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Abstract

Cumulative Prospect Theory (CPT) is a modeling tool widely used in behavioral economics
and cognitive psychology that captures subjective decision making of individuals under risk
or uncertainty. In this paper, we propose a dynamic pricing strategy for Shared Mobility on
Demand Services (SMoDSs) using a passenger behavioral model based on CPT. This dynamic
pricing strategy together with dynamic routing via a constrained optimization algorithm that we
have developed earlier, provide a complete solution customized for SMoDS of multi-passenger
transportation. The basic principles of CPT and the derivation of the passenger behavioral
model in the SMoDS context are described in detail. The implications of CPT on dynamic
pricing of the SMoDS are delineated using computational experiments involving passenger pref-
erences. These implications include interpretation of the classic fourfold pattern of risk attitudes,
strong risk aversion over mixed prospects, and behavioral preferences of self reference. Overall,
it is argued that the use of the CPT framework corresponds to a crucial building block in de-
signing socio-technical systems by allowing quantification of subjective decision making under
risk or uncertainty that is perceived to be otherwise qualitative.

Index Terms: Cumulative Prospect Theory, Dynamic Pricing, Shared Mobility on Demand,
Smart Cities, Risk Attitudes.

1 Introduction

Until recently, available solutions for urban transportation have been clearly binary, with the first
option represented by public transportation that provides low cost and reduced flexibility and the
second corresponding to private automobiles that have high cost and improved flexibility. Emer-
gence of ride sharing platforms such as Uber, Lyft, and Didi Chuxing have changed this landscape,
introducing a continuum of services at various levels of cost, flexibility, and carbon footprint. With
a projection of a total number of 2 billion vehicles on roads by the year 2035 [1], the emergence of
new concepts such as Mobility on Demand [4, 11] are urgently needed. One such paradigm is the
notion of Shared Mobility on Demand Services (SMoDSs), which consists of customized dynamic
routing and dynamic pricing for multiple passengers. This paper pertains to an SMoDS that can
provide a customized combination of affordability, flexibility, and carbon footprint. We build on
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our earlier work in [13] and [5], and offer a solution based on Cumulative Prospect Theory for
determining dynamic tariffs.

The results of [13] correspond to designing dynamic routes for passengers who request the
SMoDS, based upon the requested pickup, drop-off locations, and a pre-specified bound on the
walking distance by each passenger. An Alternating Minimization (AltMin) based algorithm was
presented that optimizes a relevant time cost. The SMoDS server then offered pickup and drop-off
locations as well as walking, waiting and riding times to each passenger derived via the AltMin
algorithm. The notion of Transactive Control in [5] was introduced to enable the SMoDS to offer
a dynamic tariff to the passenger which can serve as an incentive for the decision on the offer.
A passenger behavioral model based on Utility Theory [22] was derived, with the utility of the
passenger being a function of both travel times and tariff. The resulting socio-technical model that
combines the passenger behavioral model and the optimization of dynamic routes was used to derive
a desired probability of acceptance that led to the average estimated waiting time of passengers on
the SMoDS platform being regulated around a desired value. The derivation of the actual dynamic
tariffs was however not addressed and assumed to be such that the desired probability of acceptance
from each passenger was realized.

The results mentioned above have two deficiencies. The first is that the passenger behavioral
model is significantly more complex than that considered in [5]. Strategic decision making, adjust-
ments based upon framing effect, loss aversion, and probability distortion are several key features
related to subjective decision making of individuals when facing uncertainty, which makes classic
Expected Utility Theory (EUT) inadequate. And an intrinsic feature of the SMoDS is uncertainty
in the realized travel times as the route of the passenger could be updated at any time due to
the need to accommodate new passengers during the current ride. An important concept that can
be utilized towards a more accurate behavioral model for decision making under uncertainty is
Prospect Theory [18, 21] in general, and Cumulative Prospect Theory (CPT), in particular, where
the distortion is applied to cumulative probabilities so as to avoid violations of first order stochastic
dominance [21]. The second deficiency is the lack of focus on specific dynamic tariffs related to the
SMoDS. We address both of these deficiencies in this paper.

The main contribution of this paper is a CPT based dynamic pricing strategy, where decisions
of passengers are based on the subjective utility of the travel times and tariff offered by the SMoDS
server. The overall framing, probability distortion, parameterization of the behavioral model, and
impact of risk attributes on dynamic pricing are all discussed. Computational experiments involving
passenger preferences are exploited to analyze various scenarios of passenger’s risk attitudes via the
proposed CPT based behavioral model.

Since being introduced by Kahneman and Tversky in 1979 [18], Prospect Theory has achieved
remarkable successes in behavioral economics [9] and cognitive psychology [6]. Until recently, PT
has been widely applied in engineering applications where uncertainty plays an important role,
such as cloud storage defense [25], energy storage of smart grids [24], and common-pool resource
sharing [17]. In the context of transportation, PT has been explored in [15] through a Stackelberg
Games that studies the interplay between the objectives of individual travelers and that of the
policy maker, and in [26] through travelers’ route choices when the travel times are uncertain and
deriving the static tolls that result in the optimal system performance. Though PT has been
investigated in the area of smart cities/transportations and asset pricing [8], to the best of our
knowledge, no prior work has been reported related to the applications of PT in SMoDS or for
evaluating dynamic tariffs.
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2 Dynamic Routing and Dynamic Pricing

