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Stochastic Bregman Parallel Direction Method of Multipliers for

Distributed Optimization

Yue Yu and Behçet Açıkmeşe

Abstract— Bregman parallel direction method of multi-
pliers (BPDMM) efficiently solves distributed optimization
over a network, which arises in a wide spectrum of col-
laborative multi-agent learning applications. In this paper,
we generalize BPDMM to stochastic BPDMM, where each
iteration only solves local optimization on a randomly
selected subset of nodes rather than all the nodes in the
network. Such generalization reduce the need for compu-
tational resources and allows applications to larger scale
networks. We establish both the global convergence and
the O(1/T ) iteration complexity of stochastic BPDMM.
We demonstrate our results via numerical examples.

I. INTRODUCTION

Distributed optimization over a connected undirected

network G = (V , E) is defined as follows

minimize
x∈X |V|

∑

i∈V
fi(xi)

subject to xi = xj , ∀{i, j} ∈ E
(1)

where X ⊂ R
n is a closed convex set, XV is the

Cartesian product of |V| copies of X , each fi is a convex

function accessible by node i only. The global optimality

is achieved by local optimization on each node and

efficient communication between neighboring nodes.

In addition to classical applications such as formation

control [1], distributed tracking [2] and estimation [3],

[4], problem (1) also arises in collaborative learning sce-

narios [5], [6], where problem (1) represents distributed

learning from data collected by multiple agents.

There has been an increasing interest in applying

multiplier methods to solve problem (1) [7], [8], [9]. At

each iteration of such methods, every primal variable

is updated by optimizing a quadratic augmented La-

grangian; every dual variable is updated by numerically

integrating local disagreement. Recently, Bregman paral-

lel direction method of multipliers (PDMM) generalized

the quadratic augmentation in local optimization to

Bregman augmentation, which better exploits the struc-

ture of constraint set X , and hence leads to significant

improvement in convergence speed [10], [11].
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One challenge in implementing multiplier methods

for problem (1) is that a local optimization problem

needs to be solved on every node in parallel at each

iteration, which requires demanding computational re-

sources when applied to large scale networks. A popular

approach to address this challenge is stochastic multi-

plier methods [12], [13], [14], which combine multiplier

methods with the idea of stochastic block coordinate

descent [15], [16]. At each iteration, stochastic multiplier

methods only solve local optimization problems on,

rather than all the nodes, a randomly selected subset of

nodes. Such algorithms guarantee global convergence to

optimum in expectation via proper choice of algorithm

parameters. However, to our best knowledge, all existing

stochastic multiplier methods use quadratic augmenta-

tion. In other words, there is no stochastic extension to

Bregman augmentation based multiplier methods.

In this paper, we close this gap in the literature

by proposing stochastic BPDMM, which combines the

benefits of BPDMM and stochastic multiplier methods.

Compared with BPDMM [11], it only requires solving

local optimization on a randomly selected subset of

nodes, which allows application to larger scale networks;

compared with existing stochastic multiplier methods

[12], [13], [14], it extends quadratic augmented La-

grangian to Bregman augmented Lagrangian, which im-

proves the convergence speed by better exploiting con-

straints structure. We establish the global convergence

and O(1/T ) iteration complexity of stochastic BPDMM,

and demonstrate its effectiveness and efficiency via

numerical examples.

The rest of the paper is organized as follows. Sec-

tion II covers necessary background and reformulates

problem (1) with consensus constraints. Section III

develops the stochastic BPDMM, whose convergence

proof is established in Section IV. Section V presents

numerical examples and demonstrates the advantages

of stochastic BPDMM over prior work. Section VI

concludes and comments on future directions.
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II. PRELIMINARIES AND BACKGROUND

A. Notation

Let R (R+) denote the set of (nonnegative) real num-

bers, R
n (Rn

+) the set of n-dimensional (elementwise

nonnegative) vectors. Let ≥ (≤) denote elementwise

inequality when applied to vectors and matrices. Let

〈·, ·〉 denote the dot product. Let In ∈ R
n×n denote

the n-dimensional identity matrix, 1n ∈ R
n the n-

dimensional vector of all 1s. Given matrix A ∈ R
n×n,

let Aij denote its (i, j) entry; A⊤ denotes its transpose.

Let ⊗ denote the Kronecker product.

