kψz, ψj =

diag{Fn ⊗ Il1j , . . . , Fn ⊗ I
l
Nj
j

} for j = {z, v} and the sets
Sj restrict each of the segments of z̃ and ṽ to the pattern of
complex conjugates from Corollary 1, is equivalent to (10)
in the sense that

z∗ = ψz z̃
∗, v∗ = ψv ṽ

∗, (12a)

γ∗ = ψvγ̃
∗, λ̄∗ = ˜̄λ∗, λ

¯
∗ = λ̃

¯
∗
, (12b)

where (z, v, γ, λ̄, λ
¯
)∗ and (z̃, ṽ, γ̃, ˜̄λ, λ̃

¯
)∗ are primal and dual

optimizers for (10) and (11), respectively.

Now that CBCQP (10) has been block diagonalized, the
following theorem uses the pattern of complex conjugates
from Corollary 1 in order to truncate problem (11).

Theorem 3 (Truncation of CBCQP [18]): Given a CBCQP
of order n, which has been decomposed according to Theo-
rem 2, then the following CBCQP,

min
1

2
Re(ẑH Ĵ ẑ) +Re(q̂H ẑ) (13a)

s.t. aug
Nv

{K̂ẑ − v̂} = 0 (13b)

v
¯
≤ ψv aug

Nv

{v̂} ≤ v̄, (13c)

where q̂ = truncNz q̃, Ĵ = truncNz J̃ and K̂ = truncNv K̃,
is equivalent to (11) in the sense that

ẑ∗ = trunc
Nz

z̃∗, v̂∗ = trunc
Nv

ṽ∗, (14a)

γ̂∗ = γ̃∗, ˆ̄λ∗ = ˜̄λ∗, λ̂
¯
∗

= λ̃
¯
∗
, (14b)

where (ẑ, v̂, γ̂, ˆ̄λ, λ̂
¯
)∗ and (z̃, ṽ, γ̃, ˜̄λ, λ̃

¯
)∗ are primal and dual

optimizers for (13) and (11), respectively.

B. ADMM for Block Circulant MPC

The version of Algorithm 1 for a CBCQP, or equivalently
a BCMPC problem, is outlined in Algorithm 2 and the
individual steps are presented in the following paragraphs.
Before entering its main loop, Algorithm 2 requires the

Algorithm 2 ADMM for Block Circulant MPC

Input: State x(t)
Output: Input u(t)

1: Set x0
0 = x(t) and ŷ0, γ̂0 = 0; compute v

¯
, v̄ and q̂

2: for i = 1 to imax do
3: Update ẑi using ( ˆSP1)
4: Update v̂i using ( ˆSP2)
5: Update truncNv γ̂

i using ( ˆSP3)
6: if ‖ augNv{v̂

i − v̂i−1}‖22 < ε and
‖γ̂i − γ̂i−1‖22 < ε then

7: break
8: end if
9: end for

10: return u(t) = ψu aug{(ẑ0, . . . , ẑn−1
2 nu

)T}

mapping of q into the complex Fourier domain. Next, the
algorithm solves (SP1) projected onto the Fourier domain,(
Ĵ + ρK̂HK̂

)
ẑi = K̂H(ρv̂i−1 − trunc

Nv
γ̂i−1)− q̂. (SP̂1)

When subproblem (SP1) is projected onto the Fourier domain
as in (SP̂1), it is simplified in two ways. On one hand,
the block diagonalized matrices have been reduced to a
maximum of Tn(max{nu, pny})2 nonzero elements, where
T is the prediction horizon of the MPC problem. On the
other, the pattern of complex conjugates allows vectors and
matrices to be truncated as in Theorem 2.

The modified subproblem (SP2) reads as

v̂i = trunc
Nv
{ψH

v sat
[v
¯
,v̄]

{
ψv aug

Nv

{K̂ẑi + ρ−1 trunc
Nv

γ̂i−1}
}
}.

(SP̂2)

The discrete Fourier transformations required in subproblem
(SP̂2) are the main drawbacks of algorithm (2) and the
problem sizes required to outperform algorithm (1) are
discussed in Section IV-C.

The decomposed and truncated dual variables are updated
using

trunc
Nv

γ̂i = trunc
Nv

γ̂i−1 + ρ(K̂ẑi − ŷi). (SP̂3)



As mentioned in the proof of Theorem 3, γ̂ ∈ Sv and it
is therefore sufficient to update the truncated dual variable.
In practice, the term K̂ẑi can be cached during (SP̂2) and
reused in (SP̂3).

Finally, convergence of Algorithm 2 is checked via the
condition

‖ aug
Nv

{v̂i − v̂i−1}‖22 < ε, (15)

‖γ̂i − γ̂i−1‖22 < ε. (16)

To see that this criterion is equivalent to the one of Algorithm
1, note that ‖ augNv{v̂}‖2 = ‖ψH

v v‖2 = ‖v‖2.

As shown in Theorems 2 and 3, Algorithms 1 and 2 produce
an equivalent solution in the sense that the minimizers z∗ and
ẑ∗ are related by z∗ = ψz augNz{ẑ

∗}.

C. Computational Complexity

It is assumed that n is even, that the matrices in Defini-
tion 5 are full and that J ∈ R(Nnzn)×(Nnzn) and K ∈
R(Nnvn)×(Nnzn) are partitioned into segments of identical
lengths nz and nv , respectively, with nv = nz . Algorithm
2 makes use of FFTs during initialization, finalization and
in subproblem (SP̂2). We assume that the complexity of an
r-point FFT is O (r log r) and also define L := Nnz .

