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Deep Reinforcement Learning with Feedback-based Exploration

Jan Scholten, Daan Wout, Carlos Celemin, and Jens Kober

Abstract— Deep Reinforcement Learning has enabled the
control of increasingly complex and high-dimensional problems.
However, the need of vast amounts of data before reasonable
performance is attained prevents its widespread application. We
employ binary corrective feedback as a general and intuitive
manner to incorporate human intuition and domain knowledge
in model-free machine learning. The uncertainty in the policy
and the corrective feedback is combined directly in the action
space as probabilistic conditional exploration. As a result, the
greatest part of the otherwise ignorant learning process can
be avoided. We demonstrate the proposed method, Predictive
Probabilistic Merging of Policies (PPMP), in combination with
DDPG. In experiments on continuous control problems of the
OpenAI Gym, we achieve drastic improvements in sample
efficiency, final performance, and robustness to erroneous
feedback, both for human and synthetic feedback. Additionally,
we show solutions beyond the demonstrated knowledge.

I. INTRODUCTION

Contemporary control engineering is adopting the data-
driven domain where high-dimensional problems of increas-
ing complexity are solved, even if these are intractable from a
classic control perspective. Learning algorithms, in particular
Reinforcement Learning (RL) [1], already enable innovations
in robotic, automotive and logistic applications [2]–[4] and
are on the verge of broad application now that data becomes
ubiquitous [5]. There are many applications also beyond
the classical control engineering domain, such as HIV [6]
and cancer treatment schedules [7]. A possibley extension to
diabetes treatment could have great impact [8]. In contrast to
model-based control, RL is able to retain optimality even in a
varying environment, and modelling of dynamics or control
design is not needed.

This study concerns deep RL (DRL), the leading approach
for high-dimensional problems that uses neural networks to
generalise from observations to actions. DRL can greatly
outperform humans [9] in virtue of machine precision and
reaction time. However, DRL requires extensive interaction
with the problem before achieving final performance. For
real-world systems that have restrictions on interaction, the
sample efficiency can be decisive for the feasibility of the in-
tended application [10]. Improving sample efficiency is thus
essential to the development of DRL and its applications.

In contrast to autonomous learning algorithms, humans are
very effective in identifying strategies when faced with new
problems. In many cases we achieve decent performance in
the first try, despite poorer precision and reaction time that
limit final performance. Indeed, from the sample efficiency
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Fig. 1. In the suggested approach, human feedback is combined either with
the policy or a prediction of the corrected action. The critic discriminates
these with respect to the estimated value of the action. The magnitude
of the correction is estimated in the Selector and proportional to the
estimation variance of the policy. The elements in the grey area constitute
an autonomous learner.

perspective, human and RL performance are complementary
and incorporating human insight into a learning algorithm is
a great way to accelerate it.

Some existing RL methods update the policy with addi-
tional human feedback, which is provided occasionally [11],
[12]. In contrast, we propose to keep the original RL process
and use the human feedback for exploration, as Nair et
al. do with demonstrations [13]. Focussing on DRL, there
are methods that learn from a priori demonstrations [14] or
intermittently collect those (dataset aggregation) [15]. In con-
trast to corrective feedback, demonstrations are not always
available or even possible (there may be limitations in the
interface or expertise), besides that they may require manual
processing [14] or simulation [13]. Likewise, methods that
receive preferences between trajectories can be powerful
[16] but they assume the availability of simulation, which
is not generally realistic. As a general measure, there is
evaluative feedback [2] but we believe that there currently
is no method that uses (binary) corrective feedback [12]
to accelerate DRL. Yet for the purpose of conditioning the
exploration of continuous control problems this would be
a natural choice. Moreover, corrective feedback promises to
be more effective than evaluative rewards especially in larger
action spaces [17].