B. Subgradients

Let f : Rn → R be a convex function. Then g ∈ R
n

is a subgradient of f at u ∈ R
n if and only if for any

v ∈ R
n one has

f(v)− f(u) ≥ 〈g, v − u〉 . (2)

We denote ∂f(u) the set of subgradients of f at u.

An important case of subdifferential is the case of

indicator function of a non-empty convex set X defined

as δX (x) = 0 if x ∈ X and ∞ otherwise. We will use

the following results.

Lemma 1. [17, Theorem 27.4] Given a closed convex

set X ⊆ R
n and closed, convex, proper function f :

R
n → R, then u⋆ = argminu∈X f(u) if and only if

0 ∈ ∂(f + δX )(u⋆).

C. Mirror maps and Bregman divergence

Let D ⊆ R
n be a convex open set. We say that φ :

D → R is a mirror map [18, p.298] if it satisfies: 1)

φ is differentiable and strictly convex, 2) ∇φ takes all

possible values, and 3) ∇φ diverges on the boundary of

the closure of D, i.e., limu→∂D̄ ‖∇φ(u)‖ = ∞, where

‖·‖ is an arbitrary norm on R
n. The Bregman divergence

Bφ : D ×D → R+ is defined as [19, Sec. 2.1]

Bφ(u, v) = φ(u)− φ(v)− 〈∇φ(v), u − v〉 . (3)

Note that Bφ(u, v) ≥ 0 and Bφ(u, v) = 0 only if u = v.

Bφ also satisfy the following three-point identity,

〈∇φ(u)−∇φ(v), w − u〉

=Bφ(w, v) −Bφ(w, u)−Bφ(u, v).
(4)

D. Graphs and distibuted optimization

An undirected connected graph G = (V , E) contains a

vertex set V = {1, 2, . . . ,m} and an edge set E ⊆ V×V
such that (i, j) ∈ E if and only if (j, i) ∈ E for all

i, j ∈ V . Denote N (i) the set of neighbors of node i
such that j ∈ N (i) if (i, j) ∈ E .

Consider a symmetric stochastic matrix P ∈ R
|V|×|V|

defined on the graph G such that Pij > 0 implies that

j ∈ N (i). Such a matrix P can be constructed, for

example, by the graph Laplacian [1, Proposition 3.18].

If P is irreducible [20, Lem. 8.4.1], then 1 is a simple

eigenvalue of P with eigenvectors spanned by 1|V|.

Let G = (V , E) denote the underlying graph over

which problem (1) is defined. A common approach to

solve problem is to create local copies of the design

variable {x1, x2, . . . , x|V|} and impose the consensus

constraints: xi = xj for all (i, j) ∈ E [21], [22]. Many

different consensus constraints have been proposed [7],

[23], [24], [25]. In this paper, we consider consensus

constraints of the form:

(P ⊗ In)x = x, (5)

where x = [x⊤
1 , x

⊤
2 , . . . , x

⊤
|V|]

⊤, P is a symmetric,

stochastic and irreducible matrix defined on G. We will

focus on the following reformulation of problem (1),

minimize
x∈X |V|

∑

i∈V

fi(xi)

subject to (P ⊗ In)x = x.
(6)

III. STOCHASTIC BREGMAN PARALLEL DIRECTION

METHOD OF MULTIPLIERS

In this section, we first review BPDMM in Algo-

rithm 1, then combine it with the stochastic node update

in [13] and propose sBPDMM in Algorithm 2.

BPDMM [11] solves problem (6) with Algorithm 1,

which combines the idea of PDMM [8] and Bregman

augmented Lagrangian [10]. Each iteration of the algo-

rithm include the following steps:

(a) Mirror averaging Step (8a) computes a nodal mirror

average of neighboring nodes’ variables, and can be

further decomposed as follows:

∇Φ(zt) =(P ⊗ In)∇Φ(xt) (7a)

yt =argmin
y∈X |V|

BΦ(y, z
t) (7b)

where Φ(x) =
∑

i∈V φ(xi). Therefore this step

is equivalent to first apply ∇Φ to xt, then run an

average step, followed by (∇Φ)−1, and finally a

projection step. See Fig. 1 for an illustration.

(b) Local optimization Step (8b) optimizes a nodal

augmented Lagrangian. In particular, the Bregman

divergence term in the objective of (8b) augments

the nodal Lagrangian by penalizing the difference

from the nodal mirror average.

