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Abstract

In this paper, we analyze the finite sample complexity of stochastic system identification

using modern tools from machine learning and statistics. An unknown discrete-time linear

system evolves over time under Gaussian noise without external inputs. The objective is to

recover the system parameters as well as the Kalman filter gain, given a single trajectory of

output measurements over a finite horizon of length N . Based on a subspace identification

algorithm and a finite number of N output samples, we provide non-asymptotic high-probability

upper bounds for the system parameter estimation errors. Our analysis uses recent results from

random matrix theory, self-normalized martingales and SVD robustness, in order to show that

with high probability the estimation errors decrease with a rate of 1/
√
N . Our non-asymptotic

bounds not only agree with classical asymptotic results, but are also valid even when the system

is marginally stable.

1 Introduction

Identifying predictive models from data has been a fundamental problem across several fields, from
classical control theory to economics and modern machine learning. System identification, in partic-
ular, has a long history of studying this problem from a control theoretic perspective [1]. Identifying
linear state-space models:

xk+1 = Axk +Buk +wk

yk = Cxk +Duk + vk,
(1)

from input-output data has been the focus of time-domain identification. In fact, some identification
algorithms can not only learn the system matrices in (1) but also the Kalman filter required for
state estimation [2].

Most identification methods for linear systems either follow the prediction error approach [3]
or the subspace method [2, 4]. The prediction error approach is usually non-convex and directly
searches over the system parameters A,B,C,D by minimizing a prediction error cost. The subspace
approach is a convex one; first, Hankel matrices of the system are estimated, then, the parameters
are realized via steps involving singular value decomposition (SVD). Methods inspired by machine
learning have also also been employed [5]. In this paper, we focus on the subspace identification
approach–see [6] for an overview. The convergence properties of subspace algorithms have been
studied before in [7–12]; the analysis relies on the assumption of asymptotic stability (spectral radius
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ρ(A) < 1) and is limited to asymptotic results. In [7,8] it is shown that the identification error can

decrease as fast as O
(

1/
√
N
)

up to logarithmic factors, as the number of output data N grows
to infinity. While asymptotic results have been established, a finite sample analysis of subspace
algorithms remains an open problem [2]. Another open question is whether the asymptotic stability
condition ρ(A) < 1 can be relaxed to marginal stability ρ(A) ≤ 1.

From a machine learning perspective, finite sample analysis has been a standard tool for com-
paring algorithms in the non-asymptotic regime. Early work in finite sample analysis of system
identification can be found in [13–15]. A series of recent papers [16–18] studied the finite sample
properties of system identification from a single trajectory, when the system state is fully observed
(C = I). Finite sample results for partially observed systems (C 6= I), which is a more challenging
problem, appeared recently in [19–21]. These papers provide a non-asymptotic convergence rate of
1/
√
N for the recovery of matrices A,B,C,D up to a similarity transformation. The results rely

on the assumption that that the system can be driven by external inputs, i.e. B,D 6= 0. In [19],
the analysis of the classical Ho-Kalman realization algorithm was explored. In [20], it was shown
that with a prefiltering step, consistency can be achieved even for marginally stable systems where
ρ (A) ≤ 1. In [21], identification of a system of unknown order is considered. Finite sample prop-
erties of system identification algorithms have also been used to design controllers [22]. The dual
problem of Kalman filtering has not been studied yet in this context.

In this paper, we perform the first finite sample analysis of system (1) in the case B,D = 0,
when we have no inputs, also known as stochastic system identification (SSI) [2]. This problem is
more challenging than the case B,D 6= 0, since the system can only be driven through noise and
establishing persistence of excitation is harder. We provide the first non-asymptotic guarantees for
the estimation of matrices A,C as well as the Kalman filter gain of (1). Similar to [18, 19], the
analysis is based on new tools from machine learning and statistics [23–25]. In summary the main
contributions of this paper are:

• To the best of our knowledge, our paper provides the first finite sample upper bounds in the
case of stochastic system identification, where we have no inputs and the system is only driven
by noise. We also provide the first finite sample guarantees for the estimation error of the
Kalman filter gain.

• We prove that the outputs of the system satisfy persistence of excitation in finite time with
high probability. This result is fundamental for the analysis of most subspace identification
algorithms, which use outputs as regressors.

• We show that we can achieve a learning rate of O(
√

1/N ) up to logarithmic factors for
marginally stable systems. To the best of our knowledge, the classical subspace identification
results do not offer guarantees in the case of marginal stability where ρ(A) ≤ 1. For stable
systems (ρ(A) < 1), this rate is consistent with classical asymptotic results [7].

All proofs are included in the Appendix.

2 Problem formulation

Consider the standard state space representation (1) with B,D = 0, where xk ∈ R
n is the system

state, yk ∈ R
m is the output, A ∈ R

n×n is the system matrix, C ∈ R
m×n is the output matrix,
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wk ∈ R
n is the process noise and vk ∈ R

m is the measurement noise. The noises wk, vk are assumed
to be i.i.d. zero mean Gaussian, with covariance matrices Q and R respectively, and independent
of each other. The initial state x0 is also assumed to be zero mean Gaussian, independent of the
noises, with covariance Σ0. Matrices A, C, Q, R, Σ0 are initially unknown. However, the following
assumption holds throughout the paper.

Assumption 1. The order of the system n is known. System A is marginally stable: ρ (A) ≤ 1,
where ρ denotes the spectral radius. The pair (A,C) is observable, (A,Q1/2) is controllable and R
is strictly positive definite. ⋄

We leave the case of unknown n for future work 1. The assumption ρ(A) ≤ 1 is more general
than the stricter condition ρ(A) < 1 found in previous works, see [7–12]. The remaining conditions
in Assumption 1 are standard for the stochastic system identification problem to be well posed and
the Kalman filter to converge.

The steady-state Kalman filter of system (1) is :

x̂k+1 = Ax̂k +Kek

yk = Cx̂k + ek,
(2)

where K ∈ R
n×m is the steady-state Kalman gain

K = APC∗(CPC∗ +R)−1 (3)

and P is the positive definite solution of the Riccati equation:

P = APA∗ +Q−APC∗(CPC∗ +R)−1CPA∗

A byproduct of Assumption 1 is that the closed-loop matrix A−KC has all the eigenvalues strictly
inside the unit circle [26]. The state of the Kalman filter is the minimum mean square error
prediction:

x̂k+1 = E [xk+1|y0, . . . , yk] , x̂0 = 0. (4)

We denote its covariance matrix by:
Γk = E [x̂kx̂

∗
k] (5)

The innovation error sequence ek has covariance

R̄ , E [eke
∗
k] = CPC∗ +R (6)

Since the original errors are Gaussian i.i.d., by the orthogonality principle the innovation error
sequence ek is also Gaussian and i.i.d. The later property is true since we also assumed that the
Kalman filter is in steady-state.

Assumption 2. We assume that Σ0 = P , so that the Kalman filter (2) has converged to its steady-
state. ⋄

1The results of Section 4 do not depend on the order n being known.
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Since the Kalman filter converges exponentially fast to the steady-state gain, this assumption is
reasonable in many situations; it is also standard [7, 12]. Nonetheless, we leave the case of general
Σ0 for future work.

In the classical stochastic subspace identification problem, the main goal is to identify the
Kalman filter parameters A,C,K from output samples y0 . . . , yN–see for example Chapter 3 of [2].
The problem is ill-posed in general since the outputs are invariant under any similarity transfor-
mation Ā = S−1AS, C̄ = CS, K̄ = S−1K. Thus, we can only estimate A,C,K up to a similarity
transformation.