We present a pioneering combination of DRL with correc-
tive human feedback for exploration, to efficiently solve con-
tinuous control problems (Fig. 1). We revisit the question of
how the current estimate of the policy is best combined with
feedback, and subsequently derive a probabilistic algorithm
named Predictive Probabilistic Merging of Policies (PPMP)
that improves the state-of-the art in sample efficiency, is
robust to erroneous feedback, and feedback efficient. Whilst
the proposed assumptions remain realistic, the introduced
techniques are moreover generic and should apply to many
deep actor-critic (off-policy) methods in the field.
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Our approach is motivated by four ideas:
Action Selection: After first evidence by Knox & Stone

[18], it later were Griffith et al. [19] who made a strong
case for how human feedback is given with respect to
the action (sequence) and it is most effective to directly
adjust the actions when feedback is obtained. Their algorithm
outperformed other evaluative feedback methods that instead
affect the actions indirectly (modification of the policy).

Significant Error: If we consider the early learning phase,
where the policy is useless but the human feedback most
valuable, we believe feedback is received in case of a
significant error as to help the agent develop a notion of
the task rather than to communicate refinements. Indeed, a
recent study demonstrated that vigorous initial exploration is
beneficial for sample efficiency [20]. Moreover, we argue that
the instantaneous precision of human feedback is then rather
coarse (in contrast, corrections for steady-state errors of an
almost converged policy may be smaller). Accordingly, this
limitation is quantified by defining a precision d expressing
a region of indifference per dimension.

RL for Fine-stage Optimisation: Reinforcement learning is
superior in final performance due to its precision and reaction
time [21]. From our point of view, it should therefore be
allowed to autonomously optimise during the later learning
phases, such that local optima are identified (e.g. using
gradients) independent from past feedback.

Probabilistic Approach: Griffith et al. [19] proposed a
probabilistic combination of the policy and feedback dis-
tributions to determine the action. Because the policy and
feedback estimates are balanced by their respective accuracy,
such approaches are very effective and robust. In the words
of Losey & O’Malley: ‘When learning from corrections ...
[the agent] should also know what it does not know, and
integrate this uncertainty as it makes decisions’ [22]. We
subscribe to this point of view and furthermore emphasise
past success of using uncertainty in other fields, such as
the Kalman filter or localisation algorithms [23]. However,
whereas Losey & O’Malley estimate the variance in the
corrections [22], we consider the feedback (co)variance fixed
(d in Significant Error) and argue that the correction size is
inversely proportional to the performance of the agent.

It immediately becomes apparent that some of these ideas
align, e.g., that corrections are inaccurate (Significant Error),
but do not need to be accurate, since RL will efficiently
identify local optima (RL for Fine-stage Optimisation).
However, before connecting the dots, let us complete this
motivation with the assumption that, given the assumed area
of indifference of Significant Error expressed by d (Fig. 2),
RL is able to identify the local optimum. In other words,
Significant Error and RL for Fine-stage Optimisation concern
overlapping regions and the global optimum is attained if the
feedback brings us in proximity.

As a corollary of the above statements, we develop a
learning method where actions are obtained by significant
modification of the policy in direction of the obtained binary
feedback. A probabilistic manner that reflects the current
abilities of the agent determines the magnitude of correc-

c

Fig. 2. Using respective covariances, the policy is combined with human
feedback in the action space. The resulting distribution on the action that is
selected, is truncated such that corrections always have significant effect and
the given information cannot dissipate in case of an overconfident policy.

tion. This method strongly reduces the need for interaction
and furthermore improves final performance. Autonomy and
optimality are furthermore preserved, since there will be no
feedback when the performance is deemed satisfactory, and
our method then resorts to its RL principles.

II. BACKGROUND

This study is defined in a sequential decision making con-
text, in which the Markov decision process serves as a mathe-
matical framework by defining the quintuple (S,A, T ,R, γ).
This set consists of an observable state-space S, action-space
A, transition function T : S×S×A 7→ [0, 1], reward function
R : S × S ×A 7→ R, and constant discount rate γ [1].

The computational agent interacts with an environment by
taking actions ak (where convenient, we omit the time index
k) based on its current state sk and will then end up in a new
state sk+1 and receive a reward rk and human feedback hk ∈
{−1, 0, 1} to indicate an advice of the direction in the action
space, wherein the agent could explore. The objective of the
agent is to learn the optimal policy π∗(s) that maximises
the accumulated discounted reward R =

∑
i=0 γ

iri And
we assume the feedback aligns with this goal. Along with
the policy contained in a neural network called the actor,
the agent will have a network called critic which learns to
predict the value of a state-action pair, i.e., the Q-function
Q(s, a) = E[R | π, sk = s, ak = a]. This deep actor-critic
approach was introduced in [24]. Their work is the basis
of the RL-functionalities used here, such as target networks
π′ and Q′, parameter initialisation, and replay buffers B,
although we consider our scheme could also be applied to
other RL algorithms.

