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Abstract— This paper presents a robust hierarchical MPC
(H-MPC) for dynamic systems with slow states subject to
demand forecast uncertainty. The H-MPC has two layers: (i) the
scheduling MPC at the upper layer with a relatively long predic-
tion/planning horizon and slow update rate, and (ii) the piloting
MPC at the lower layer over a shorter prediction horizon with
a faster update rate. The scheduling layer MPC calculates the
optimal slow states, which will be tracked by the piloting MPC,
while enforcing the system constraints according to a long-range
and approximate prediction of the future demand/load, e.g.,
traction power demand for driving a vehicle. In this paper, to
enhance the H-MPC robustness against the long-term demand
forecast uncertainty, we propose to use the high-quality preview
information enabled by the connectivity technology over the
short horizon to modify the planned trajectories via a constraint
tightening approach at the scheduling layer. Simulation results
are presented for a simplified vehicle model to confirm the
effectiveness of the proposed robust H-MPC framework in
handling demand forecast uncertainty.

I. INTRODUCTION

For dynamic systems with multiple time scales, centralized
optimization could lead to non-uniform performance as a
centralized controller inherently assumes that all the system
outputs are equally reactive [1]. However, the outputs of such
dynamic systems tend to react and respond at different rates.
This is a common observation for dynamic systems with slow
and storage states, e.g., microgrids [2], vehicle [3]–[6] and
aircraft [7] thermal management systems.

One approach to address the aforementioned issue in
a centralized scheme is to select a relatively long pre-
diction horizon to ensure satisfactory performance of the
slow states. While this approach could fulfill the overall
performance requirements, it has several significant issues
for practical applications:

• Firstly, it will significantly increase the computational
complexity. For fast states, the computational complex-
ity is often not justifiable as the information downstream
of the horizon has minimal influence on the optimal
evolution of the fast state trajectories.

• Secondly, for most systems operating in a dynamic
environment, accurate prediction of the demand/load
profile over a long prediction horizon is not feasible. For
example, vehicle speed cannot be predicted accurately
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over a long prediction horizon based on vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) infor-
mation [4], [5].

The common approach exploited in the literature [6], [8], [9]
for systems with multi-timescales is the hierarchical control
with multiple layers. The hierarchical framework allows for
optimization over different planning horizons at each layer
based on the requirements of different system outputs. It
also helps to significantly reduce the computational cost
compared to its centralized counterpart [4], [6], [10].

Whether centralized or hierarchical, the uncertainty as-
sociated with the long-term prediction of the demand/load
is the common problem for systems with slow dynamics.
As the optimization often pushes the system to work at its
limit for best efficiency, it is important to be able to enforce
the constraints robustly in the presence of demand forecast
uncertainty. This is because for slow states, once the violation
of the constraint occurs, the controller has to put more efforts
to compensate for this violation, thereby reducing the overall
system efficiency. Unlike the most common techniques in the
literature on the robust design of hierarchical and distributed
MPC [6], [9], [11] which mainly focus on robustifying
the controller under the presence of external unknown dis-
turbances, the robustness to long horizon demand forecast
uncertainty has not been fully studied.

From a new perspective, in this paper, we consider the long
horizon demand forecast uncertainty challenge which plays
a critical role in planning and optimization of slow/storage
states with wide application in vehicle and aircraft ther-
mal management, building HVAC control, and power grid
optimization. To address this challenge, we exploit the H-
MPC optimization framework as the hierarchical architecture
provides a unique capability of using the demand forecast
with different accuracies over different prediction horizons.
Our proposed H-MPC has two layers as scheduling and
piloting layers. The scheduling layer at the top computes the
optimal control input at a slow update rate over a relatively
long prediction horizon. The output of the scheduling layer
is the optimal trajectories of the “slow” states of interest
according to an approximate prediction of the demand over
the long planning horizon. In the lower layer, piloting layer,
over a much shorter prediction horizon and using a faster
update rate, an MPC is designed to follow the scheduled
slow state trajectories coming from the upper layer while
fulfilling the overall system performance requirements.

It is envisioned that over a relatively short prediction
horizon, the demand/load profile can be accurately predicted.
As an example for connected and automated vehicles, the
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V2V/V2I communications can be used to predict the future
vehicle speed and the associated traction power demand over
a short time window accurately [12]. We propose to use
this short horizon accurate demand preview information to
predict the system state evolution over the prediction horizon
of the piloting layer MPC while tracking the planned tra-
jectory coming from the scheduling layer MPC. Computing
the evolution of the system state with a faster update rate
when the accurate demand preview is accessible allows for
detecting the constraint violation proactively over the short
prediction horizon. Particularly, we can predict the deviation
of the slow state from the planned trajectory and realize the
possibility of constraint violation over the short prediction
horizon. It is noted that, assuming a perfect model, the
deviation in the reference tracking and constraint violation
at the piloting layer are mainly attributed to the mismatch
between the actual demand and the approximate preview
incorporated for planning at the scheduling layer. Once these
deviations and possible constraint violation are predicted
over the shorter prediction horizon, the constraint set at the
scheduling layer is re-computed and tightened to make the
H-MPC prepared for the upcoming situation during which
the chances of constraint violation are high.