In this paper, we will analyze the finite sample properties of a subspace identification algorithm,
which is based on least squares.

Problem 1 (Finite Sample Analysis of SSI). Consider a finite number N of output samples
y0, . . . , yN−1, which follow model (1) with B,D = 0, and an algorithm A, which returns estimates
Â, Ĉ, K̂ of the true parameters. Given a confidence level δ provide upper bounds ǫA (δ,N), ǫC (δ,N),
ǫK (δ,N) and an invertible matrix S such that with probability at least 1− δ:

∥
∥
∥Â− S−1AS

∥
∥
∥
2
≤ ǫA (δ,N)

∥
∥
∥Ĉ − CS

∥
∥
∥
2
≤ ǫC (δ,N)

∥
∥
∥K̂ − S−1K

∥
∥
∥
2
≤ ǫK (δ,N) ,

(7)

where ‖·‖2 denotes the spectral norm. The bounds ǫ can also depend on the model parameters
n,A,C,R,Q as well as the identification algorithm used. ⋄

3 Subspace Identification Algorithm

The procedure of estimating the parameters A,C,K is based on a least square approach, see for
example [7,12]. It involves two stages. First, we regress future outputs to past outputs to obtain a
Hankel-like matrix, which is a product of an observability and a controllability matrix. Second, we
perform a balanced realization step, similar to the Ho-Kalman algorithm, to obtain estimates for
A,C,K.

Before describing the algorithm, we need some definitions. Let p, f , with p, f ≥ n be two design
parameters that define the horizons of the past and the future respectively. Assume that the total
number of output samples is N̄ = N + p + f − 1. Then, the future outputs Y +

k ∈ R
mf and past

outputs Y −
k ∈ R

mp at time k ≥ p are defined as follows:

Y +
k ,






yk
...

yk+f−1




 , Y −

k ,






yk−p
...

yk−1




 , k ≥ p (8)

By stacking the outputs for all sample sequences, over all times p ≤ k ≤ N + p − 1, we form the
batch outputs:

Y+ ,
[
Y +
p . . . Y +

N+p−1

]
,

Y− ,
[
Y −
p . . . Y −

N+p−1

]
,
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The past and future noises E+
k , E

−
k , E+, E− are defined similarly. Finally, define the batch states:

X̂ ,
[
x̂0 . . . x̂N−1

]

The (extended) observability matrix Ok ∈ R
mk×n and the reversed (extended) controllability matrix

Kk ∈ R
n×mk associated to system (2) are defined as:

Ok ,
[
C∗ A∗C∗ · · · (A∗)k−1C∗ ]∗ , (9)

Kk ,
[
(A−KC)k−1K . . . (A−KC)K K

]
(10)

respectively. We denote the Hankel(-like) matrix OfKp by:

G , OfKp. (11)

Finally, for any s ≥ 2, define block-Toeplitz matrix:

Ts ,








Im 0 0
CK Im · · · 0

...
...

...
CAs−2K CAs−3K · · · Im







. (12)

3.1 Regression for Hankel Matrix Estimation

First, we establish a linear regression between the future and past outputs. This step is common in
most (stochastic) subspace identification algorithms. From (2), for every k:

Y +
k = Of x̂k + TfE+

k .

Meanwhile, from (2), the state prediction x̂k can be expressed in terms of the past outputs:

x̂k = Kyk−1 + · · ·+ (A−KC)p−1Kyk−p + (A−KC)px̂k−p.

After some algebra, we derive the linear regression:

Y+ = GY− +Of (A−KC)pX̂ + TfE+, (13)

where the regressors Y− and the residuals E+ are independent column-wise. The term Ok(A −
KC)pX̂ introduces a bias due to the Kalman filter truncation, where we use only p past outputs
instead of all of them. Based on (13), we compute the least squares estimate

Ĝ = Y+Y
∗
−(Y−Y

∗
−)

−1. (14)

The Hankel matrix G can be interpreted as a (truncated) Kalman filter which predicts future
outputs directly from past outputs, independently of the internal state-space representation [2]. In
this sense, the estimate Ĝ is a “data-driven" Kalman filter. Notice that persistence of excitation of
the outputs (invertibility of Y−Y ∗

−) is required in order to compute the least squares estimate Ĝ.
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3.2 Balanced Realization

This step determines a balanced realization of the state-space, which is only one of the possibly
infinite state-space representations–see Section 6 for comparison with other subspace methods. First,
we compute a rank-n factorization of the full rank matrix Ĝ. Let the SVD of Ĝ be:

Ĝ =
[

Û1 Û2

]
[
Σ̂1 0

0 Σ̂2

] [
V̂ ∗
1

V̂ ∗
2

]

, (15)

where Σ̂1 ∈ R
n×n contains the n−largest singular values. Then, a standard realization of Of , Kp

is:
Ôf = Û1Σ̂

1/2
1 , K̂p = Σ̂

1/2
1 V̂ ∗

1 . (16)

This step assumed knowing the order n of the system, see Assumption 1. In addition, matrix
Kp should have full rank n. This is equivalent to the pair (A,K) being controllable. Otherwise,
OfKp will have rank less than n making it impossible to accurately estimate Of .

Assumption 3. The pair (A,K) is controllable. ⋄

The above assumption is standard–see for example [12].
Based on the estimated observability/controllability matrices, we can approximate the system

parameters as follows:

Ĉ = Ôf (1 : m, :) , K̂ = K̂p (:, (p − 1)m+ 1 : pm) ,

where the notation Ôf (1 : m, :) means we pick the first m rows and all columns. The notation for
K̂p has similar interpretation. For simplicity, define

Ôu
f , Ôf (1 : m(f − 1), :) ,

which includes the m(f − 1) “upper" rows of matrix Ôf . Similarly, we define the lower part Ôl
f .

For matrix A we exploit the structure of the extended observability matrix and solve Ôu
f Â = Ôl

p in
the least squares sense by computing

Â =
(

Ôu
f

)†
Ôl

p,

where † denotes the pseudoinverse.
Now that we have a stochastic system identification algorithm, our goal is to perform finite

sample analysis, which is divided in two parts. First, in Section 4, we provide high probability
upper bounds for the error ‖G − Ĝ‖2 in the regression step. Then, in Section 5, we analyze the
robustness of the balanced realization step.

4 Finite Sample Analysis of Regression

In this section, we provide the finite sample analysis of the linear regression step of the identification
algorithm. We provide high-probability upper bounds for estimation error ‖G− Ĝ‖2 of the Hankel-
like matrix G. Before we state the main result, let us introduce some notation. Recall the definition
of the innovation covariance matrix R̄ in (6). We denote the past noises’ weighted covariance by:

ΣE = E
[
TpE−

k (E
−
k )

∗T ∗
p

]
= Tp diag(R̄, . . . , R̄)T ∗

p . (17)
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The least singular value of the above matrix is denoted by:

σE , σmin (ΣE) . (18)

In Lemma B.2 in the Appendix, we show that σE ≥ σmin (R) > 0.