The problem considered in this paper is a SMoDS which accommodates ride requests from passen-
gers in real time. The overall schematic of the CPT based dynamic pricing strategy is illustrated
in Fig. 1, which consists of three main building blocks. The first block updates the dynamic route
for each passenger via the AltMin algorithm developed in [13] when a new request is received, and
calculates the updated EWT(t) right after the moment of request if the passenger decides to accept
the offer. EWT(t) denotes the average Estimated Waiting Time of all passengers who are in the
pickup queue at timestamp t, i.e., have accepted the SMoDS offers but are yet to be picked up.
Given the definition, it is easy to see that EWT(t) can be regarded as a Key Performance Indicator
(KPI) [14] to measure the degree of balance between demand and supply. We therefore apply this
KPI as a desired target, EWT∗, of economic efficiency of the proposed SMoDS platform. The
second block determines the desired probability of acceptance p∗ for the new passenger required
by the SMoDS platform so as to ensure that the expected EWT(t) after the passenger’s decision
approaches EWT∗ [5]. Finally, the third block utilizes the CPT framework to determine the dy-
namic tariff γ that will nudge the passenger towards p∗, and forms the focus of this paper. The
details of the first two blocks are described in Sections 2.1 and 2.2 respectively. With this overall
background, we then proceed to elaborate the CPT framework starting from Section 3.

CPT based 

behavioral model

Desired probability 

of acceptance
Dynamic routing

via AltMin

    

      
  

      
  

  

Traffic
condition

Request  

travel times

Figure 1: Overall schematic of the CPT based dynamic pricing strategy.

2.1 Dynamic Routing via AltMin Algorithm

An AltMin based optimization algorithm is developed in [13] to design the optimal routes given
the requested pickup, drop-off locations, and pre-specified bounds on the walking distances by the
passengers, using an objective function that minimizes a weighted sum of various travel time cost
terms, including the total travel time of the vehicle, the walking, waiting, and riding times of each
passenger. The optimization procedure is carried out iteratively by determining a set of routing
points through which the vehicle picks up and/or drops off passengers, and the sequence at which
these routing points are visited. It has been demonstrated in [13] that the AltMin algorithm is
capable of accommodating real time requests, and outperforms standard Mixed Integer Quadrat-
ically Constrained Programming based approaches with an order of magnitude improvement in
computational efficiency and with comparable optimality.

2.2 Dynamic Pricing via Utility Theory

The behavioral model of passengers in [5] was based on utility theory and utilized to determine
the probability of the passenger to accept the SMoDS offer. For this purpose, a utility function of
taking any transportation option

u = a1twalk + a2twait + a3tride + bγ + c (1)
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was proposed, where twalk, twait, tride denote the walking, waiting, riding times, respectively, γ de-
notes the tariff, and c denotes a constant summarizing all other unobservables that might count,
such as the need for private space, the positive externalities of reducing greenhouse gas emission
via sharing a trip. a1, a2, a3 and b are nonpositive weights which depend on the passenger pref-
erence regarding the transportation option. If the resulting utility is denoted as U ` perceived for
the SMoDS, with U j ∈ R, j ∈ {1, · · · , N} corresponding to the perceived utility of all N ∈ Z>0

available transportation options to choose from, the probability of accepting the SMoDS offer can
be determined using discrete choice model [10] as

p` =
eU

`∑N
j=1 e

Uj
, ` ∈ {1, · · · , N} (2)

While (2) denotes the actual probability that the passenger will accept the SMoDS offer, from
the perspective of the SMoDS platform, it is desired to provide a service that generates the desired
collective performance for the platform. Let EWT(t−) and EWT(t+) denote the value of EWT(t)
immediately before timestamp t, and right after timestamp t if the new passenger takes the offer.
With this in mind, for the request received at tr, a desired probability of acceptance p∗ was chosen
to be a function of ∆EWT(tr

+) = EWT(tr
+)− EWT∗ such that ∆EWT(t) was regulated around

zero after tr in [5]. In general one can design p∗ as

p∗ = H
[
EWT(tr

−),EWT(tr
+)
∣∣EWT∗

]
(3)

with the mapping H(·, ·|·) designed such that the expected EWT(tr
+) after the decision of the

passenger approaches EWT∗. It was demonstrated in [5] that H(·, ·|·) can be chosen such that an
overall acceptance rate close to 80% can be realized along with managing to regulate EWT(t) around
EWT∗. This is comparable to the statistics of 60-70% reported in other ride sharing platforms [12].
We will therefore attempt to design the dynamic tariffs for the SMoDS to have the passenger’s
actual probability of acceptance defined in (2) towards the targeted value p∗.

3 Behavioral Model using CPT

An important feature in the SMoDS is the presence of uncertainty, as the vehicle has to accommo-
date new passengers at anytime in the route. As a result, the scheduled pickup and drop-off times
for a given passenger may stochastically vary over an interval (see Fig. 2), making the SMoDS an
uncertain prospect, i.e., a prospect with stochastic outcome, which leads to the usage of CPT. In
contrast, certain prospects are ones whose outcomes are always deterministic.

The key axioms of CPT state that when making decision under uncertainty, individuals normally
perceive the utility in a subjective and irrational fashion influenced by the following: [18, 21]

� Framing effect : Individuals value prospects with respect to a reference point instead of an
absolute value, and perceive gains and losses differently.

� Loss aversion: Individuals are affected much more by losses than gains.

� Diminishing sensitivity : In both gain and loss regimes, sensitivity diminishes when the
prospect gets farther from the reference. Therefore, the perceived value is concave in the
gain regime and convex for losses.

� Probability distortion: Individuals overweight small probability events and underweight large
probability events.