(c) Disagreement integration Step (9) is a discrete in-

tegration of the disagreement between neighboring

nodes. Such integration is equivalent to a spring dy-

namics among neighboring nodes and improves the
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Fig. 1. Mirror averaging

disturbance rejection performance of the algorithm.

See [26], [27] for a detailed discussion.

Both mirror averaging step (8a) and disagreement

integration step (9) have close-form update when the

constraint set X is structured, e.g., X is R
n or the

probability simplex [11]. On the other hand, the local

optimization step (8b) typically requires an iterative

algorithm itself, e.g., mirror descent method [28]. Hence

the main computational effort of implementing Algo-

rithm 1 is caused by the local optimization step (8b). At

each iteration, Algorithm 1 requires at least |V| proces-

sors, one assigned to each node, to solve optimization

(8b) in parallel. Such requirements are computationally

demanding for large scale networks.

Algorithm 1 BPDMM

Input: Parameters: τ, ρ > 0; initial point x0 ∈ (X ∩
D)|V|, µ0 ∈ R

|V|n.

for all t = 0, 1, 2, . . . do

yti = argmin
yi∈X

∑

j∈N (i)

PijBφ(yi, x
t
j), ∀i ∈ V (8a)

xt+1
i = argmin

xi∈X
fi(xi) + 〈xi, µ

t
i −

∑

j∈N (i)

Pijµ
t
j〉

+ ρBφ(xi, y
t
i), ∀i ∈ V

(8b)

µt+1
i = µt

i+τxt+1
i −τ

∑

j∈N (i)

Pijx
t+1
j , ∀i ∈ V (9)

end for

In order to address this challenge, we propose Al-

gorithm 2, which uses a stochastic node update [12],

[13], [14]. Compared with Algorithm 1, each iteration

of Algorithm 2 only execute local optimization step on

a set of randomly selected nodes, which requires less

number of processors running in parallel. This flexibility

reduce the requirements on the total computation power

of the network, and allows BPDMM to be applicable

much larger scale networks.

Algorithm 2 stochastic BPDMM

Input: Parameters: τ, ρ > 0; initial point x0 ∈ (X ∩
D)|V|, µ0 ∈ R

|V|n.

for all t = 0, 1, 2, . . . do

Randomly select a subset of nodes St+1 ⊂ V .

yti = argmin
yi∈X

∑

j∈N (i)

PijBφ(yi, x
t
j), ∀i ∈ St+1

(10a)

xt+1
i = argmin

xi∈X
fi(xi) + 〈xi, µ

t
i −

∑

j∈N (i)

Pijµ
t
j〉

+ ρBφ(xi, y
t
i), ∀i ∈ St+1

(10b)

xt+1
i = xt

i, ∀i ∈ V \ St+1 (10c)

µt+1
i = µt

i + τxt+1
i − τ

∑

j∈N (i)

Pijx
t+1
j , ∀i ∈ V

(11)

end for

Although the generalization from Algorithm 1 to

Algorithm 2 seems straightforward, the generalization

in the corresponding convergence proof requires more

careful treatment. In particular, the convergence proof

of Algorithm 1 in [11] hinges on a monotonically

non-increasing non-negative Lyapunov function for full

primal update in (8) with carefully chosen algorithm

parameters. In order to generalize such proof to Algo-

ritjm 2, we need to answer the following questions:

• How to find a monotonically non-increasing non-

negative Lyapunov function for stochastic partial

primal update in (10)?

• How does the randomly selected node set St+1

affect the choice of algorithm parameters?

In the sequel, we aim to answer theses questions and

establish the convergence proof of Algorithm 2.

IV. CONVERGENCE

In this section, we prove the global convergence as

well as the O(1/T ) iteration complexity of Algorithm 2.

All detailed proof in this section can be found in the

Appendix.

We first group our assumptions in Assumption 1.

Assumption 1. (a) Function fi : R
n → R∪{+∞} are

closed, proper and convex for all i ∈ V .



(b) Set X ⊂ R
n is closed and convex. There exists a

saddle point (x⋆, µ⋆) such that x⋆
i ∈ X and

∑

j∈V

Pijx
⋆
j = x⋆

i (12a)

−µ⋆
i +

∑

j∈V

Pijµ
⋆
j ∈ ∂(fi + δX )(x⋆

i ), (12b)

for all i ∈ V .