Theorem 1 (Regression Step Analysis). Consider system (2) under the Assumptions 1, 2, 3.
Let Ĝ be the estimate (14) of the subspace identification algorithm given an output trajectory
y0, . . . , yN+p+f−1 and let G be as in (11). Fix a confidence δ > 0 and define:

δN , (2(N + p− 1)m)− log2(2pm) log(2(N+p−1)m) . (19)

There exist N0, N1, N2 such that if N ≥ N0, N1, N2, (see definitions (B.1), (B.5), (C.3) in the
Appendix), then with probability at least 1− δN − 6δ:

∥
∥
∥G− Ĝ

∥
∥
∥
2
≤C1

√

fmp

N
log

5fκN
δ

︸ ︷︷ ︸

O
(√

p logN/N
)

+ C2 ‖(A−KC)p‖2
︸ ︷︷ ︸

O(ρ(A−KC)p)

, (20)

where

κN =
4

σE

(

‖Op‖22 tr ΓN−1 + trΣE

)

+ δ (21)

over-approximates the condition number of E
[
Y−Y ∗

−
]

and

C1 = 8

√∥
∥R̄
∥
∥
2

σE
‖Tf‖2 , C2 = 4 ‖Of‖2

∥
∥
∥O†

p

∥
∥
∥
2
, (22)

are system-dependent constants. ⋄

The final result in (20) has been simplified for compactness–see (C.4) for the full expression in
the Appendix.

Remark 1 (Result interpretation). From (13), (14) the estimation error consists of two terms:

Ĝ−G = TfE+Y
∗
−
(
Y−Y

∗
−
)−1

︸ ︷︷ ︸

Cross term

+Of (A−KC)p X̂Y ∗
−
(
Y−Y

∗
−
)−1

︸ ︷︷ ︸

Kalman filter truncation bias term

. (23)

The first term in (20) corresponds to the cross-term error, while the second term corresponds to
the Kalman filter truncation bias term. To obtain consistency for Ĝ, we have to let the term
‖(A−KC)p‖2 go to zero with N . Recall that the matrix A − KC has spectral radius less than
one, thus, the second term decreases exponentially with p. By selecting p = c logN , for some c,
we can force the Kalman truncation error term to decrease at least as fast as the first one, see for
example [7]. In this sense, the dominant term is the first one, i.e. the cross-term. Notice, that f

can be kept bounded as long as it is larger than n. Notice that the norm
∥
∥
∥O†

p

∥
∥
∥ remains bounded by

∥
∥
∥O†

n

∥
∥
∥ as p increases–see Lemma E.3 in Appendix. ⋄
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Remark 2 (Statistical rates). For marginally stable systems (ρ(A) ≤ 1) and p = c logN , we
have log κN = O (logN), since ‖Op‖2 , tr ΓN depend at most polynomially on p,N–see Corollary E.1
in the Appendix. In this case, (20) results in a rate of:

∥
∥
∥G− Ĝ

∥
∥
∥
2
= O

(
logN√

N

)

.

To the best of our knowledge, there have not been any bounds for the performance of subspace
algorithms in the case of marginally stable systems.

In the case of asymptotically stable systems (ρ(A) < 1), we have κN = O (p), since ‖Op‖2 , tr ΓN , ‖Tp‖2
are now O(1)–see Corollary E.1 in the Appendix. Hence, if p = c logN , we obtain a rate of:

∥
∥
∥G− Ĝ

∥
∥
∥
2
= O

(√

logN log logN

N

)

.

As a result, our finite sample bound (20) is consistent with the asymptotic bound in equation (14)
of [7] as N grows to infinity. ⋄

In the absence of inputs (B,D = 0), the noise both helps and obstructs identification. Larger
noise leads to better excitation of the outputs, but also worsens the convergence of the least squares
estimator. To see how our finite sample bounds capture that, observe that larger noise leads to
bigger σE but also bigger

∥
∥R̄
∥
∥
2
. This trade-off is captured by C1.

If N is sufficiently large (condition N ≥ N0, N1), the outputs are guaranteed to be persistently
exciting in finite time; more details can be found in Section 4.1 and the Appendix. Meanwhile,
condition N ≥ N2 is not necessary; it just leads to a simplified expression for the bound of the
Kalman filter truncation error–see Section 4.3 and Appendix. The definitions of N0, N1, N2 can
be found in (B.1), (B.5), (C.3). Their existence is guaranteed even if p varies slowly with N , i.e.
logarithmically.

Obtaining the bound on the error ‖G − Ĝ‖2 in (20) of Theorem 1 requires the following three
steps:

1. Proving persistence of excitation (PE) for the past outputs, i.e. invertibility of Y−Y ∗
−.

2. Establishing bounds for the cross-term error in (23).

3. Establishing bounds for the the Kalman truncation error in (23).

In the following subsections, we sketch the proof steps.

4.1 Persistence of Excitation in Finite Time

The next theorem shows that with high probability the past outputs and noises are persistently
exciting in finite time. The result is of independent interest and is fundamental since most subspace
algorithms use past outputs as regressors.

Theorem 2 (Persistence of Excitation). Consider the conditions of Theorem 1 and N0, N1 as
in (B.1), (B.5). If N ≥ N0, N1, then with probability at least 1−δN −2δ both of the following events

8



occur:

EY =

{

Y−Y
∗
− � 1

2
OpX̂X̂∗O∗

p +
1

2
TpE−E

∗
−T ∗

p

}

(24)

EE =

{

TpE−E
∗
−T ∗

p � N

2
Σe

}

, (25)

where � denotes comparison in the positive semidefinite cone. Hence, with probability at least
1− δN − 2δ the outputs satisfy the PE condition:

Y−Y
∗
− � N

4
σEImp,

where σE > 0 is defined in (18). ⋄

The above result implies that if the past noises satisfy a PE condition, then PE for the outputs
is also guaranteed; the noises are the only way to excite the system in the absence of control inputs.
The prove PE, from (2), the past outputs satisfy:

Y− = OpX̂ + TpE−

Thus, their correlations are

Y−Y
∗
− =OpX̂X̂∗O∗

p + TpE−E
∗
−T ∗

p +

OpX̂E∗
−T ∗

p + TpE−X̂
∗O∗

p. (26)

We can first show PE for the noise correlations TpE−E∗
−T ∗

p , i.e. show that the event EE occurs with
high probability when N is sufficiently large (condition N ≥ N0). This behavior is due to the fact
that E

[
TpE−E∗

−T ∗
p

]
= NΣE and the sequence E−

k is component-wise i.i.d. To prove this step, we
use Lemma C.2 from [19]–see Lemma B.1 in the Appendix.

Meanwhile, the cross terms X̂E∗ are much smaller and their norm increases with a rate of
at most O(

√
N) up to logarithmic terms. This is since E

[

X̂E∗
]

= 0 and the product X̂E∗ has

martingale structure (see Appendix and Theorem 3 below). Eventually, if the number of samples
N is large enough (condition N ≥ N1), the cross-terms will be dominated by the noise and state
correlations with high probability, which establishes output PE.

4.2 Cross-term error

To bound the cross-term error, we express it as a product of E+Y
∗
−
(
Y−Y ∗

−
)−1/2 and (Y−Y ∗

−)
−1/2, as

in [18]. The second term of the product can be bounded by applying Theorem 2. The first term is
self-normalized and has martingale structure component-wise. In particular, the product Y−E∗

+ is
equal to:

Y−E
∗
+ =





N+p−1
∑

k=p

Y −
k e∗k . . .