4



new passenger
accommodated 

pick up at      

drop off at      
pick up at           

drop off at           

Figure 2: Source of uncertainty in the SMoDS. tp and td denote the actual pickup and drop-off
time respectively, tp < tp and td < td denote the possibly earliest and latest timestamps.

A quantitative description of theses axioms is enabled by defining V (·) the value function and
π(·) the probability weighting function, both of which are illustrated in Fig. 3. The details of the
two functions are elaborated as follows.

objective utility 

perceived value

reference

Value Function     Probability Weighting Function     

Figure 3: Illustrations of V (·) and π(·) in the CPT framework.

We first define U as a random variable to denote the objective utility of an uncertain prospect,
and FU (u) as the corresponding Cumulative Distribution Function (CDF). If U takes on discrete
values ui ∈ R,∀i ∈ {1, . . . , n} and u1 < · · · < un, where n ∈ Z>0 is the number of possible
outcomes, one can determine the objective utility Uo as the expectation of U according to EUT
[22], i.e.,

Uo =
n∑
i=1

piui (4)

where pi ∈ (0, 1) is the probability of outcome ui, and
∑n

i=1 pi = 1. The subjective utility U sR
perceived by the passenger within the CPT framework is given by

U sR =
n∑
i=1

wiV (ui) (5)
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where R denotes the reference corresponding to the framing effect1, and wi denotes the weighting
that represents the subjective perception of pi. Suppose that k out of the n outcomes are losses,
0 ≤ k ≤ n, k ∈ Z≥0, and the rest are non-losses, i.e., ui < R if 1 ≤ i ≤ k and ui ≥ R if k < i ≤ n,
then

wi =

{
π
[
FU (ui)

]
− π

[
FU (ui−1)

]
, if i ∈ [1, k]

π
[
1− FU (ui−1)

]
− π

[
1− FU (ui)

]
, otherwise

(6)

where we let FU (u0) = 0 for ease of notation.
In what follows, we will adopt the representations for V (·) and π(·) as in [21] and [19], given by

V (u) =

{
(u−R)β

+

, if u ≥ R
−λ(R− u)β

−
, otherwise

(7)

π(p) = e−[−ln(p)]α (8)

It is clear that in contrast to Uo, U sR is centered on R, loss aversion is captured by choosing λ > 1,
and diminishing sensitivity by choosing 0 < β+, β− < 1. The probability distortion is quantified
by choosing 0 < α < 1. The extension from (5) to the continuous case of U sR is

U sR =

∫ R

−∞
V (u)

d

du

{
π
[
FU (u)

]}
du+

∫ ∞
R

V (u)
d

du

{
− π

[
1− FU (u)

]}
du (9)

4 CPT based Passenger Behavioral Model in SMoDS

The overall passenger behavioral model that we will derive in this section consists of a subjectively
perceived utility U sR and a subjective probability of acceptance psR, both of which will be determined
using CPT. The interpretation of risk attitudes, reference points, subjective weighting of probability
distributions, and key properties of CPT in the SMoDS context are the topics of Sections 4.1 through
4.5.

4.1 Objective and Subjective Utilities

The starting point of deriving U sR for the SMoDS is the determination of possible outcomes of
its objective utility. In order to accommodate the stochastic aspects of travel times, the possible
realization of the objective utility u in (1) is replaced by a random variable

U = X + bγ (10)

where bγ depends on the tariff from the SMoDS ride offer and is deterministic once the offer is
given, and

X = a1Twalk + a2Twait + a3Tride + c (11)

captures the uncertainty in travel times and is stochastic. Each term of the travel times is assumed
to lie within a known interval specified by the SMoDS offer, defined as Twalk ∈ [twalk, twalk], Twait ∈
[twait, twait], Tride ∈ [tride, tride]. From these bounds one can determine x and x, which correspond to
the worst and the best cases of the travel times, respectively, and X ∈ [x, x] with the CDF FX(x).
Note that FX(x) = FU (x+ bγ) from (10). With U defined in (10)-(11), the subjective utility U sR is
calculated via (5)-(11), and objective utility Uo as in (4). The dependence of U sR on R is described
in Section 4.3.

1The parametrization of R is marked explicitly in the subscript as the remaining discussions are heavily related
to the impact of reference points.

6



4.2 Interpretation of Risk Attitudes

As has been shown in (2), the evaluation of the probability of acceptance requires the utility of
the alternative transportation options available to the passenger. Without loss of generality, each
passenger is assumed to choose between two options, the SMoDS and another option such as public
transportation, UberX, which is considered as a certain prospect2 therefore with objective utility
being a constant Ao ∈ R. The objective probability of acceptance is given by

po =
eU

o

eUo + eAo
(12)

where Ao can be calculated using (1). The subjective probability of acceptance is given by

psR =
eU

s
R

eU
s
R + eA

s
R

(13)

where AsR denotes the subjective utility of the alternative perceived by the passenger, which can
be derived via (1), (5), and (7).

We now interpret the risk attitudes of passengers based on the above objective and subjective
probabilities of acceptance. Since the alternative is certain, a higher probability of acceptance
indicates an attitude that is more risk seeking. A passenger who is inclined to choose po is regarded
as rational. If psR > po, a passenger is said to be risk seeking compared with rational passengers,
and for any two references R1 and R2, if psR1

< psR2
, the passenger with reference R1 is said to be

more risk averse than the passenger with reference R2, and risk seeking if the inequality is reversed.

4.3 Reference Points

The central parameter related to CPT is R, and is discussed in this subsection. Three different
categories are considered:

(i) Static reference points: These correspond to any fixed quantities that are independent on the
SMoDS offer. Examples include the objective utility of the alternative, i.e., R = Ao, or the
utility of making the trip itself, independent of the transportation modes, to the passengers.