III. PREDICTIVE PROBABILISTIC MERGING OF POLICIES

The aforementioned point of view materialises in our new
learning algorithm PPMP, of which we will discuss each
element in one of the following subsections.

A. Combining Policy Information in the Selector

For the sake of this explanation, let us temporally assume
non-erroneous corrective feedback h on policy ap that indi-
cates the relative location of optimal action a∗ (all scalar, as
in Fig. 2). With reference to the Action Selection statement,
our approach is to immediately alter the actors suggested ap
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in the direction of h, such that the eventually selected action
a = ap + êh (the orange distribution in Fig. 2) and ê being
an estimate of the absolute error |ap − a∗|.

Deriving from the Kalman filter, the unknown magnitude
of the error is estimated using the covariance of the policy
(the prediction) and the feedback (an observation) in a
module that we call the Selector. It is assumed that the
magnitude of the error will diminish over time along with the
covariance of the policy Σapap . With the covariance of the
feedback Σhh as a known constant and Σapap obtained as
described in Sec. III-C, let ê = G diag(cs)+1cTo , (lines 9-11
in Algorithm 1) where the constant vectors c set the bounds
on ê as described in the last two paragraphs of this section,
1 = [1, 1, . . . , 1]T and G = Σapap(Σapap + Σhh)−1. Note
that G ∈ (0, 1) (all Σ are positive definite by definition)
is analogue to the Kalman gain as a dimensionless trade-
off measure. When the policy shows large covariance, the
corrections will have larger effect and facilitate vigorous
exploration. And inversely, corrections will be more subtle
upon convergence of the policy. Besides that, the exploration
is automatically annealed over time by the decrease of Σapap ,
its effect is state-dependent and tailored for every action
channel, respecting correlations.

The relation of G to ê (line 11) is defined using two
vectors of which the length equals the dimensionality of the
action space. First, let us discuss the relevance of offset co.
With reference to Significant Error, a lower bound on e is
e− = ap+hd. Moreover, with effective exploration in mind,
note that a is guaranteed to be closer to a∗ than ap even if
ê = 2d. Accordingly, co = 2d acts as a lower bound on the
corrections. Besides the optimisation perspective, it is always
desired to apply a significant correction in case feedback is
provided. First, it will avoid frustration of the user, as very
subtle corrections may not be noticed and experienced as if
the algorithm ignores the feedback. Second, the information
is not preserved otherwise.

The scale cs allows us to set an upper bound e+ for the
applied corrections. From the perspective of using human
feedback as exploration, let us consider the case where the
policy suggests some negative action and receives h = 1
since optimality is contained in the positive half of the
action space (Fig. 2). Although we cannot make any general
statements about the reachability of the state-space, it is clear
that feedback can only have the intended effect when ê is
large, else there is no escape from the wrong half of the
action space.

B. Integrating the Selector with Autonomous Learning

The ideas established in the previous paragraph raise
requirements for the eventual algorithm. The probabilistic
combination of the policy and the feedback results in off-
policy data in a continuous action space. As critic-only
methods are suitable for a discrete action space whilst actor-
only methods are on-policy, an off-policy actor-critic scheme
remains as the evident choice.

Fig. 1 illustrates how the system is interconnected and
the actions selected. It is assumed that the human provides

Algorithm 1 Predictive Probabilistic Merging of Policies
1: Initialize:

Neural network parameters θ, θ′, ψ, ψ′, φ
Replay buffers B and Bc
Feedback covariance Σhh
Scale cs, and offset co

2: for episode e = 1 to M do
3: Initialize:

Ornstein-Uhlenbeck process ν
Randomly set active head je

4: for timestep k = 1 to T do
5: ap ← πj(sk | ψ) + νk
6: âc ← P (s | φ) +N (0, σa)
7: aQ ← arg maxaQ(s, a)|s=sk,a=ap∨a=âc
8: Σapap ← cov(π(sk | ψ))
9: G← Σapap(Σapap + Σhh)−1