N+p−1
∑

k=p

Y −
k e∗k+f−1



 ,

where every sum above is a martingale. To bound it, we apply the next theorem, which generalizes
Theorem 1 in [24] and Proposition 8.2 in [18].
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Theorem 3 (Cross terms). Let {Ft}∞t=0 be a filtration. Let ηt ∈ R
m, t ≥ 0 be Ft-measurable,

independent of Ft−1. Suppose also that ηt has independent components ηt,i i = 1, . . . ,m, which are
1−sub-Gaussian:

E

[

eληt,i |Ft−1

]

= E

[

eληt,i
]

≤ eλ
2/2, for all λ ∈ R.

Let Xt ∈ R
d, t ≥ 0 be Ft−1−measurable. Assume that V is a d× d positive definite matrix. For any

t ≥ 0, define:

V̄t = V +

t∑

s=1

XsX
∗
s , St =

t∑

s=1

XsH
∗
s ,

where
H∗

s =
[
η∗s . . . η∗s+r−1

]
∈ R

rm,

for some integer r. Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0

∥
∥
∥V̄

−1/2
t St

∥
∥
∥

2

2
≤ 8r

(

log
r5m

δ
+

1

2
log det V̄tV

−1

)

⋄

The above theorem along with a Markov upper bound on Y−Y ∗
− (see Lemma B.3 in the Appendix)

are used to bound E+Y
∗
−
(
Y−Y ∗

−
)−1/2.

4.3 Kalman truncation error

For the Kalman truncation error term, we need to bound the term X̂Y ∗
−(Y−Y ∗

−)
−1, which is O (1).

Using the identities O†
pOpX̂ = X̂ , and Y− = OpX̂ + TpE−, we derive the following equality:

X̂Y ∗
−(Y−Y

∗
−)

−1 = O†
p

(
Imp − TpE−E

∗
−T ∗

p (Y−Y
∗
−)

−1

−TpE−X̂
∗O∗

p(Y−Y
∗
−)

−1
)

(27)

From Theorem 2, we obtain
∥
∥TpE−E∗

−T ∗
p (Y−Y ∗

−)
−1
∥
∥
2
≤ 2. The last term in (27) can be treated

like the cross-term in Section 4.2, by applying Theorems 2, 3 and Lemma B.3. It decreases with a
rate of O

(

1/
√
N
)

up to logarithmic terms, so it is much smaller than the other terms in (27). To
keep the final bound simple, we select N2 such that

∥
∥
∥TpE−X̂

∗O∗
p(Y−Y

∗
−)

−1
∥
∥
∥
2
≤ 1 (28)

with high probability–see also (C.3) for the definition of N2.

5 Robustness of Balanced Realization

In this section, we analyze the robustness of the balanced realization. In particular, we upper bound
the estimation errors of matrices A,C,K in terms of the estimation error ‖G − Ĝ‖2 obtained by
Theorem 1.
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Assume that we knew G exactly. Then, the SVD of the true G, would be:

G =
[
U1 U2

]
[
Σ1 0
0 0

] [
V ∗
1

V ∗
2

]

= U1Σ1V
∗
1 ,

for some Σ1 ∈ R
n×n. Hence, if we knew G exactly, the output of the balanced realization would be:

Ōf = U1Σ
1/2
1 , K̄p = Σ

1/2
1 V ∗

1 . (29)

The respective matrices C̄, K̄, Ā are defined similarly, based on Ōf , K̄p, as described in Section 3.
The system matrices C̄, K̄, Ā are equivalent to the original matrices C,K,A up to a similarity
transformation C̄ = CS, K̄ = S−1K, Ā = S−1AS for some invertible S. For simplicity, we will
quantify the estimation errors in terms of the similar Ā, C̄, K̄ instead of the original A,C,K.

The next result follows the steps of [19] and relies on Lemma 5.14 of [25] and Theorem 4.1 of [27].
Let σn (·) denote the n−th largest singular value.

Theorem 4 (Realization robustness). Consider the true Hankel-like matrix G defined in (11) and
the noisy estimate Ĝ defined in (14). Let Â, Ĉ, K̂, Ôf , K̂p be the output of the balanced realization

algorithm based on Ĝ. Let Ā, C̄, K̄, Ōf , K̄p be the output of the balanced realization algorithm based
on the true G. If G has rank n and the following robustness condition is satisfied:

∥
∥
∥Ĝ−G

∥
∥
∥
2
≤ σn (G)

4
, (30)

there exists an orthonormal matrix T ∈ R
n×n such that:

∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2

∥
∥
∥Ĉ − C̄T

∥
∥
∥
2
≤
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2

∥
∥
∥Â− T ∗ĀT

∥
∥
∥
2
≤
√

‖G‖2 + σo
σ2
o

︸ ︷︷ ︸

O(1)

∥
∥
∥Ôf − ŌfT

∥
∥
∥
2

∥
∥
∥K̂ − T ∗K̄

∥
∥
∥
2
≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2
,

where
σo = min

(

σn

(

Ôu
f

)

, σn
(
Ōu

f

))

.

The notation Ôu
f , Ōu

f , refers to the upper part of the respective matrix (first (f − 1)m rows)–see
Section 3.2. ⋄
Remark 3. The result states that if the error of the regression step is small enough, then the real-
ization is robust. The singular value σn (G) can be quite small. Hence, the robustness condition (30)
can be quite restrictive in practice. However, such a condition is a fundamental limitation of the
SVD procedure. The gap between the singular values of G and the singular values coming from
the noise G − Ĝ should be large enough; this guarantees that the singular vectors related to small
singular values of G are separated from the singular vectors coming from the noise G − Ĝ, which
can be arbitrary. See also Wedin’s theorem [28]. Such robustness conditions have also appeared in
model reduction theory [29]. ⋄
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The term
√

‖G‖
2
+σo

σ2
o

which appears in the bound of A is O (1). The value of σ−1
o is random since

it depends on Ôh
f . However, we could replace it by a deterministic bound. From:

σn

(

Ôh
f

)

≥ σn

(

Ōh
f

)

−
∥
∥
∥Ôh

f − Ōh
fT
∥
∥
∥
2
≥ σn

(

Ōh
f

)

−
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
,

σo will eventually be lower bounded by σn

(

Ōh
f

)

/2 if the error
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
≤ σn

(

Ōh
f

)

/2 is small

enough. The norm ‖G‖2≤ ‖Of‖2 ‖Kp‖2 is bounded as p increases, since A−KC is asymptotically
stable and f is finite.

Remark 4 (Total bounds). The final upper bounds for the estimation of the system parameters
A,C,K, as stated in Problem 1, can be found by combining the finite sample guarantees of the
regression step (Theorem 1) with the robustness analysis of the realization step (Theorem 4). All
matrix estimation errors depend linearly on the Hankel matrix estimation error ‖G − Ĝ‖2. As a
result, all matrix errors have the same statistical rate as the error of G, i.e. their estimation error

decreases at least as fast as O
(

1/
√
N
)

up to logarithmic factors. ⋄

6 Discussion and Future Work

One of the main differences between the subspace algorithm considered in this paper and other
stochastic subspace identification algorithms is the SVD step. The other algorithms perform SVD
on W1GW2 instead of G, where W1,W2 are full rank weighting matrices, possibly data dependent [2,
3, 30]. From this point of view, the results of Section 4 (upper bound for ‖G − Ĝ‖ in Theorem 1
and persistence of excitation in Theorem 2) are fundamental for understanding the finite sample
properties of other subspace identification algorithms. Here, we studied the case W1 = I,W2 = I,
which is not the standard choice [12]. It is subject of future work to explore how the choice of
W1,W2 affects the realization step, especially the robustness condition of the SVD step.