(ii) Dynamic reference points: Here R is dependent on the uncertain prospect itself. In the
SMoDS context, R can be chosen as R = x̃+bγ, where x̃ could be x, x,EfX (X), or any statis-
tics preferred by the passenger. All of these examples however still correspond to deterministic
references.

(iii) Stochastic reference points: Instead of the above two categories, it is possible for the reference
point itself to vary stochastically. However, little evidence has been found that supports the
usage of this case [7], and hence we do not consider it in the rest of the paper.

4.4 Subjective Weighting of Probability Distributions

In this subsection, we discuss the subjective perception of a probability distribution fX(x) by the
passenger. fX(x) denotes Probability Mass Function (PMF) if X is discrete, or Probability Density
Function (PDF) if X is continuous. In the current problem, fX(x) represents the passenger’s
prediction on how long the actual travel times will be within the given intervals offered by the

2The source of uncertainty such as unexpected traffic jams are small compared with that of the SMoDS, hence
assumed to be negligible.
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SMoDS server. Therefore fX(x) is objective and based upon the passenger’s prior experience and
assessments of demand at the time of request. In what follows, we address the subjective perception
of fX(x) in both discrete and continuous cases.

4.4.1 Continuous Distributions

In some cases, the underlying distribution can be a truncated Normal distribution of the form

fnX(x) =
1

Zn
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ [x, x] (14)

where µ = x+x
2 and σ = x − x denote the mean and standard deviation, respectively, and Zn =∫ x

x
1√

2πσ2
e−

(x−µ)2

2σ2 dx > 0 is defined for normalization.

In some other cases, a truncated exponential distribution may be valid. These are given by

fe,oX (x) =
1

Ze,o
λoe−λ

o(x−x), x ∈ [x, x] (15)

fe,pX (x) =
1

Ze,p
λpe−λ

p(x−x), x ∈ [x, x] (16)

where λo = λp = 1
x−x , and Ze,o =

∫ x
x λ

oe−λ
o(x−x)dx, Ze,p =

∫ x
x λ

pe−λ
p(x−x) > 0 are normaliza-

tion constants. (15) and (16) correspond to an optimistic and a pessimistic subcase, since the
corresponding mode is at x and x, respectively.

4.4.2 Discrete Distributions

A reasonable choice for this case is a truncated Poisson distribution of the form

fPX(x) =

{
1
ZP

(λP )
k
e−λ

P

k! , ifx = x− k x−xK
0, otherwise

(17)

where K ∈ Z>0 and k ∈ {0, . . . , K} denote the maximum and the actual number of possible delays,

respectively, λP > 0, and ZP =
∑K

k=0
(λP )

k
e−λ

P

k! > 0 is the normalization constant. The truncated
Poisson distribution reflects the number of possible delays due to accommodating new passengers
during the ride. Each additional delay is assumed to result in the same marginal increase in travel
times, hence the support of fPX(x) is (K + 1) disjoint points uniformly spaced in [x, x]. The values
of K and λP will be specified in Section 5.

With the objective probability distributions fX(x) defined in (14)-(17), and the reference R
specified, the subjective probability weighting can be derived using (6), and (8)-(9). In turn, U sR
and psR can be derived using (5), (9) and (13), which completely specify the behavioral model of
an SMoDS passenger.

4.5 Key Properties of CPT based Behavioral Model

With the subjective utilities, risk attitudes, reference points, and subjective weighting of probability
distributions delineated as above, we now derive four properties of the overall passenger behavioral
model.

The first two properties are related to static and dynamic references, and are stated in Property
4.1 and 4.2 below. These are helpful in determining the dynamic tariff γ that allows psR to reach
p∗, the desired probability of acceptance.
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Property 4.1. Given any static reference point R ∈ R, psR strictly decreases with γ.

Property 4.2. Given any dynamic reference point in the form of R = x̃ + bγ, x̃ ∈ R, psR strictly
decreases with γ.

Let Ū = EfU (U) and X̄ = EfX (X), the third and fourth property stated in Property 4.3 and
4.4 are related to U s

Ū
and ps

Ū
, respectively.

Property 4.3. Given any uncertain prospect, there exists a λ∗, such that ∀λ > λ∗, U s
Ū
< 0.

Property 4.4. For any uncertain prospect, given that λ is sufficiently large such that U s
Ū
< 0,

within the price range γ ∈ [γ, γ), where γ satisfies X̄+bγ = Ao, and γ satisfies
[
Ao − (X̄ + bγ)

]β+

−
U s
Ū

= Ao − (X̄ + bγ), ps
Ū
< po.

5 Implications of CPT using Computational Experiments

In this section, three different implications are drawn using computational experiments in order to
illustrate subjective decision making of passengers, and how they can be utilized to develop the
dynamic pricing strategy for the SMoDS.

5.1 Determination of Parameters

The discussions in Sections 2 through 4 show that a number of parameters related to the CPT
framework have to be determined. These include α, β+, β−, λ defined in V (·) and π(·), a1, a2, a3, b, c
utility coefficients defined in (1), twalk, twait, tride travel times of both the SMoDS and the alternative,
and the tariff of the alternative.

Table 1. Numerical values of parameters used in computation experiments in Section V. 