10: ak ← aQ + (G diag(cs) + 1cTo )hk
11: Store (sk, ak) in Bc when hk 6= 0
12: Obtain sk+1 and rk by executing ak
13: Store transition (sk, ak, rk, sk+1, je) in B
14: Sample N tuples (si, ai, ri, si+1, ji) from B
15: Compute target Q-values

yi = ri + γQ′
(
si+1, π

′
ji

(si+1 | ψ′)
∣∣ θ′)

16: Update θ, JQ = 1
N

∑N
i=1 (yi −Q(si, ai | θ))2

17: Update ψ using multihead policy gradient (1)
18: Randomly sample N transitions (si, ai) from Bc
19: Update φ, JP = 1

N

∑N
i=1 (P (si | φ)− ai))2

20: Update target network Q : θ′ ← τθ + (1− τ)θ′

21: Update target network π : ψ′ ← τψ+ (1− τ)ψ′

22: end for
23: end for

binary feedback signals h occasionally and bases this on the
observed state sequence (and possibly the actions). Delays
between human perception and feedback are not taken into
account. In order to memorise and generalise the advised cor-
rected samples, those corrected actions are estimated in the
predictor, a supervised learner further discussed in Sec. III-
D. First, the Q-filter (critic) decides whether the policy’s
action ap or the estimated corrected action âc is preferred as
the suggested action aQ (line 7). Then, in accordance with
the description in the previous paragraph, the selector module
adjusts aQ with respect to h and we arrive at the actually
executed action a (line 11). In case feedback is not provided
the algorithm relies on its own policy, including exploration
noise. Autonomy is hereby preserved.

C. Multihead Actor Network

In contrast to the Deep Deterministic Policy Gradient al-
gorithm (DDPG) [24] we need not only to estimate an action,
but furthermore to estimate the covariance in this estimate. In
[25] it is established that the uncertainty over a deep neural
networks output may be obtained from multiple passes with
dropout. However, in the context of RL, [26] reports how a
multihead neural network that maintains multiple hypotheses
is a more consistent approach to generate posterior samples
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than dropout. Whereas in their study the eventual purpose
of the multihead network is to use the posterior for explo-
ration rather than to quantify confidence (as desired for our
approach), Rupprecht et al. [27] indeed establish how the
multiple hypotheses allow accurate estimation of abilities in
a deep learning classification problem. As it is furthermore
desired to have efficient and scalable estimation, we apply
the multihead architecture as discussed in [26] to the actor
network.

Effectively, the modification of a regular actor network to
its multihead counterpart results in K copies of the output
layer that estimate the optimal action aj = πj(s | ψ) (line 5),
where j indicates the head and ψ is the parameter set of
the network. For the training, we establish an extension to
the sampled policy gradient in [24] that features individual
values of ∇aQ and ∇ψπ for each head. This sampled
multihead policy gradient is given by

∇ψJπ ≈
1

N

N∑
i=1

∇aQ(s, a|θ)|a=π(si) ∇ψπ(s|ψ)|s=si , (1)

with a slight abuse of notation in the row-wise expansion
of ∇aQ that contains evaluations for all K policies in π.
To determine the policy during action selection, we choose
to randomly select a head je per episode, preserving both
temporal consistency and compliance with multimodalities
(not preserved when averaging). For the training of the critic
(line 13 in Algorithm 1), π′ji(si+1 | ψ′) is evaluated for ji,
the same head as in ai.

D. Predictor Module

The corrected actions are estimated as âc = P (s | φ),
where P is the prediction network with parametrisation φ,
trained with human-corrected samples (s, a) from buffer Bc.
Whilst these predictions can greatly improve the performance
especially during the early learning stage (where the im-
provements need to take place), taking the predicted actions
has two important disadvantages. First, the corrections and
their estimates are coarse improvements that primarily aim
to explore. The eventual performance is limited and at
some point the actor will perform better and the predictor’s
influence needs to be scheduled away.