(c) Function φ : D → R is a mirror map, where D
is a open convex set such that X is included in its

closure. In addition, function φ is α-strongly convex

with respect to lp-norm, i.e., for any u, v ∈ X ,

Bφ(u, v) ≥
α

2
‖u− v‖2p . (13)

(d) Matrix P is symmetric, stochastic, irreducible and

positive semi-definite.

(e) At each iteration t + 1, we assume |St+1|/|V| =
ω, 0 < ω < 1.

Now we start to construct the convergence proof

of Algorithm 2 under Assumption 1. The optimality

condition of (10b) is that for all i ∈ St+1,

− µt
i +

∑

j∈V

Pijµ
t
j − ρ

(

∇φ(xt+1
i )−∇φ(yti)

)

∈ ∂(fi + δX )(xt+1
i )

(14)

Define the residuals of optimality conditions (14) at

iteration t as

R(t+ 1) := ω(L(xt, µ⋆)− L(x⋆, µ⋆))

+ ρ
∑

i∈St+1

Bφ(x
t+1
i , yti) +

γρ

2

∥

∥((I|V| − P )⊗ In)x
t
∥

∥

2

2
,

(15)

where γ > 0 and Lagrangian L(x, µ) is defined as

L(x, µ) =
∑

i∈V

(fi + δX )(xi) + 〈µ, ((I|V| − P )⊗ In)x〉.

(16)

Using (12) and (2) we can show the following

L(xt, µ⋆)− L(x⋆, µ⋆) ≥ 0 (17)

Hence L(xt, µ⋆) − L(x⋆, µ⋆) defines a running duality

gap that measures distance to optimality [8]. Notice

that given xt, R(t + 1) is a random variable only

depends on St+1 and ESt+1 [R(t+ 1)] = 0 implies that

L(xt, µ⋆) = L(x⋆, µ⋆) and xt
i = xt

j for all i, j ∈ V , i.e.,

both optimality and consensus are achieved.

In order to show ESt+1 [R(t+ 1)] = 0, we define the

following Lyapunov function of Algorithm 2

V (t) :=H(xt, µt) +
ω

2τ

∥

∥µ⋆ − µt−1
∥

∥

2

2

+ ρ
∑

i∈V

Bφ(x
⋆
i , x

t
i).

(18)

where

H(xt, µt) = L(xt, µt)− L(x⋆, µ⋆)− τ
∥

∥Q⊗ In)x
t
∥

∥

2

2
(19)

with Q = I|V|−P and µ−1 := µ0−τ((I|V|−P )⊗In)x
0.

Compared with the one used in [11], the Lyapunov

function V (t) defined by (18) contains a generalized

Lagrangian H(xt, µt), which renders the positive defi-

niteness of V (t) unclear. The following lemma shows

that V (t) is indeed positive definite, and lower bounded

by a Bregman divergence to the optimum.

Lemma 2. Suppose Assumption 1 holds, if

τ ≤
ρ (ωασ − γ)

2− ω
, 0 < γ < ωασ, (20)

where σ = min{1, n
2
p
−1}, p and α are defined in (13),

then the Lyapunov function defined in (18) satisfy

V (t) ≥
(1 − ω)ωασρ+ γρ

(2− ω)ωασ

∑

i∈V

Bφ(x
⋆
i , x

t
i). (21)

The sketch of the proof is as follows. Use equation

(12b) and (11) we can show

H(xt, µt) ≥ − ω
2τ

∥

∥µt−1 − µ⋆
∥

∥

2

2
− 1

2ωτ

∥

∥µt − µt−1
∥

∥

2

2
.

In addition, equation (11) and Assumption 1, particularly

assumptions on function φ and matrix P , ensures that

− 1
2ωτ

∥

∥µt − µt−1
∥

∥

2

2
+ τ

2ωσ

∑

i∈V Bφ(x
⋆
i , x

t
i) ≥ 0.

Substitute these two inequalities into (18), use (13) we

can show V (t) ≥ (ρ − τ
ωασ

)
∑

i∈V Bφ(x
⋆
i , x

t
i), which,

due to the assumption in (20), finally reduces to (21).

Then positive definiteness of V (t) follows from the

positive definiteness of Bregman divergence and the fact
(1−ω)ωασρ+γρ

(2−ω)ωασ
> 0 when 0 < ω < 1.

Notice that V (t) is a random variable whose value

depends on the realization of S1:t, which is the history of

selected node sets, i.e., {S1,S2, . . . ,St}. The following

theorem shows that the expected value of V (t) condi-

tioned on S1:t, i.e., ES1:t [V (t)] is monotonically non-

increasing with respect to t.