The main contribution of this paper is to develop a
robust H-MPC for a class of dynamic systems with slow
states subject to demand preview uncertainty. We propose to
utilize short and long-range demand preview information to
compute robust constraint set to enhance the conventional
H-MPC robustness against the demand preview uncertainty
while improving the overall system efficiency. The perfor-
mance of the proposed robust H-MPC is studied through
simulations for a vehicle thermal management case study.

II. HIERARCHICAL MPC FORMULATION

We consider the following discrete-time linear time-
invariant system,

xk+1 = Axk +B1ũk +B2ûk, (1)

where x = [x1, · · · , xn]ᵀ ∈ Rn, ũ ∈ Rm, and û ∈ Rh
are the system state, control input, and demand/load on the
system, respectively, and A ∈ Rn×n, B1 ∈ Rn×m, and B2 ∈
Rn×h. The integer k denotes the time step and the sampling
period of (1) is assumed to be T .

We further assume that different states of the system
(xix , ix = 1, · · · , n) respond at different rates. Depend-
ing on the relative time scales of different states, they
can be categorized into “fast” and “slow” states: x =
[(xfast)ᵀ, (xslow)ᵀ]ᵀ. Note that ũ contains the physical con-
trol inputs to the system that are optimized to regulate the
overall performance. On the other hand, û is the vector of
non-adjustable inputs to the system representing measured
external loads. Since û is a measured input to the system,
it affects the system states, and the knowledge about û
can be incorporated as a preview for optimization of ũ. In
automotive applications, traction power demand (Ptrac) for
driving a vehicle is an example of û.

The state and control input of the linear system in (1) are
constrained: x ∈ X , ũ ∈ U , where X = {xk|Pxxk ≤ qx}

and U = {ũk|Puũk ≤ qu} are polyhedral sets.

A. Single-Layer MPC (S-MPC) Formulation

For the system (1), we first consider a centralized single-
layer MPC (S-MPC) defined according to the following
finite-horizon optimization problem:

min
Ũk

N∑
j=0

`S-MPC(k + j|k),

s.t. x(k + j + 1|k) = Ax(k + j|k) +B1ũ(k + j|k)

+B2û(k + j|k),

x(k + j|k) ∈ X , ũ(k + j|k) ∈ U ,
x(k|k) = xk,

(2)

where `S-MPC is the S-MPC stage cost, Ũk =
[ũ(k|k)ᵀ, · · · , ũ(k + N − 1|k)ᵀ]ᵀ is the control input
sequence, and Ûk = [û(k|k)ᵀ, · · · , û(k + N − 1|k)ᵀ]ᵀ is
the sequence of the “predicted” demand preview. The cost
function `S-MPC is defined as [13]:

`S-MPC =
∥∥r(k + j|k)− rd(k + j)

∥∥2

Λ
(3)

where rk = Exk + F ũk, and rd ∈ Rnr represents the
desired operation of the system. When using the solution of
the optimization problem (2) to control the system (1), the
MPC feedback law defined by ũ(k|k) inherently assumes
that all the system outputs are equally reactive [1], however,
in the case considered here, the outputs of the system respond
over different time scales.

B. Hierarchical MPC (H-MPC) Formulation
The H-MPC considered in this paper has two layers [9]:
• scheduling layer at the top with an MPC that com-

putes the optimal control inputs and the “slow” state
trajectories at a slower update rate of Ts = νT , where
ν is a positive integer, over a relatively long prediction
horizon (Hs). An approximate prediction of the demand
sequence is incorporated at this layer.

• piloting layer with an MPC implemented over a much
shorter prediction horizon (Hp) and using a faster
update rate (T ) to track the planned trajectories of the
slow states from the scheduling layer. The piloting layer
MPC has access to a more accurate prediction of the
demand profile over Hp.