A second problem is that the predictor generalises from
few feedback samples and its policy may not be very
expressive. As a corollary, the variance in the interactions
is reduced and this impedes the learning from this data. As
clearly demonstrated in [28], learning from data generated
by a stationary policy will cause for instability, presumably
because of overfitting. In addition, we suspect that the Adam
optimiser [29] may become over-confident in its gradient
estimate (which is now artificially consistent) and raises
at least some of the adaptive learning rates to an unstable
value. In [28] the problems are overcome by collecting data
with a random or pristine policy. Accordingly, we disable
the predictor during the first Np non-corrected samples. As
a second countermeasure, we inject noise to the estimates
with variance σâc (line 6), such that the original distribu-
tion is somewhat restored and the variance problems partly

Fig. 3. From left to right: Pendulum-v0, MountaincarContinuous-v0 and
LunarLanderContinuous-v2 from the OpenAI gym [31]. The respective
goals in these underactuated problems is to swing up and balance, drive
up the mountain and gently land between the flags.

alleviated. In our experience, noise injection is a necessity,
but finding alternatives that address this overfitting problem
would be an interesting venue for further research.

Finally, note that in successful actor-critic learning, the
critic learns faster than the actor [30]. We can therefore
interleave âc and ap using a Q-filter that selects the action
with the greatest value (line 7). Besides the retaining of
buffer variance, emphasis will now be scheduled towards the
actor upon its convergence so the Q-filter also solves the first
problem (transcending the predictor performance). Because
the critic needs to be learned before it can correctly schedule,
it is enabled after NQ samples. Note that, in contrast to the
use of direct scheduling heuristics [19], there is a wide range
in which NQ and NP are successfully set (Fig. 6).

IV. IMPLEMENTATION AND EVALUATION

Our code is available at github.com/janscholten/ppmp. All
five neural networks (2 for the actor, 2 for the critic, and
one for the predictor) are of size (400, 300) and use ReLU
activation (except for hyperbolic tangent output layers that
delimit actions within their bounds). We train with Adam
[29], using learning rates of 0.002 for the critic 0.005, 0.0001
for the actor and 0.0002 for the predictor. The actor has
K = 10 heads. The soft target mixing factor τ = 0.003. The
initial variance in the network initialisations is 0.001. The
buffers B and Bc have size 1M and 1600 respectively and the
minibatch size is 64. The discount rate is γ = 0.99. The OU-
process has volatility 0.3, damping 0.15 and timestep 0.01.
The selector and predictor have (as a fraction of the action
range per channel) resolution d = 0.125, scale cs = 0.5
and variance σâc = 0.025. The correction variance is set to
Σhh = 1 · 10−8 The predictor and Q-filter are enabled after
NP = 1500 and NQ = 4000 samples respectively.

For benchmarking purposes we regard the problem set
in Fig. 3. The continuous state space of the pendulum
environment consists of x- and y-positions of the tip and
the angular velocity. The control input is the applied torque.
Negative reward is given both for displacement from the
upright equilibrium and for applied torque. An episode lasts
200 timesteps. The mountain car’s state space consists of
position and speed and it is controlled by a (reverse) driving
force (again, all continuous). When the car reaches the
flag, the episode is over and a reward of 100 is obtained,
discounted by the cumulative squared action. The state space
of the lunar lander has eight dimensions, both continuous
(positions/velocities) and binary (leg contact). It is controlled
with two inputs, one for the main engine and a second for
the steering rockets. An episode ends upon soft landing to
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Fig. 4. Our methods PPMP and its ablation PMP (without prediction)
outperform all baselines. Depicted is the moving average of ten evaluations
(window size 5) along with the feedback rate.mm

rest (100 points) or crashing (-100), and navigation yields
between 100 and 140 points. The applied actions are dis-
counted. Unsolved episodes terminate after 1000 timesteps.

For comparability (that is, to eliminate the effect of
inconsistencies in human feedback such as delays [19]), we
use synthesised feedback (an oracle). To study applicability,
we additionally test with human participants. The oracle
compares a with a converged policy. We apply the assumed
distance d as a threshold for the feedback. The feedback
rate is controlled with a biased coin-flip and annealed over
time. To infer robustness we apply erroneous feedback,
implemented as in [12].

The results with human participants were obtained from
three participants in the age of 20 to 30 with different
backgrounds. For each algorithm, they were given a single
demonstration and a test run possibility to get familiar with
the interface. The subsequent four runs were recorded.