Theorem 1 (Global convergence). Suppose that As-

sumption 1 . Let the sequence {yt, xt, µt} be generated

by Algorithm 2. Let R(t+1) and V (t) be defined as in

(15) and (18), respectively. If ρ, τ, γ, ω satisfy (20), then

we have the following monotonicity relation

ES1:t [V (t)]− ES1:t+1 [V (t+ 1)] ≥ ES1:t+1 [R(t+ 1)] .



The sketch of the proof is as follows. We substitute

the subgradient in (14) into (2) and obtain an inequality.

Use three point property (4) we can split the right hand

side of this inequality into three parts, each contributes

to R(t+1), V (t) and V (t+1), respectively. Taking the

expectation over realization of St+1 conditioned on the

value of xt, we obtain the following relation

ESt+1 [R(t+ 1)] ≤ V (t)− ESt+1 [V (t+ 1)], (22)

where assumptions in Assumption 1 and (20) ensures

that all intermediate terms cancel each other. Taking the

expectation over the realization of S1:t on both sides of

(22), we reach the inequality in Theorem 1.

Summing the inequality in Theorem 1 from the case

of t = 0 to t = T − 1 we have

∑T
t=1ES1:t [R(t)] ≤ V (0). (23)

Since ES1:t [R(t)] ≥ 0 for all t, inequality (23) implies

that ES1:t [R(t)] → 0 as T → ∞, which establishes

the global convergence of Algorithm 2. In addition, if

we apply Jensen’s inequality to (23), we obtain the fol-

lowing corollary, which shows the the O(1/T ) iteration

complexity of Algorithm 2 in an ergodic sense.

Corollary 1 (Iteration complexity). Suppose that As-

sumption 1 holds. Let the sequence {yt, xt, µt} be

generated by Algorithm 2. Let V (t) be defined as in

(18), xT = 1
T

∑T−1
t=0 xt. If ρ, τ, γ, ω satisfy (20), then

ES1:T

[

L(xT , µ⋆)− L(x⋆, µ⋆)
]

≤
V (0)

ωT

ES1:T

[

1

2

∥

∥((I|V| − P )⊗ In)x
T
∥

∥

2

2

]

≤
V (0)

γρT

The bound on running duality gap was used in [8].

V. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness and

efficiency of Algorithm 2 via numerical examples.

Consider the an instance of problem (1) where

fi(xi) = 〈ci, xi〉 and X = {u ∈ R
n
+| ‖u‖1 = 1} is

the probability simplex, G = (V , E) is a undirected

connected communication graph. Such optimizaton can

model, for example, multi-agent decision making, where

ci is the cost of agent i for choosing policy xi.

We generate an instance of this optimization where

entries of c1, . . . , c|V| ∈ R
100 are sampled from standard

normal distribution. G is a randomly generated with

|V| = 100 and edge probability 0.2 [1, p. 90]. Matrix

P is obtained by minimizing its second largest eigen-

value (in this case, λ2(P ) = 0.4786) while preserving

graph adjacency constraints. We choose the following

parameters in Algorithm 2:

• φ(u) =
∑n

k=1 u[k] lnu[k], where u[k] denotes the

k-th element of vector u. Then assumption in (13)

is satisfied by α = 1, p = 1 (see Remark 1 in [10]).

• ρ = 1, τ = ω/(4− 2ω). Notice that assumptions in

(20) are satisfied with γ = ω/2.

With these assumptions, the mirror averaging step

(10a) and local optimization step (10b) reduces to the

following (see Section 4.3 in [18] for details)

yti =Proj
[

∏

j∈N (i)(x
t
j)

Pij

]

(24a)

xt
i =Proj

[

yti exp
−ci−µi+

∑
j∈N(i) Pijµj

ρ

]

(24b)

where multiplication, power and exponential operation

on vectors are all elementwise, and Proj[u] = u/ ‖u‖1
for all u ∈ R

n. Update (24) amounts to elementwise

operation that allows massive parallel implementation.