CPT 
parameters 

𝛼 𝛽+ 𝛽− 𝜆 

0.895 0.88 0.88 2.25 

Utility 
coefficients 

  𝑎1, 𝑎2, 𝑎3  [min−1] 𝑏 [$−1] 𝑐 

SMoDS [−0.06, −0.04, −0.08] −0.18 −1.70 

UberX [−0.20, −0.10, −0.09] −0.14 −1.30 

Travel 
attributes 

 𝑡walk  [min]  𝑡wait  [min] 𝑡ride  [min] 𝛾 [$]  

SMoDS 5.81 [4.96, 4.96 + 4] [15.21, 15.21 + 4] - 

UberX 0 4 10 14.79 

 

Table 1 summarizes the values of the parameters that we used in order to carry out the studies
reported in this section. In particular, α was estimated from a recent survey study on passenger
preferences under risk regarding transportation options conducted in Singapore involving 1, 142
participants with various demographics [23], and β+, β−, λ are from [21]. In what follows, UberX is
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regarded as the alternative. The utility coefficients [a1, a2, a3, b, c] of both SMoDS and UberX were
estimated from the same survey study in [23]. A dynamic routing problem of sixteen passengers
using real request data from San Francisco was considered (see [5] for details), and the request
from the 6th passenger was used for the computational experiments in this section. The AltMin
algorithm developed in [13] was applied to derive the route and therefore the corresponding travel
times of the SMoDS. The constraints on the possible delay were set to be at most 4 minutes of
extra waiting and riding, respectively. For the same request, the travel times and price of UberX
was retrieved from [2].

Using the utility coefficients, travel times and price listed in Table 1, the objective utility of
UberX Ao = −5.17, and x = −3.47, x = −3.07 of the SMoDS are calculated, using (1) and (11).
Note that Ao, x, x are negative as they represent travel costs.

With the above numerical values in place, we explore the three implications: (i) fourfold pattern
of risk attitudes, (ii) strong aversion of mixed prospects, and (iii) self reference.

5.2 Fourfold Pattern of Risk Attitudes

The fourfold pattern of risk attitudes is regarded as “the most distinctive implication of prospect
theory” by Tversky and Kahneman [21], which states that when facing an uncertain prospect, the
risk attitudes of individuals can be grouped into four categories:

(a) Risk averse over high probability gains.

(b) Risk seeking over high probability losses.

(c) Risk seeking over low probability gains.

(d) Risk averse over low probability losses.

These risk attitudes are often used to justify subjective decision making of individuals for problems
such as settlements of civil lawsuits, desperate treatments of terminal illnesses, playing lotteries,
and getting insurance coverage.

We now illustrate the fourfold pattern in the SMoDS context using the following scenario,
which corresponds to the classic setup for the analysis of the fourfold pattern [21]: Individuals
decide between two options, a certain prospect and an uncertain prospect with two outcomes. The
uncertain prospect is the SMoDS, which we assume obeys a truncated Poisson distribution with
K = 1, i.e., the passenger is subject to at most one delay. Therefore, the two possible outcomes of
the SMoDS are (x + bγ) and (x + bγ). The corresponding probabilities can be determined using
(17) as

fPX(x) =
λP

λP + 1
, fPX(x) =

1

λP + 1
(18)

The four scenarios above are realized through suitable choices of R and λP as follows. A dynamic
reference point R is chosen to be either (x + bγ) or (x + bγ), the SMoDS is a gain if R = x + bγ
and a loss if R = x + bγ. The SMoDS is considered high probability or low probability when
the outcome that is not regarded as the reference can be realized with a probability of pNR or
(1− pNR) respectively, where pNR is close to 1. In the computational experiments presented in Fig.
4, pNR = 0.95. Moreover, the range of the tariff is chosen as follows{

x+ bγ < Ao if R = x+ bγ

x+ bγ > Ao if R = x+ bγ
(19)

10



such that the objective utility of the certain prospect, Ao, lies in the same gain or loss regime as
the SMoDS and therefore represents a reasonable alternative to the SMoDS.

With the uncertain and the certain prospect defined in the SMoDS context above, we illustrate
the fourfold pattern in Fig. 4 using four quadrants. According to the fourfold pattern (a)-(d), the
diagonal quadrants should correspond to risk averse behavior while the off-diagonal ones are risk
seeking. In each quadrant, we plot a metric defined as RA = (Uo−Ao)− (U sR−AsR) with respect to
the tariff γ. This metric captures the Relative Attractiveness that the uncertain prospect has over
the certain prospect for rational individuals versus individuals modeled with CPT. This follows
since according to (12) and (13), RA > 0⇒ po > psR. In Fig. 4, we note that RA > 0 corresponds
to all regions where the blue curve is above zero and indicates risk averse attitudes, as rational
individuals have higher probability to accept the uncertain prospect than irrational ones. Similarly,
RA < 0 corresponds to the blue line being below zero and denotes risk seeking attitudes. In each
quadrant, two subplots are provided, where the subplot on the right corresponds to a specific set
of parameters β+ = β− = λ = 1 which completely removes the role of V (·), while the subplot
on the left corresponds to all CPT parameters chosen as in Table 1, and therefore a general CPT
model. And as explained before, each quadrant corresponds to a specific choice of R and λP , which
together determine if an outcome is a gain or loss, and is high or low probability.

High Probability Low Probability
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Figure 4: Illustration of the fourfold pattern of risk attitudes in the SMoDS context.