We evaluate PPMP and its ablation PMP (without the
predictor) and compare with DDPG [24] and DCOACH [32]
(a non-RL deep method that learns from corrective feedback
only). Implementations are from P. Emami and R Pérez
Dattari on Github.com. We generated ten random seeds (with
another random generator) which we applied to ten runs
of each algorithm respectively, such that the environments
feature equal stochasticity for the different implementations.
We evaluate the results on four criteria: sample efficiency,
feedback efficiency, final performance, and robustness to
erroneous feedback.

V. RESULTS

Fig. 4 shows that our methods outperform other algorithms
in every respect, and whereas the baselines seem to suit
one problem in particular, PPMP is consistent. DDPG agents
only learn good policies within the range of 200 episodes in
the Pendulum problem, for the other environments its poor
sample efficiency is even more outspoken. From a compar-
ison with PMP, we infer that the predictor module provides
for better sample efficiency, more consistent performance,
greater final performance and a reduction of the feedback
demand. Fig. 5 shows the effect of erroneous feedback. In
virtue of value-based learning, our methods prove very robust
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Fig. 6. Left: Performance with human participants, averaged over 12
experiments (feedback rate is the thinner line). Top right: A sensitivity
analysis of the introduced hyperparameters. Bottom right: PPMP learns to
land, and thereby outperforms the oracle that only knows how to fly.

to erroneous feedback and there is no serious impediment of
final performance. In contrast, DCOACH is greatly affected
and fails for error rates beyond 10%.

In Fig. 6 additional results are presented. On the left, re-
sults from human participants confirm our findings from sim-
ulated feedback. DCOACH obtains a considerable amount of
feedback, but inconsistent feedback causes failure nonethe-
less. PPMP is more feedback efficient, learns fast, and
consistently attains great final performance. There are some
set-backs in performance in the Mountain Car problem,
presumably a result of participants that assume the learning
is finished after some early success.

Top right in Fig. 6 is a sensitivity analysis for the new
hyperparameters NQ and Np. We compare the distribution
of the return during the first 15000 timesteps in the Pendulum
domain. As stated in Sec. III-D the new parameters neither
require meticulous tuning nor cause brittleness.

Next, in the bottom right, let us consider a typical use
case where the feedback has limited performance and is
not able to fully solve the problem itself. This scenario is
different from the previous studies (with erroneous feed-
back), where incidental mistakes may have been overcome
by low-pass dynamics and generalisation but corrections
eventually extended to the end-goal. We use the Lunar
Lander environment, where the oracle is now partial as it
knows how to fly but can not land. The sequel of the problem
is thus left to the agent. It is emphasised that the reward
function of this environment stresses stable operation by
assigning great negative reward to crashes. Only the last 100
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reward units that our method obtains correspond to having
learned to land properly. As such, our method allows to solve
a problem that is otherwise not feasible.

VI. CONCLUSION

This work discusses how binary corrective feedback may
be used as a probabilistic exploration signal in DRL in order
to improve its sample efficiency. By slight modification of
an off-policy algorithm (here DDPG) the uncertainty in the
policy was obtained and coupled with the magnitude of the
correction induced by the feedback. To generalise corrections
and improve memorisation, a predictor network provides
estimates of the corrected policy, which can substitute for
the actual policy when it increases the value of the state-
action pair (especially during early learning). Our method,
Predictive Probabilistic Merging of Policies (PPMP), is eas-
ily implemented and makes realistic assumptions about the
feedback: it does not need to be a full demonstration, exper-
tise may be limited, we do not assume feedback is abundant,
neither do we require simulation or post-processing. Never-
theless, PPMP consistently improves on sample efficiency,
final performance and robustness in comparison to pure RL
(DDPG) and learning from corrections only (DCOACH),
both for simulated and human feedback.

A first topic further research should address, is how PPMP
carries over to real-world scenarios. Although the scalability
and robustness are promising, the applicability is not yet
proven by this work. From the possible extensions to this
study, an exciting avenue would be to refine the probabilistic
part. In particular, we would like to dispose of the Gaussian
approximation and connect with full distributional learning
[33], [34], possibly combined with uncertainty-handling es-
timation of human feedback [35]. This could give better
estimates of the abilities and allow for more sophisticated
action selection, e.g., posterior or Thompson sampling [26].
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