We could also provide finite sample bounds for the estimation of the closed-loop matrix Ac ,

A−KC. This can be done in two ways. One option is to form matrix Â− K̂Ĉ from the estimates
Â, Ĉ, K̂. Alternatively, we could estimate Âc directly from K̂p in the same way that we estimated
Â. However, we do not have finite sample guarantees for the stability of the closed-loop estimates
Â− K̂Ĉ, Âc. It would be interesting to address this in future work.

Another direction for future work is repeating the analysis when the Kalman filter has not
reached steady-state, i.e. relax Assumption 2. Finally, in this work, we only considered upper
bounds. It would be interesting to study lower bounds as well to evaluate the tightness of our upper
bounds. In any case, from lower bounds for fully observed systems [17], the factor of 1/

√
N is tight.
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A Proof of Theorem 3

Let us first state a result which follows from the arguments of Chapter 4 of [23]. See also Proposi-
tion 8.1 of [18].

Proposition A.1 ( [23]). Consider a matrix M ∈ R
m×n. Let Sn−1 denote the unit sphere. Then

for any ǫ > 0:

P (‖M‖2 ≥ t) ≤
(

1 +
2

ǫ

)n

max
x∈Sn−1

P (‖Mx‖2 ≥ t (1− ǫ))

⋄
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Second, we state Theorem 1 of [24], which upper bounds self-normalized martingales.

Theorem A.1 (Theorem 1 in [24]). Let {Ft}∞t=0 be a filtration. Let ηt ∈ R, t ≥ 0 be real-valued,
Ft-measurable, and conditionally 1−sub-Gaussian:

E

[

eληt |Ft−1

]

≤ eλ
2/2, for all λ ∈ R. (A.1)

Let Xt ∈ R
d, t ≥ 0 be vector valued and Ft−1−measurable. Assume that V is a d×d positive definite

matrix. For any t ≥ 0, define:

V̄t = V +

t∑

s=1

XsX
∗
s , St =

t∑

s=1

ηsXs.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0

∥
∥
∥V̄

−1/2
t St

∥
∥
∥

2

2
≤ 2 log

det
(
V̄t

)1/2
det (V )−1/2

δ
(A.2)

⋄
Finally, we state a standard linear algebra result. We include the proof for completeness.

Lemma A.1 (Block Matrix Norm). Assume

M =
[
M1 M2 . . . Mr

]
,

for matrices of appropriate dimensions. Then:

‖M‖2 ≤
√
r max
i=1,...,r

‖Mi‖2
⋄

Proof. Consider a vector x such that Mx is defined. Then, from triangle inequality, the definition
of matrix norm and Cauchy-Schwartz:

‖Mx‖2 = ‖M1x1 + · · · +Mrxr‖2 ≤ ‖M1‖2 ‖x1‖2 + · · ·+ ‖Mr‖2 ‖xr‖2
≤
√

‖M1‖22 + · · ·+ ‖Mr‖22 ‖x‖2
≤

√
r max
i=1,...,r

‖Mi‖2 ‖x‖2 ,

where we used that ‖x‖22 = ‖x1‖22 + · · ·+ ‖xr‖2.

Now, we can prove Theorem 3. Notice that:

St =

[
t∑

s=1

Xsη
∗
s . . .

t∑

s=1

Xsη
∗
s+r−1

]

.

We can analyze each component V̄ −1/2
t

∑t
s=1Xsη

∗
k+i separately and apply a union bound afterwards,

since by Lemma A.1:

∥
∥
∥V̄

−1/2
t St

∥
∥
∥
2
≤

√
r max
i=0,...,r−1

∥
∥
∥
∥
∥
V̄

−1/2
t

t∑

s=1

Xsη
∗
s+i

∥
∥
∥
∥
∥
2

. (A.3)
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Now, fix a 0 ≤ i < r and let

Si
t ,

t∑

s=1

Xsη
∗
s+i.

Consider an arbitrary element of the unit sphere ξ ∈ Sm−1. The scalar η∗s+iξ is conditionally 1-sub-
Gaussian and satisfies the conditions of Theorem A.1. Thus, with probability at least 1− δ

r5m :

∥
∥
∥V̄

−1/2
t Si

tξ
∥
∥
∥

2

2
≤ CXH , 2

(

log
r5m

δ
+

1

2
log det V̄tV

−1

)

Now, we apply Proposition A.1 for ǫ = 1/2:

P

(∥
∥
∥V̄

−1/2
t Si

t

∥
∥
∥
2
≥ 2
√

CXH

)

≤ 5m max
ξ∈Sm−1

P

(∥
∥
∥V̄

−1/2
t Si

tξ
∥
∥
∥
2
≥
√

CXH

)

≤ δ

r
.

Finally, by (A.3) and a union bound over all components:

P

(∥
∥
∥V̄

−1/2
t St

∥
∥
∥
2
≥ 2

√
r
√

CXH

)

≤ P

(

max
i=0,...,r−1

∥
∥
∥V̄

−1/2
t Si

t

∥
∥
∥
2
≥ 2
√

CXH

)

≤
r−1∑

i=0

P

(∥
∥
∥V̄

−1/2
t Si

t

∥
∥
∥
2
≥ 2
√

CXH

)

≤ δ.

B Persistence of Excitation

The main focus of this section is the proof of Theorem 2, which provides finite sample guarantees
for the PE of the past noises and the past outputs. We also include upper bounds for the sample
correlations of the past outputs and the states x̂k. Finally, we provide the definition of N0, N1 that
we hided in the main theorem statements.

The following result shows that with high probability, the past noises are persistently exciting. It
follows from Lemma C.2 of [19], which in turn is based on results for random circulant matrices [31].

Lemma B.1 (Noise PE). Consider the conditions of Theorem 2 and the definition of δN in (19):

δN , (2(N + p− 1)m)− log2(2pm) log(2(N+p−1)m) .

There exists a universal constant c (independent of system and algorithm parameters) such that if
N ≥ 2cpm log 1/δN , then with probability at least 1− δN the event:

EE =

{
1

2
ΣE � 1

N
TpE−E

∗
−T ∗

p

}

,

occurs, where ΣE is defined in (17). ⋄
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Proof. We can rewrite E−
k = diag(R̄1/2, . . . , R̄1/2)U−

k , where U−
k is defined similarly to E−

k but has
components with unit covariance. Now from Lemma C.2 of [19] applied on U−

k we obtain that with
probability at least 1− δN :

1

N

N+p−1
∑

k=p

U−
k (U−

k )∗ � Imp/2.

Multiplying by Tp diag(R̄1/2, . . .) from the left and diag(R̄1/2, . . .)T ∗
p from the right gives the desired

result.

From the above lemma it follows that N should be large enough to guarantee PE for the noises.
In particular, N should be larger than N0, where

N0 = min {N : N ≥ 2cpm log 1/δN} (B.1)

= min
{
N : N ≥ 2cpm log2 (2pm) log2 (2(N + p− 1)m)

}
.

Such a N0 exists since the term 2cpm log2 (2pm) log2 (2(N + p− 1)m) depends logarithmically on
N .

To guarantee PE for the noises, we also need to show that the smallest singular value σE =
σmin (ΣE) is positive.