The most important observation from Fig. 4 comes from the differences between the left and
right subplots in each of the four quadrants. For example, from Fig. 4(a), all risk attitudes in the
right subplot correspond to RA > 0 and therefore risk averse, while those on the left are only risk
averse for a certain price range. That is, the four fold pattern is violated in the left subplot. The
same trend is exhibited in all four quadrants. This is because, the fourfold pattern is due to the
interplay between π(·) and V (·) and is valid only when the magnitude of π(·) is sufficiently large
relative to that of V (·), such that probability distortion dominates [16]. This corresponds to the
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right subplots3 as well as the left subplots within certain price ranges.
The implication that we obtain from the analysis of the fourfold pattern of risk attitudes is

that the resulting four categories can suitably inform the dynamic pricing strategy in the SMoDS,
through the left subplots. That is, it allows a quantification of two qualitative statements (1) the
presence of risk seeking passengers gives flexibility in increasing tariffs, and (2) the presence of risk
averse passengers requires additional constraints on tariffs.

5.3 Strong Risk Aversion over Mixed Prospects

The other implication of the CPT framework is strong risk aversion over mixed prospects. A mixed
prospect is defined as an uncertain prospect whose portfolio of possible outcomes involves both
gains and losses [18, 3]. Clearly, the uncertain prospect is always mixed when R corresponds to its
expectation. The strong risk aversion of mixed prospects stems from loss aversion, as the impact
of the loss component often dominates its gain counterpart. This implication will be illustrated
below in the SMoDS context using two different interpretations.

The first interpretation follows from Property 4.3, which essentially states that when R = Ū ,
the subjective utility is strictly negative for a sufficiently large λ. Therefore, with R = Ū and
such a λ, the uncertain prospect is subjectively perceived as a strict loss. This has been verified
numerically using the distributions stated in Section. 4.4 with λ∗ = 2.25 as chosen in Table 1.
Since the objective utility relative to the expectation is neutral, hence strong aversion is exhibited.

The second interpretation follows from Property 4.4, which essentially states that when Property
4.3 holds, within the tariff range [λ, λ), the uncertain prospect is less likely to be accepted by the
CPT inclined passengers compared with the rational ones, as ps

Ū
< po.

Figure 5: Comparison of ps
Ū

and po. For fair comparison, the tariff range of γ ≥ Ao−X̄
b is plotted,

where the alternative is non-loss.

Fig. 5 illustrates Property 4.4 with fX(x) obeying a Normal distribution. With the numerical
values in Table 1, we can compute γ ≈ $11 and γ ≈ $20. It is clear from the left subplot that within
this price range, passengers exhibit strong risk aversion over the SMoDS, as the orange curve is
strictly above the blue one. It is interesting to note that when β+ = 1, which corresponds to the
case when passengers are risk neutral in the gain regime, γ →∞ (see Fig. 5(b)).

3The subplot on the right in each quadrant corresponds to the case where individuals are risk neutral in the gain
or loss regimes separately, and loss neutral, then π(·) alone is sufficient to generate the fourfold pattern.
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The implication regarding strong risk aversion over mixed prospects is as follows: As the SMoDS
has significant uncertainty, for passengers who regard the expected service quality as the reference,
and when the alternative is relatively a non-loss prospect, strong risk aversion is exhibited. Hence
the SMoDS is strictly less attractive to these passengers when compared to rational ones. Therefore,
the dynamic tariffs may need to be suitably designed by the SMoDS server so as to compensate for
these perceived losses. Rebates and subsidies may be a few typical examples.

5.4 Self Reference

In this section, we compare ps
Ū

with psAo . The four different distributions defined in (14)-(17) are
all considered. In each case, how these two probabilities vary with the tariff γ were evaluated. The
results are shown in Fig. 6.

Tariff 𝛾 [$]

P
ro

b
ab

il
it

y
 o

f 
A

cc
ep

ta
n

ce

Normal Exponential - Optimistic Exponential - Pessimistic Poisson

Figure 6: Comparison of ps
Ū

with psAo using four different fX(x) in Section 4.4. In the truncated

Poisson distribution, the parameters are set as λP = 4 and K = 5.

Fig. 6 illustrates that for all four distributions, ps
Ū
≥ psAo ,∀γ, which implies that the SMoDS is

always more attractive when the reference is the expectation of itself, rather than the alternative.
ps
Ū

= psAo when γ = Ao−X̄
b therefore Ū = Ao hence the two reference points coincide.

The following summarizes the third implication inferred from Fig. 6: Ū is essentially the rational
counterpart of the uncertain prospect. Therefore, it could be argued that, when deciding between
two prospects, the chance to accept one prospect is always higher if this prospect itself is regarded
as the reference, compared with the case where the alternative is considered as the reference. This
is due to loss aversion, i.e., λ > 1, and can be explained thus: When one prospect is regarded as
the reference, by definition, it would never be perceived as a loss and therefore not experience the
magnified perception out of losses, whereas the alternative may be subject to being regarded as a
loss and therefore can experience this skewed perception. In contrast, if the alternative is chosen as
the reference, the roles are reversed4. Moreover, the statement is in fact intuitive as those passengers
who regard the expectation as the reference have in some sense already subscribed to the SMoDS,
hence are naturally inclined to exhibit a higher probability of acceptance and therefore have higher
willingness to pay. This partially explains the reason why converting customers from competitors is
typically more difficult than maintaining the current customer base. The last observation from Fig.
6 is the invariance of the comparison with the underlying probability distributions, which implies
that the above implication on self reference are fairly general.