We demonstrate the convergence performance of Al-

gorithm 2 in Fig. 2 and Fig. 3, where f t and f⋆

are the objective function value achieved at iteration t
and, respectively, optimality. In particular, Fig. 2 shows

that as ω increases, the convergence of Algorithm 2

becomes faster and less oscillating, which is because

more nodes get updated at each iteration. Fig. 3 shows

that when we choose φ as negative entropy function

rather than quadratic function, the convergence speed is

improved dramatically. This is because compared with

quadratic function, negative entropy function exploits

the structure of probability simplex much better. Such

improvement demonstrates the advantage of Algorithm 2

over stochastic multiplier methods based on quadratic

augmentation [12], [13], [14].
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Fig. 2. Comparison of different ω values
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VI. CONCLUSIONS

In this paper, we generalize BPDMM [11] to stochas-

tic BPDMM, where each iteration only solves local op-

timization on a randomly selected subset of nodes rather

than all the nodes in the network. Such generalization

requires less number of processors running in parallel,

hence allows application to much larger scale networks.

Future directions include generalization to directed and

time varying networks.
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APPENDIX

For notation simplicity, we let Q := I|V|−P . Suppose

Assumption 1 holds, then the nullspace of I|V| − P is

spanned by 1|V| In addition, Assumption (1) and update

rule (10) ensure that

(Q⊗ In)x
⋆ =0 (25a)

δX (xt
i) = δX (x⋆

i ) =0, ∀i ∈ V (25b)

for all t. We will need the following lemmas.

Lemma 3. Let

yti = argmin
yi∈X

∑

j∈N (i)

PijBφ(yi, x
t
j), (26)

for all i ∈ V . Then for any u ∈ X ,

∑

i∈V

(

Bφ(u, x
t
i)−Bφ(u, y

t
i)
)

≥
∑

i,j∈V

PijBφ(y
t
i , x

t
j)

(27)

Proof. Equation (26) holds if and only if: for any u ∈ X ,
∑

j∈V

Pij〈∇φ(y
(t)
i )−∇φ(x

(t)
j ), u− y

(t)
i 〉 ≥ 0

Using three point property (4), we have
∑

j∈V

PijBφ(u, x
(t)
j )−

∑

j∈V

PijBφ(u, y
(t)
i )

≥
∑

j∈V

PijBφ(y
(t)
i , x

(t)
j )

(28)

Summing (28) over all i ∈ V completes the proof.

Lemma 4. Suppose Assumption 1 holds. Then

σ ‖(Q⊗ In)u‖
2
2 ≤

∑

i,j∈V

Pij ‖ui − vj‖
2
p (29)

for all u, v ∈ X |V|, where ‖·‖p denote lp norm and

σ = min{1, n
2
p
−1}.

Proof. First, observe that if P is symmetric, stochastic,

irreducible and positive semi-definite, P − P 2 is posi-

tive semi-definite [20, Theorem 8.4.4]. Since P1|V| =
P⊤

1|V| = 1|V|, we can show the following

∑

i,j∈V

Pij

∥

∥

∥

∥

∥

∑

k∈V

Pikuk − uj

∥

∥

∥

∥

∥

2

2

= ‖u‖22 − ‖(P ⊗ In)u‖
2
2

≥‖u‖22 − ‖(P ⊗ In)u‖
2
2 − 2〈u, ((P − P 2)⊗ In)u〉

= ‖(Q⊗ In)u‖
2
2

Hence (29) holds due to the fact that
∑

k∈V

Pikuk = argmin
w∈X

∑

j∈V

Pij ‖w − uj‖
2
2 ,

for all i ∈ V , and that ‖w‖22 ≤ 1/σ ‖w‖2p for all w ∈ R
n

where σ = min{1, n
2
p
−1}.

A. Lemma 2

Proof. Using (25a) and (16) we can show that

L(xt, µt)− L(x⋆, µ⋆)

=
∑

i∈V

(

(fi + δX )(xt
i)− (fi + δX )(x⋆

i )
)

+ 〈µt, (Q⊗ In)x
t〉

(12b)

≥ 〈µt − µ⋆, (Q ⊗ In)x
t〉
(30)

Substitute (30) into (19) we have

H(xt, µt)

≥〈µt − µ⋆, (Q⊗ In)x
t〉 − τ

∥

∥(Q⊗ In)x
t
∥

∥

2

2

(11)
=

1

τ
〈µt−1 − µ⋆, µt − µt−1〉

≥ −
ω

2τ

∥

∥µt−1 − µ⋆
∥

∥

2

2
−

1

2ωτ

∥

∥µt − µt−1
∥

∥

2

2

(31)

where the last step is due to 2〈a, b〉 ≥ −‖a‖22 − ‖b‖22.