Lemma B.2. Let ΣE be as in (17). Then:

σE ≥ σmin (R) > 0.

⋄

Proof. The past errors TpE−
k can be rewritten as:

TpE−
k = Y −

k −Opx̂k−p = Op (xk−p − x̂k−p) + V −
k + TW−

k ,

where V −
k , W−

k are defined similarly to Y −
k and consist of the past measurement and process

noises respectively. Matrix T is a block Toeplitz matrix; we omit its analytical expression. By
independence of the measurement noise, the process noise and xk−p − x̂k−p:

ΣE � E
[
V −
k

(
V −
k

)∗]
= diag(R, . . . , R).

This in turn implies σE ≥ σmin (R). By Assumption 1, R ≻ 0 and σmin (R) > 0.

Lemma B.3 (Markov upper bounds). Consider system (2) and recall the definition of Γk, ΣE

in (5), (17). We have the following upper bounds:

P

(∥
∥
∥X̂X̂∗

∥
∥
∥
2
≥ N

tr ΓN−1

δ

)

≤ δ (B.2)

P

(

∥
∥Y−Y

∗
−
∥
∥
2
≥ N

‖Op‖22 tr ΓN−1 + trΣE

δ

)

≤ δ. (B.3)
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Proof. We only show (B.3). The proof of (B.2) is similar. From Markov’s inequality we obtain:

P
(∥
∥Y−Y

∗
−
∥
∥
2
≥ ǫ
)
≤

E
∥
∥Y−Y ∗

−
∥
∥
2

ǫ
.

What remains is to bound the expectation in the right-hand side. Notice that ‖Y −
k

(
Y −
k

)∗ ‖2=
trY −

k

(
Y −
k

)∗, since Y −
k has unit rank. Hence from the triangle inequality:

E
∥
∥Y−Y

∗
−
∥
∥
2
≤

N+p−1
∑

k=p

trE
[
Y −
k

(
Y −
k

)∗]
.

The right hand side of the above inequality is

trE
[
Y −
k

(
Y −
k

)∗]
= tr

(
OpΓk−pO∗

p +ΣE

)

The result follows from tr
(
OpΓk−pO∗

p

)
≤ ‖Op‖22 tr Γk−p along with

tr

N+p−1
∑

k=p

Γk−p ≤ N tr ΓN−1

since the sequence Γk is monotone (see the following Lemma).

The following result is standard and we include it for completeness.

Lemma B.4 (Monotonicity of Γk). Consider system (2), under Assumption 1. The sequence
Γk = E [x̂kx̂

∗
k] is monotone: Γk � Γk−1.

Proof. Notice that since x̂0 = 0, we have Γ0 = 0. Define Q̄ = KR̄K∗. By the orthogonality
principle, x̂k and ek are uncorrelated. Hence

Γk = L (Γk−1) , AΓk−1A
∗ + Q̄.

For k = 1 we obtain:
Γ1 = Q̄ � 0 = Γ0.

But the operator L is monotone, which implies:

Γ2 = L (Γ1) � L (Γ0) = Γ1

The result Γk � Γk−1 follows by induction.

Proof of Theorem 2

Some arguments are similar to Section 9 of [18].
Step 1: Noise PE. Under the condition N ≥ N0, from Lemma B.1 the event EE occurs with

probability at least 1− δN .
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Step 2: Cross terms are small. Next, we show that the cross terms X̂E∗
− are small. As in

Lemma B.1, express E− = diag(R̄1/2, . . . , R̄1/2)H−, where H− is defined similarly to E− but has
unit variance components. Define:

V̄N = X̂X̂∗ +
N

‖Op‖22
In, V =

N

‖Op‖22
In, VN = X̂X̂∗, SN = X̂E∗

−.

Notice that ∥
∥
∥V̄

−1/2
N SN

∥
∥
∥

2

2
≤
∥
∥R̄
∥
∥
2

∥
∥
∥V̄

−1/2
N X̂H∗

−

∥
∥
∥

2

2

Hence, by Theorem 3 applied to V̄N , X̂H∗
− the event:

E1 =
{∥
∥
∥V̄

−1/2
N SN

∥
∥
∥

2

2
≤ 8p

∥
∥R̄
∥
∥
2

(

log
p5m

δ
+

1

2
log det V̄NV −1

)}

occurs with probability at least 1− δ.
Next we upper bound term V̄N . From Lemma B.3, the event:

E2 =
{

VN � N
tr ΓN−1

δ
In

}

occurs with probability at least 1− δ. This implies that:

log det V̄NV −1 ≤ log det

[(

N tr ΓN−1

δ
+

N

‖Op‖22

)

In
‖Op‖22
N

]

= log

(

‖Op‖22 ΓN−1

δ
+ 1

)n

= n log

(

‖Op‖22 ΓN−1

δ
+ 1

)

Combining the two events E1, E2 and by a union bound, with probability at least 1 − 2δ the
event:

EXE =

{∥
∥
∥V̄

−1/2
N SN

∥
∥
∥

2

2
≤ CXE

∥
∥R̄
∥
∥
2

}

,

occurs, where

CXE , 8p

(

n

2
log

(

‖Op‖2 tr ΓN−1

δ
+ 1

)

+ log
p5m

δ

)

.

As a consequence, if u ∈ R
mp, ‖u‖2 = 1 is an arbitrary unit vector:

|u∗OpX̂E∗
−T ∗

p u|≤ ‖u∗OpV̄
1/2
N V̄

−1/2
N SNT ∗

p ‖2

≤
√

u∗OpX̂X̂∗O∗
pu+N

u∗OpO∗
pu

‖Op‖22

√

CXE

∥
∥R̄
∥
∥
2
‖Tp‖2

≤
√

u∗OpX̂X̂∗O∗
pu+N

√

CXE

∥
∥R̄
∥
∥
2
‖Tp‖2 , conditioned on EXE (B.4)

Step 3: Output PE Consider an arbitrary unit vector u ∈ R
mp, ‖u‖2 = 1. Consider the events

EE and EXE from steps 1,2. With probability 1− δN −2δ, since N ≥ N0 the event EE ∩EXE occurs.
It remains to show that on EE ∩ EXE the outputs satisfy PE for sufficiently large N . Define

α ,
1

N
u∗OpX̂X̂∗O∗

pu, β ,
1

N
u∗TpE−E

∗
−T ∗

p u
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From (26), (B.4) for N ≥ N0 on EE ∩ EXE :

1

N
u∗Y−Y

∗
−u ≥ α+ β − 2 ‖Tp‖2

√

CXE

∥
∥R̄
∥
∥
2

N
︸ ︷︷ ︸

γN

√
α+ 1

with β ≥ σE/2. Now let N1 be such that:

N1 = min
{

N : γN ≤ min
{

1,
σE
4

}}

. (B.5)

Since CXE grows at most logarithmically with N , N1 always exists. Now, since N ≥ N1 and
β ≥ σE/2:

α+ β − γN
√
α+ 1 ≥ α+ β

2
.

The above inequality follows from the following lemma.

Lemma B.5 (Minimum of function). Let β ≥ b > 0, for some b > 0 and consider the function:

f(α, β) =
α+ β

2
− γ

√
α+ 1, for α ≥ 0, β ≥ b > 0

If γ ≤ 1, b
2 , then

f(α, γ) ≥ 0, for all α ≥ 0, β ≥ b > 0.