4Other effects of CPT due to α, β+, β− < 1 may result in complicated nonlinearities which might alleviate loss
aversion. Therefore, this statement is valid when λ is sufficiently large, such that loss aversion dominates, which is
the case with the CPT parameters listed in Table 1.
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5.5 Dynamic Tariff Design

With the above analytical properties of CPT based passenger behavioral model, we propose the
following algorithm for determining the dynamic tariff. As mentioned at the beginning of Section
2, the goal is for the actual probability of acceptance psR to reach the desired value p∗. We note
from (12) that psR is a function of U sR and AsR, which in turn is a function of U following (5)
through (9). Finally, (10) shows that U is a function of γ. By combining these equations, we can
derive the relationship between psR and γ as psR = f(γ). According to Property 4.1 and 4.2), f(·)
is strictly monotonic. This in turn implies that the desired dynamic tariff that leads to p∗ is given
by γ = f−1(p∗).

5.6 Other Remarks

In this entire section, the survey data collected from passengers in Singapore [23] has been used for
the utility coefficients in Table 1. The generality of the above observations and implications can
be quantified using the parameter Value of Time (VOT), which equates to a2

b . In the Singapore
survey, VOT = 0.22 and 0.77 [$/min] for the SMoDS and UberX respectively, and VOT = 0.40
[$/min] for business travelers in the US [20], both of which are of the same order of magnitude.
This implies that the construction of our synthetic data that combines two different sources, one
from Singapore and one from the US, is a reasonable excise.

Another point worth noting is that we have examined the CPT based passenger behavioral
model depends on relative pricing rather than the absolute values. Such an examination helps in
applying the CPT framework we have proposed and the corresponding observations and implica-
tions obtained in this paper in a broader set of problems in the SMoDS.

6 Concluding Remarks

In this paper, we have proposed a dynamic pricing strategy for a SMoDS using Cumulative Prospect
Theory, and builds on our previous work in [13] and [5]. The proposed dynamic pricing strategy
together with dynamic routing via the AltMin algorithm [13], provide a complete solution to shared
mobility on demand that corresponds to an ideal combination of flexibility, convenience, and af-
fordability. The basic principles of CPT and the derivation of the passenger behavioral model
in the SMoDS context were described in detail. The three implications of CPT, including the
fourfold pattern of risk attitudes, strong risk aversion over mixed prospects, and self reference, on
the dynamic pricing strategy of the SMoDS were delineated via computational experiments. The
observations and implications obtained in this paper provide a quantitative framework to analyze
subjective decision making of passengers in the SMoDS context and can be generalized to a broader
set of socio-technical systems.

Future works will concentrate on the development of H(·, ·|·) which is able to achieve robust
regulations of EWT(t) round EWT∗, and the investigation of suitable EWT∗ scaling that result
in an optimal combination of revenue and ridership for the SMoDS platform. The integration of
dynamic pricing directly into dynamic routing, and the extension to the case where the server has
little information regarding fX(x) are topics for future investigation as well.
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Appendix: Proofs of Properties

Proof of Property 4.1. We prove by definition. ∀γ1, γ2 ∈ R, γ1 < γ2, and R ∈ R, we firstly compare
U sR(γ1) with U sR(γ2). ∀u(γ) such that u(γ1) = x+bγ1 < R or u(γ2) = x+bγ2 ≥ R, the contribution
to U sR(γ) strictly decrease since V [u(γ)] strictly decreases and the weighting remains the same.
∀u(γ) such that u(γ1) = x+ bγ1 ≥ R and u(γ2) = x+ bγ2 < R, the contribution to U sR(γ) strictly
decreases since V [u(γ)] turns from nonnegative to negative and the weighting is positive. Hence
U sR(γ1) > U sR(γ2), AsR(γ1) = AsR(γ2), therefore psR(γ1) > psR(γ2). Since γ1 and γ2 are arbitrarily
chosen, psR(γ) strictly decreases with γ. �

Proof of Property 4.2. We prove by definition. ∀γ1, γ2 ∈ R, γ1 < γ2, and R = x̃ + bγ, x̃ ∈ R,
according to (7), AsR(γ1) < AsR(γ2). To calculate U sR(γ), all possible outcomes u(γ) = x+ bγ shift
the same amount b|γ1 − γ2| as R does, hence the contributions to U sR(γ) remain the same as both
the weighing and V [u(γ)] remain the same, therefore U sR(γ1) = U sR(γ2), hence psR(γ1) > psR(γ2).
Since γ1 and γ2 are arbitrarily chosen, psR(γ) strictly deceases with γ. �

Proof of Property 4.3. We prove the case where U is discrete. According to (5)-(7), U s
Ū

(λ) =

−
[∑k

i=1wi(Ū − ui)
β−]

λ+
∑n

i=k+1wi(ui − Ū)
β+

. Since U is uncertain, −
{∑k

i=1wi(Ū − ui)
β−}

<

0, one could simply choose λ∗ =
∑n
i=k+1 wi(ui−Ū)

β+

∑k
i=1 wi(Ū−ui)

β− . The proof of the continuous case follows the

same procedure. �

Proof of Property 4.4. Denote ∆o = Ao− [X̄ + bγ] for ease of notation. We firstly prove that there

exists a unique γ, such that γ > γ and ∆oβ
+

− U s
Ū

= ∆o. Moreover, ∀γ ∈ [γ, γ), ∆oβ
+

− U s
Ū
> ∆o.

Since U s
Ū
< 0, and γ > γ, therefore ∆o > 1. Within the range ∆o ∈ (1,∞),

(
∆o −∆oβ

+)
strictly

increases, hence there exists a unique ∆o, therefore a unique γ, such that ∆oβ
+

− U s
Ū

= ∆o. In

addition, ∀γ ∈ [γ, γ), ∆oβ
+

− U s
Ū
> ∆o since ∆o − ∆oβ

+

strictly increases. Secondly, since ps
Ū

=

e
Us
Ū

e
Us
Ū+e

As
Ū

= 1

1+e
As
Ū

−Us
Ū

, and po = eU
o

eUo+eAo
= 1

1+eAo−Uo
, therefore ps

Ū
< po ⇐⇒ (As

Ū
−U s

Ū
) > Ao−Uo.