Therefore, substitute (31) into (18) we have

V (t) ≥ρ
∑

i∈V

Bφ(x
⋆
i , x

t
i)−

1

2ωτ

∥

∥µt − µt−1
∥

∥

2

2

(13)

≥
(

ρ−
τ

ωασ

)

∑

i∈V

Bφ(x
⋆
i , x

t
i)

+
τ

2ωσ

∑

i∈V

∥

∥xt
i − x⋆

i

∥

∥

2

p
−

1

2ωτ

∥

∥µt − µt−1
∥

∥

2

2

(20)

≥
(1− ω)ωασρ+ γρ

(2 − ω)ωασ

∑

i∈V

Bφ(x
⋆
i , x

t
i)

+
τ

2ωσ

(

∑

i∈V

∥

∥xt
i − x⋆

i

∥

∥

2

p
−

σ

τ2

∥

∥µt − µt−1
∥

∥

2

2

)

(32)

Since x⋆
i = x⋆

j for all i, j ∈ V , we have

0
(29)

≤
∑

i,j∈V

Pij

∥

∥xt
i − x⋆

j

∥

∥

2

p
− σ

∥

∥(Q ⊗ In)x
t
∥

∥

2

2

=
∑

i,j∈V

Pij

∥

∥xt
i − x⋆

i

∥

∥

2

p
− σ

∥

∥(Q ⊗ In)x
t
∥

∥

2

2

(11)
=
∑

i∈V

∥

∥xt
i − x⋆

i

∥

∥

2

p
−

σ

τ2

∥

∥µt − µt−1
∥

∥

2

2

Substitute the above inequality into (32) we obtain (21).



B. Theorem 1

Proof. Let qi be the i-th column of Q. Since f + δX is

convex, the subgradient in (14) satisfy the following
∑

i∈St+1

fi(x
t+1
i )−

∑

i∈St+1

fi(x
⋆
i )

≤
∑

i∈St+1

〈−µt, (qi ⊗ In)(x
t+1
i − x⋆

i )〉

+ ρ
∑

i∈St+1

〈∇φ(xt+1
i )−∇φ(yti), x

⋆
i − xt+1

i 〉,

(33)

where we use (25b).

The first term on the RHS of (33) can be rewritten as
∑

i∈St+1

〈−µt, (qi ⊗ In)(x
t+1
i − x⋆

i )〉

(10c)
=

∑

i∈St+1

〈−µt, (qi ⊗ In)(x
t
i − x⋆

i )〉

+ 〈µt, (Q ⊗ In)x
t〉 − 〈µt, (Q⊗ In)x

t+1〉
(11)
= −

∑

i∈St+1

〈µt, (qi ⊗ In)(x
t
i − x⋆

i )〉+ 〈µt, (Q⊗ In)x
t〉

− 〈µt+1, (Q⊗ In)x
t+1〉+ τ

∥

∥(Q⊗ In)x
t+1
∥

∥

2

2
(34)

To simplify the second term on the RHS of (33), notice

that
∑

i∈St+1

〈∇φ(xt+1
i )−∇φ(yti), x

⋆
i − xt+1

i 〉

(4)
=

∑

i∈St+1

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t+1
i )−Bφ(x

t+1
i , yti)

)

(10c)
=

∑

i∈St+1

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i)
)

+
∑

i∈V

Bφ(x
⋆
i , x

t
i)

−
∑

i∈V

Bφ(x
⋆
i , x

t+1
i )−

∑

i∈St+1

Bφ(x
t+1
i , yti)

(35)

Substitute (34) and (35) into (33), we have
∑

i∈St+1

fi(x
t+1
i )−

∑

i∈St+1

fi(x
⋆
i )

≤−
∑

i∈St+1

〈µt, (qi ⊗ In)(x
t
i − x⋆

i )〉+ 〈µt, (Q ⊗ In)x
t〉

− 〈µt+1, (Q⊗ In)x
t+1〉+ τ

∥

∥(Q ⊗ In)x
t+1
∥

∥

2

2

+ ρ
∑

i∈St+1

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i)
)

+ ρ
∑

i∈V

Bφ(x
⋆
i , x

t
i)− ρ

∑

i∈V

Bφ(x
⋆
i , x

t+1
i )

− ρ
∑

i∈St+1

Bφ(x
t+1
i , yti)

(36)