⋄

Proof. By elementary calculus:

min
α≥0

f(α, β) =
β−1−γ2

2 , if γ ≥ 1
β
2 − γ, if γ < 1

Thus, if γ ≤ 1, b/2, we have f (α, β) ≥ 0.

C Proof of Theorem 1

Step 1: Since N ≥ N0, N1, from Theorem 2, with probability at least 1−δN −2δ, the event EY ∩EE
occurs.

Step 2: Next, we analyze the cross term. Define:

ZN = Y−Y
∗
−, Z̄N = ZN +N

σE
4
Imp, SN = TfE+Y

∗
−

Notice that on the event EY ∩ EE , we have that Z̄N � 2ZN since ZN � N σE

4 Imp. Hence,
∥
∥
∥SNZ

−1/2
N

∥
∥
∥
2
≤

√
2
∥
∥
∥SN Z̄

−1/2
N

∥
∥
∥
2
.

Now the proof continues as in the case of cross-terms in the proof of Theorem 2. We apply Theorem 3
to Z̄N , SN and use Lemma B.3 to upper bound Z̄N . Then, conditioned on EY ∩EE , with probability
1− 2δ:

∥
∥
∥SNZ

−1/2
N

∥
∥
∥

2

2
≤ 16

∥
∥R̄
∥
∥
2
‖Tf‖22

(
fmp

2
log

κN
δ

+ f log
5mf

δ

)

, (C.1)
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where
κN =

4

σE

(

‖Op‖22 tr ΓN−1 + trΣE

)

+ δ.

Next, we bound
∥
∥
∥Z

−1/2
N

∥
∥
∥ separately on the event EY ∩ EE by 2√

NσE
.

Finally, conditioned on EE ∩ EY , with probability at least 1− 2δ:

∥
∥
∥TfE+Y

∗
−
(
Y−Y

∗
−
)−1
∥
∥
∥ ≤ C1√

N

√

fmp

2
log

κN
δ

+ f log
5mf

δ
. (C.2)

Step 3: We bound the Kalman truncation term. Recall that:

X̂Y ∗
−(Y−Y

∗
−)

−1 = O†
p

(
Imp − TpE−E

∗
−T ∗

p (Y−Y
∗
−)

−1

−TpE−X̂
∗O∗

p(Y−Y
∗
−)

−1
)

On the event EE ∩ EY , we have:
∥
∥TpE−E

∗
−T ∗

p (Y−Y
∗
−)

−1
∥
∥
2
≤ 2.

since Y−Y ∗
− � 1

2TpE−E∗
−T ∗

p . Hence we obtain:
∥
∥
∥X̂Y ∗

−(Y−Y
∗
−)

−1
∥
∥
∥
2
≤
∥
∥
∥O†

p

∥
∥
∥
2

(

3 + ‖Tp‖2
∥
∥
∥E−X̂

∗O∗
p(Y−Y

∗
−)

−1
∥
∥
∥
2

)

From the discussion in Section 4, we only need to find N2 such that for N ≥ N2 with high probability:

‖Tp‖2
∥
∥
∥E−X̂

∗O∗
pZ

−1
N

∥
∥
∥
2
≤ 1.

Define
BN = OpX̂X̂Op, B =

σE
2
NImp, B̄N = BN +B.

Notice that on the event EE ∩ EY , we have Y−Y ∗
− � 1

2B̄N , which implies:

‖E−X̂
∗O∗

pZ
−1/2
N ‖≤

√
2‖E−X̂

∗O∗
pB̄

−1/2
N ‖

Now we can treat the right-hand side in the same way as the cross-term above. By an application
of Theorem 3 and Lemma B.3, we obtain that conditioned on EY ∩ EE, with probability 1− 2δ:

∥
∥
∥E−X̂

∗O∗
pZ

−1
N

∥
∥
∥ ≤

√
2
∥
∥
∥E−X̂

∗O∗
pB̄

−1/2
N

∥
∥
∥

∥
∥
∥Z

−1/2
N

∥
∥
∥
2

≤ 8

√

‖R̄‖2
σE

CN√
N

,

where

CN =

√
√
√
√mp2

2
log

(

2 ‖Op‖22 ΓN−1

δσE
+ 1

)

+ p log
p5m

δ

Thus, we define:

N2 = min






N : 8

√

‖R̄‖2
σE

‖Tp‖2
CN√
N

≤ 1






. (C.3)
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Such an N2 exists since CN grows at most logarithmically with N .
Step 4: Final expression From the previous step and a union bound, for N ≥ N0, N1, N2

with probability at least 1− δN − 6δ:

∥
∥
∥G− Ĝ

∥
∥
∥
2
≤ C1√

N

√

fmp

2
log

κN
δ

+ f log
5mf

δ
+ C2 ‖A−KC‖p2 , (C.4)

Step 5: Simplification of final expression To simplify the final expression, we use

fmp

2
log κN + f log (5mf) ≤ fmp (log κN + log (5f)) = fmp log (5fκN )

and
fmp

2
log

1

δ
+ f log

1

δ
≤ fmp log

1

δ

since p ≥ n+ 1 ≥ 2.

D Proof of Theorem 4

The proof follows the steps of [19].

Step 1: Bounds for observability/controllability matrix

Denote the rank n approximation of Ĝ by

Ĝn , Ôf K̂p

By definition, Ĝn is the matrix which minimizes
∥
∥
∥Ĝ−M

∥
∥
∥
2
, among all rank n matrices M . Thus,

by optimality: ∥
∥
∥Ĝ− Ĝn

∥
∥
∥
2
≤
∥
∥
∥Ĝ−G

∥
∥
∥
2
,

since G has also rank n. As a result, we have:
∥
∥
∥G− Ĝn

∥
∥
∥
2
≤
∥
∥
∥G− Ĝ

∥
∥
∥
2
+
∥
∥
∥Ĝ− Ĝn

∥
∥
∥
2
≤ 2

∥
∥
∥Ĝ−G

∥
∥
∥
2

(D.1)

From (D.1) and the robustness condition (30) we have:

∥
∥
∥G− Ĝn

∥
∥
∥
2
≤ 2

∥
∥
∥Ĝ−G

∥
∥
∥
2
≤ σn (G)

2
. (D.2)

Hence, we can now apply Theorem 5.14 of [25], which states that there exists an orthonormal matrix
T such that:

√
∥
∥
∥Ôf − ŌfT

∥
∥
∥

2

F
+
∥
∥
∥K̂p − T ∗K̄p

∥
∥
∥

2

F
≤
√

2
(√

2− 1
)
σn (G)

∥
∥
∥G− Ĝn

∥
∥
∥
F
, (D.3)

where ‖·‖F denotes the Frobenius norm.
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Since matrices G, Ĝn have rank-n, the sum G − Ĝn has rank at most 2n. Thus, we can bound
the Frobenius norm

∥
∥
∥G− Ĝn

∥
∥
∥
F

in terms of spectral norm:

∥
∥
∥G− Ĝn

∥
∥
∥
F
≤

√
2n
∥
∥
∥G− Ĝn

∥
∥
∥
2
≤ 2

√
2n
∥
∥
∥Ĝ−G

∥
∥
∥
2

(D.4)

where the second inequality follows from (D.1). For simplicity, we also use 2√
2−1

≤ 5. Thus,
from (D.3) and the above inequalities:

√
∥
∥
∥Ôf − ŌfT

∥
∥
∥

2

F
+
∥
∥
∥K̂p − T ∗K̄p

∥
∥
∥

2

F
≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2
.