For both algorithms, the main burden lies in solving the
linear system in subproblems (SP1) and (SP̂1). Depending
on the structure of the linear system, it can be solved in
numerous ways. For simplicity, it is assumed that the linear
system is solved using a matrix inverse that is pre-computed
offline. In that case, (SP1) is of complexity O

(
(nL)2

)
, while

the block diagonalization and truncation in (SP̂1) reduce
the complexity to O

(
4(nc+1)L2

)
, where the factor 4 ac-

counts for the required complex arithmetic and nc is defined
in Corollary 1. Because the operations of the saturation
function are negligible, (SP2) accounts for a complexity
of O

(
(nL)2+nL

)
. Note that the term Kzi is reused in

(SP3). As the projection onto the boundaries [v
¯
, v̄] must be

carried out in the original domain, the drawbacks of the
Fourier transformation become evident in (SP̂2). This re-
sults in a complexity of O

(
(nc+1)(4L2+2L)+2Ln log n

)
.

Lastly, (SP3) and (SP̂3) are of complexities O (2nL) and
O (4(nc+1)L), respectively.

Algorithms 1 and 2 have an overall complexity of
O (nL(2nL+3)) and O

(
(nc+1)(8L2+6L)+2Ln log n

)
,

respectively. Under the assumptions of this section, Algo-
rithm 2 is more efficient than 1 if L(n2−2n−4) > 3+n log n.

V. SIMULATIONS

A. Random Constrained QP with Block Circulant Blocks

We first consider a set of randomly generated CBCQPs to
gauge performance of Algorithm 2. Figure 1B shows the
decomposed left-hand side of (SP1), J +ρKTK, of a QP of
order n = 4 before applying the truncation. On one hand,
it is evident how the transformation matrices ψz and ψv
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Fig. 1: (A) Logarithmically scaled average execution times
of the different steps of Algorithms 1 (black) and 2 (gray)
in milliseconds for random block circulant QPs. (B, C)
Sparsity patterns of (B) J + ρKTK and (C) J̃ + ρK̃HK̃
for Nz = Nv = 3 and ljz = ljv = 4, j = 1, 2, 3. The colors
are proportional to the magnitude of the matrix elements.

block diagonalize J + ρKTK. On the other, the pattern of
complex conjugate blocks motivating the truncation becomes
apparent. Figure 1A shows the execution times of Algorithms
1 and 2 for random block circulant QPs of increasing order
n with N = 1 and lz = lv = 10. Even though the
analysis of Section IV-C accounted for the required Fourier
transformations, Figure 1A reveals that for small n the
additional operations required in (SP̂2), such as truncating,
permuting and augmenting the vectors, are not negligible.
For larger n these side effects lose their significance and
the superiority of Algorithm 2 becomes evident. Additional
simulations can be found in [18].

B. Traffic Flow Control using block circulant MPC

We consider the regulation of the traffic flow on either a
circular road with n − 1 human-driven vehicles and one
autonomous vehicle (AV) or an infinite road with n-periodic
dynamics or a periodically extended road of finite length
with (n − 2)/2 vehicles [6]. The dynamics of each vehicle
are assumed to be identical and modeled by a discrete-time
second-order system. The states of each vehicle represent
the velocity and the distance to the preceding vehicle. After
linearization around a desired set-point, the system with 2n
states and one controllable input – the acceleration of the AV
– can be reformulated as a partially BC linear system [6].
An MPC problem is then defined as in (1) with a horizon
T = 40 and a sampling time of 0.05s. The acceleration of
the AV is constrained and it is assumed that the AV has
access to an exact prediction of a disturbance, e.g. in case
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Fig. 2: (A, B) Logarithmically scaled average execution times
for one iteration of Algorithms 1 (black) and 2 (gray) in
milliseconds for the traffic flow control example with (A) one
and (B) n controllable vehicles. (C, D) Response profiles of
n = 20 vehicles to a perturbation impacting vehicle 2 (blue).
Only 12 vehicles are shown. (C) The AV (vehicle 1, red) is
controlled using LQR as in [6]. (D) The AV is controlled
using Algorithm 2 with a disturbance prediction.

of a foreseeable lane change. Note that for this example the
input matrix B in (1b) is not BC and Algorithm 2 has to be
modified accordingly, i.e. ψz,v = (IT ⊗ Fn ⊗ I2) ⊕ IT and
z = (x1, . . . , xT , u0, . . . , uT−1)T in Theorem 2.
Figure 2A compares the performance of Algorithm 1 and 2
solving the partially BCMPC problem with random feasible
initial conditions for an increasing number of AVs n. Figure
2B compares their performance when all vehicles are con-
trollable. Each problem was solved with an average number
of 100 ADMM iterations. As for the example of Section V-
A, Algorithm 2 performs worse than Algorithm 1 for small
n when the drawbacks (SP̂2) and other side effects outweigh
the computational gains in (SP̂1). Even though the CQP in
Figure 2A can not be fully decomposed, the benefits of the
Fourier transformation become evident for larger n.
Figures 2C and 2D depict the velocity profiles of the initially
unstable system stabilized by a linear quadratic regulator
(LQR) [6] and Algorithm 2, respectively. In addition to its
ability to consider state and input constraints, Algorithm 2
outperforms the LQR by exploiting the disturbance predic-
tion.

VI. CONCLUSIONS

This paper demonstrated how to exploit the particular struc-
ture of an MPC problem for BC systems. Based on the
properties of BC matrices, a BCMPC problem was defined
and connected to a general constrained QP with BC blocks.

A transformation was derived which block diagonalizes any
constrained QP with BC blocks and allows to truncate
the transformed vectors. A modified ADMM algorithm for
the transformed and truncated system was developed. The
modified ADMM algorithm was tested using a series of
random constrained QPs with BC problem data and a traffic
flow control problem. In both cases, the evaluation of the
results revealed that the modified ADMM algorithm performs
significantly better for increasing problem sizes.
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