In addition, notice that

∑

i∈St+1

(

fi(x
t
i)− fi(x

⋆
i )
) (10c)

=

∑

i∈St+1

(

fi(x
t+1
i )− fi(x

⋆
i )
)

+
∑

i∈V

(

fi(x
t
i)− fi(x

t+1
i )

)

(37)

Substitute (36) into (37), we have

∑

i∈St+1

(

fi(x
t
i)− fi(x

⋆
i )
)

≤H(xt, µt)−H(xt+1, µt+1) + τ
∥

∥(Q⊗ In)x
t
∥

∥

2

2

−
∑

i∈St+1

〈µt, (qi ⊗ In)(x
t
i − x⋆

i )〉

+ ρ
∑

i∈St+1

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i)
)

+ ρ
∑

i∈V

Bφ(x
⋆
i , x

t
i)− ρ

∑

i∈V

Bφ(x
⋆
i , x

t+1
i )

− ρ
∑

i∈St+1

Bφ(x
t+1
i , yti)

(38)

where we use the definition in (15).

Taking the expectation of (38) over St+1 conditioned

on xt, we have the following

ω
∑

i∈V

(

fi(x
t
i)− fi(x

⋆
i )
)

≤H(xt, µt)− ESt+1

[

H(xt+1, µt+1)
]

+ τ
∥

∥(Q⊗ In)x
t
∥

∥

2

2
− ω〈µt, (Q⊗ In)x

t〉

+ ρω
∑

i∈V

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i)
)

+ ρ
∑

i∈V

Bφ(x
⋆
i , x

t
i)− ρESt+1

[

∑

i∈V

Bφ(x
⋆
i , x

t+1
i )

]

− ρESt+1





∑

i∈St+1

Bφ(x
t+1
i , yti)





(39)

where we use (25a). Here we assume yti is computed

as in (8a) for all nodes in V , even though Algorithm 1

only require computation on nodes in St+1. Substitute

(25b) into (16) we have

∑

i∈V

(fi(x
t
i)− fi(x

⋆
i ))

=L(xt, µ⋆)− L(x⋆, µ⋆)− 〈µ⋆, (Q ⊗ In)x
t〉

(40)



Combine (39) and (40) we have

ESt+1 [R(t+ 1)]

≤H(xt, µt)− ESt+1

[

H(xt+1, µt+1)
]

− ω〈µt − µ⋆, (Q⊗ In)x
t〉

+ ρω
∑

i∈V

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i)
)

+ ρ
∑

i∈V

Bφ(x
⋆
i , x

t
i)− ρESt+1

[

∑

i∈V

Bφ(x
⋆
i , x

t+1
i )

]

+ (τ +
ργ

2
)
∥

∥(Q ⊗ In)x
t
∥

∥

2

2

(41)

Using (4) and (11) we can show

− 〈µt − µ⋆, (Q⊗ In)x
t〉 =

1

2τ

∥

∥µ⋆ − µt−1
∥

∥

2

2

−
1

2τ

∥

∥µ⋆ − µt
∥

∥

2

2
−

τ

2

∥

∥(Q ⊗ In)x
t
∥

∥

2

2

(42)

Substitue (42) into (41), use the definition in (18) we

have

ESt+1 [R(t+ 1)]

≤V (t)− ESt+1 [V (t+ 1)]

+ ρω
∑

i∈V

(

Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i)
)

+
(

τ +
ργ

2
−

ωτ

2

)

∥

∥(Q⊗ In)x
t
∥

∥

2

2

(43)

Since
∑

i∈V

(Bφ(x
⋆
i , y

t
i)−Bφ(x

⋆
i , x

t
i))

(27)

≤ −
∑

i,j∈V

PijBφ(y
t
i , x

t
j)

(13)

≤ −
α

2

∑

i,j∈V

Pij

∥

∥yti − xt
i

∥

∥

2

p

(29)

≤ −
ασ

2

∥

∥(Q⊗ In)x
t
∥

∥

2

2

(44)

Substitute (42) into (41) we have

ESt+1 [R(t+ 1)]

≤V (t)− ESt+1 [V (t+ 1)]

+
(2− ω)τ + ρ(γ − ωασ)

2

∥

∥(Q ⊗ In)x
t
∥

∥

2

2

(20)

≤ V (t)− ESt+1 [V (t+ 1)] .

(45)

Taking the expectation of (41) over realization of S1:t

we obtain the desired results.
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