Since γ ≥ γ, and R = Ū , therefore As
Ū

= [Ao − Ū ]
β+

. Since U s
Ū
< 0, and Uo = Ū by definition,

hence (As
Ū
− U s

Ū
) > Ao − Uo ⇐⇒ [Ao − Ū ]

β+

− U s
Ū
> Ao − Ū . Since γ ∈ [γ, γ), the inequality

holds. �
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[7] Aurélien Baillon, Han Bleichrodt, and Vitalie Spinu. Searching for the reference point. Tech-
nical report, Working paper, 2017.

[8] Nicholas Barberis, Ming Huang, and Tano Santos. Prospect theory and asset prices. The
quarterly journal of economics, 116(1):1–53, 2001.

[9] Nicholas C Barberis. Thirty years of prospect theory in economics: A review and assessment.
Journal of Economic Perspectives, 27(1):173–96, 2013.

[10] Moshe E Ben-Akiva, Steven R Lerman, and Steven R Lerman. Discrete choice analysis: theory
and application to travel demand, volume 9. MIT press, 1985.

[11] ZJ Chong, Baoxing Qin, Tirthankar Bandyopadhyay, Tichakorn Wongpiromsarn, Brice Reb-
samen, P Dai, ES Rankin, and Marcelo H Ang. Autonomy for mobility on demand. In
Intelligent Autonomous Systems 12, pages 671–682. Springer, 2013.

[12] Peter Cohen, Robert Hahn, Jonathan Hall, Steven Levitt, and Robert Metcalfe. Using big
data to estimate consumer surplus: The case of uber. Technical report, National Bureau of
Economic Research, 2016.

[13] Yue Guan, Anuradha M. Annaswamy, and H. Eric Tseng. A dynamic routing framework for
shared mobility services. ACM Trans. Cyber-Phys. Syst., 4(1):6:1–6:28, November 2019.

[14] Jonathan Hall, Cory Kendrick, and Chris Nosko. The effects of uber’s surge pricing: A case
study. The University of Chicago Booth School of Business, 2015.

[15] Qi Han, Benedict Dellaert, W van Raaij, and Harry Timmermans. Integrating prospect theory
and stackelberg games to model strategic dyad behavior of information providers and trav-
elers: Theory and numerical simulations. Transportation Research Record: Journal of the
Transportation Research Board, (1926):181–188, 2005.

[16] William T Harbaugh, Kate Krause, and Lise Vesterlund. The fourfold pattern of risk attitudes
in choice and pricing tasks. The Economic Journal, 120(545):595–611, 2009.

[17] Ashish R Hota, Siddharth Garg, and Shreyas Sundaram. Fragility of the commons under
prospect-theoretic risk attitudes. Games and Economic Behavior, 98:135–164, 2016.

[18] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk.
In Handbook of the fundamentals of financial decision making: Part I, pages 99–127. World
Scientific, 2013.

[19] Drazen Prelec et al. The probability weighting function. ECONOMETRICA-EVANSTON
ILL-, 66:497–528, 1998.

[20] Peter Rogoff and Roberto Ayala. The value of travel time savings: Departmental guidance for
conducting economic evaluations. revision 2 (2014 update). Technical report, 2014.

16



[21] Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation
of uncertainty. Journal of Risk and uncertainty, 5(4):297–323, 1992.

[22] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior (com-
memorative edition). Princeton university press, 2007.

[23] Shenhao Wang and Jinhua Zhao. How risk preferences influence the usage of autonomous
vehicles. Technical report, 2018.

[24] Yunpeng Wang, Walid Saad, Narayan B Mandayam, and H Vincent Poor. Integrating energy
storage into the smart grid: A prospect theoretic approach. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7779–7783. IEEE,
2014.

[25] Liang Xiao, Dongjin Xu, Caixia Xie, Narayan B Mandayam, and H Vincent Poor. Cloud
storage defense against advanced persistent threats: A prospect theoretic study. IEEE Journal
on Selected Areas in Communications, 35(3):534–544, 2017.

[26] Hongli Xu, Yingyan Lou, Yafeng Yin, and Jing Zhou. A prospect-based user equilibrium model
with endogenous reference points and its application in congestion pricing. Transportation
Research Part B: Methodological, 45(2), 2011.

17


	1 Introduction
	2 Dynamic Routing and Dynamic Pricing
	2.1 Dynamic Routing via AltMin Algorithm
	2.2 Dynamic Pricing via Utility Theory

	3 Behavioral Model using CPT
	4 CPT based Passenger Behavioral Model in SMoDS
	4.1 Objective and Subjective Utilities
	4.2 Interpretation of Risk Attitudes
	4.3 Reference Points
	4.4 Subjective Weighting of Probability Distributions
	4.4.1 Continuous Distributions
	4.4.2 Discrete Distributions

	4.5 Key Properties of CPT based Behavioral Model

	5 Implications of CPT using Computational Experiments
	5.1 Determination of Parameters
	5.2 Fourfold Pattern of Risk Attitudes
	5.3 Strong Risk Aversion over Mixed Prospects
	5.4 Self Reference
	5.5 Dynamic Tariff Design
	5.6 Other Remarks

	6 Concluding Remarks