Finally, since the spectral norm is always smaller than the Frobenius one:
√
∥
∥
∥Ôf − ŌfT

∥
∥
∥

2

2
+
∥
∥
∥K̂p − T ∗K̄p

∥
∥
∥

2

2
≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2
, (D.5)

As a corollary,

max
{∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
,
∥
∥
∥K̂p − T ∗K̄p

∥
∥
∥
2

}

≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2
,

Step 2: Bounds for system parameters

Bounds for C,K
Since Ĉ − C̄T is a sub-matrix of Ôf − ŌfT , we immediately obtain:

∥
∥
∥Ĉ − C̄T

∥
∥
∥
2
≤
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2
.

Similarly, for K we have:

∥
∥
∥K̂ − T ∗K̄

∥
∥
∥
2
≤
∥
∥
∥K̂p − T ∗K̄p

∥
∥
∥
2
≤ 2

√

10n

σn (G)

∥
∥
∥G− Ĝ

∥
∥
∥
2

Bounds for A
For simplicity, denote M̂ , Ôh

f , M̄ , Ōh
f and N̂ , Ôl

f , N̄ , Ōl
f . Based on this notation:

Â = M̂ †N̂ , Ā = M̄ †N̄ .

After some algebraic manipulations:

Â− T ∗ĀT =
(

M̂ † − T ∗M̄ †
)

N̄T + M̂ †
(

N̂ − N̄T
)

.

First, notice that
∥
∥N̄
∥
∥
2
≤
∥
∥Ōf

∥
∥
2
=
√

‖G‖, where the inequality follows from the fact that N̄ is a

submatrix of Ōf ; equality follows from the definition of Ōf = U1Σ
1/2
1 . Second,

∥
∥
∥M̂ †

∥
∥
∥
2
= 1

σn(M̂)
≤ 1

σo

and third ∥
∥
∥N̂ − N̄T

∥
∥
∥
2
≤
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
,
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since N̂ − N̄T is a submatrix of Ôf − ŌfT . Finally, from Theorem 4.1 of [28]

∥
∥
∥M̂ † − T ∗M̄ †

∥
∥
∥
2
≤
∥
∥
∥M̂ − T ∗M̄

∥
∥
∥
2
max







1

σ2
n

(

M̂
) ,

1

σ2
n

(
M̄
)






≤
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2

1

σ2
o

.

Combining all previous bounds, we obtain

∥
∥
∥Â− T ∗ĀT

∥
∥
∥
2
≤
(√

G

σ2
o

+
1

σo

)
∥
∥
∥Ôf − ŌfT

∥
∥
∥
2
.

E Bounds for system matrices

In this section, we formally prove bounds for Ok,Tk,Γk, which we implicitly used in Section 4.
First, we prove a standard result for the norm of (block) Toeplitz matrices.

Lemma E.1 (Toeplitz norm). Let M ∈ R
m1n×m2n, for some integers n,m1,m2 be an (upper) block

triangular Toeplitz matrix:

M =














M1 M2 M3 · · · · · · Mn

0 M1 M2 Mn−1
...

. . .
. . .

...

M1 M2

0 0 · · · 0 M1














,

where Mi ∈ R
m1×m2 , i = 1, . . . , n. Then:

‖M‖2 ≤
n∑

i=1

‖Mi‖2

Proof. A standard technique in the analysis of Toeplitz matrices is to write them in terms of linear
combinations of powers of companion matrices (see [32], equation (0.9.7)). We can write M as:

M = In ⊗M1 +
n−1∑

i=1

J i
n ⊗Mi

where ⊗ is the Kronecker product, In is the identity matrix of dimension n, and Jn is the companion
matrix:

Jn = J =











0 1 · · · 0 0

0 0
. . .

...
...

. . .
0 1

0 0 · · · 0 0











,

But we have ‖D ⊗ F‖2 = ‖D‖2 ‖F‖2 for any matrices D,F (see Theorem 4.2.15 in [33]). Also the
companion matrix has norm one ‖Jn‖2 = 1 since JnJ

∗
n = diag(1, . . . , 1, 0). The result follows from

the triangle inequality.
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Next, we provide a bound for the sum of powers of A.

Lemma E.2. Consider the series St =
∑t

i=0

∥
∥Ai

∥
∥
2
. We have the following two cases:

• If the system is asymptotically stable ρ(A) < 1, then ‖St‖2 = O (1)

• If the system is marginally stable (ρ(A) = 1), then ‖St‖2 = O (tκ), where κ is the largest
Jordan block of A corresponding to a unit circle eigenvalue |λ| = 1.

Proof. Proof of first part. By Gelfand’s formula [32], for every ǫ > 0, there exists a i0 = i0(ǫ)
such that

∥
∥Ai

∥
∥ ≤ (ρ(A) + ǫ)i, for all i ≥ i0. Just pick ǫ such that ρ (A) + ǫ < 1. Then,

St ≤
i0∑

i=0

∥
∥Ai

∥
∥
2
+

1

1− ρ(A)− ǫ
= O (1) .

Proof of second part. Assume that A is equal to a n × n Jordan block corresponding to
λ = 1. The proof for the other cases is similar. Then we have that:

Ai =








1
(
i
1

)
. . .

(
i

n−1

)

0 1 . . .
( i
n−2

)

. . .
0 0 . . . 1








By Lemma E.1, we obtain:
∥
∥Ai

∥
∥
2
≤

n−1∑

k=0

(
i

k

)

≤
(

ei

n− 1

)n−1

where the second inequality is classical, see Exercise 0.0.5 in [23].
Finally, we have:

St ≤ t

(
et

n− 1

)n−1

= O (tn)

Corollary E.1. The norms ‖Ok‖2, ‖Tk‖2, ‖Γk‖2 depend at most polynomially in k if ρ (A) ≤ 1
(they are O (poly(k))). If the system is asymptotically stable they are upper bounded for all k (they
are O (1)).

Proof. Observability matrix: Consider the sum St =
∑t

i=0

∥
∥Ai

∥
∥
2

of the previous lemma. We
have:

‖Ok‖2 ≤ ‖C‖2 Sk−1 = O (Sk) .

The result follows by applying the previous lemma.
Block Toeplitz matrix Consider the sum St =

∑t
i=0

∥
∥Ai

∥
∥
2

of the previous lemma. By
Lemma E.1 we have:

‖Tk‖2 ≤ 1 + ‖C‖2 ‖K‖2 Sk−2 = O (Sk) .

The result follows by applying the previous lemma.

25



Covariance matrix We have

‖Γk‖2 ≤
∥
∥KR̄K∗∥∥

2

k−1∑

i=0

∥
∥Ai

∥
∥
2
.

The result follows by using a similar argument as in the previous lemma for
∑k−1

i=0

∥
∥Ai

∥
∥2.

Lemma E.3 (Lest non-zero singular values of G, Op are increasing). The n−th singular value of
Op is increasing with p:

σn (Op1) ≥ σn (Op2) , for p1 ≥ p2.

The same is true for the n−th singular value of G:

σn (OfKp1) ≥ σn (OfKp2) , for p1 ≥ p2.

Proof. We only prove the first part. The other proof is similar. Notice that Op1 can be rewritten
as:

Op1 =

[
Op2

M

]

,

for some matrix M . Hence
O∗

p1Op1 � O∗
p2Op2 .

Thus σ2
n (Op1) ≥ σ2

n (Op2).
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