The scheduling layer MPC is based on the following finite-
horizon optimization problem:

min
Ũs

ks

Hs∑
j=0

`scheduling(ks + j|ks),

s.t. xs(ks + j + 1|ks) = Asxs(ks + j|ks)
+Bs1ũs(ks + j|ks) +Bs2ûs(ks + j|ks),
xs(ks + j|ks) ∈ X , ũs(ks + j|ks) ∈ U ,
xs(ks|ks) = xsks ,

(4)

where xs and Ũ s
ks

= [ũs(ks|ks)ᵀ, · · · , ũs(ks+Hs−1|ks)ᵀ]ᵀ

are the state vector and control input sequence updated at
the slower sampling time of Ts = νT , which is indexed by
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ks. The sequence of the approximate demand profile Û s
ks

=
[ûs(ks|ks)ᵀ, · · · , ûs(ks+Hs−1|ks)ᵀ]ᵀ is also incorporated
at the scheduling layer as the preview. The stage cost function
(`scheduling) of (4) is the same as the one considered in (3)
while it is updated every Ts second. The prediction model
in (4) is based on the down-sampled version of (1) with
slower sampling rate of Ts as follows:

As = (A)ν , Bs1 =

ν−1∑
j=0

(A)jB1, Bs2 =

ν−1∑
j=0

(A)jB2, (5)

Once the scheduling layer optimization problem is solved,
based on the computed control sequence U s

ks
, the sequence

of the scheduled slow states at the subsequent time steps
over the horizon of the piloting layer MPC (Hp) can be
calculated: ∗xslow(ks+1|ks), · · · , ∗xslow(ks+Hp|ks), where
∗xslow is the vector of scheduled slow states of interest. Note
that unlike the approach presented in [9], [13], the horizon
of the second layer, piloting layer (Hp), can be longer than
Hp > ν. In the next step, the sequence of ∗xslow is passed to
the piloting layer as a piecewise constant function to account
for the faster sampling rate of the lower layer controller (T ):

∗Xslow(k|ks) = [∗xslow(ks|ks)ᵀ, ∗xslow(k + 1|ks)ᵀ, · · · ,
∗xslow(k + ν − 1|ks)ᵀ, ∗xslow(ks + 1|ks)ᵀ, · · · ,

∗xslow(k + 2ν − 1|ks)ᵀ, · · · , ∗xslow(k +Hp − 1|ks)ᵀ]ᵀ

(6)

where ∗Xslow is the sequence of the scheduled slow states
to be tracked at the piloting layer. Note that the sequence of
∗Xslow between the slow updates are assumed to be constant,
e.g., ∗xslow(ks|ks) = ∗xslow(k + 1|ks) = · · · = ∗xslow(k +
ν − 1|ks). The piloting layer MPC is based on the solution
of the following optimal control problem:

min
Ũk

Hp∑
j=0

`piloting(k + j|k),

s.t. x(k + j + 1|k) = Ax(k + j|k) +B1ũ(k + j|k)

+B2û(k + j|k),

x(k + j|k) ∈ X , ũ(k + j|k) ∈ U ,
x(k|k) = xk.

(7)

where the stage cost `piloting is a combination of the original
cost in (3) and extra tracking terms to enforce the slow states
(xslow) to track the scheduled slow state trajectories (∗xslow)
presented in (6). Ũk = [ũ(k|k)ᵀ, · · · , ũ(k+Hp− 1|k)ᵀ]ᵀ is
the control input sequence of the piloting layer MPC. It is
assumed that the incorporated demand preview at the piloting
layer (Ûk = [û(k|k)ᵀ, · · · , û(k + Hp − 1|k)ᵀ]ᵀ) is more
accurate than the demand preview used at the scheduling
layer (Û s

ks
). When implementing the H-MPC, at the end

of each optimization iteration, ũ(k|k) is commanded to the
system and the horizon is shifted by one time step (T ).

III. ROBUST HIERARCHICAL MPC
An intuitive approach for improving the constraint sat-

isfaction at the piloting layer is to tighten the constraints
at the scheduling layer. If the constraint tightening is done

conservatively, the overall efficiency of the system may be
degraded. To avoid unnecessary conservatism, in this paper,
we propose to compute a robust constraint set (denoted by
X robust) at each time step k. With a faster update rate and
more accurate incorporated demand preview, the evolution of
the slow state trajectories over the short horizon of the pilot-
ing layer MPC can be predicted while tracking the planned
trajectories from the scheduling layer. This prediction of the
slow state evolution is then used to compute X robust via
estimating the deviation in tracking the planned slow state
trajectory and potential violation of the constraint over Hp.
This concept is shown in Fig. 1.

Fig. 1. Schematic of the constraint violation prediction to compute X robust.
At time step k, the scheduling layer MPC plans the slow state trajectories (b)
based on an approximate knowledge of the demand preview (a). The piloting
layer MPC is designed to not only regulate the fast states but track the
planned slow state trajectory while accessing the accurate demand preview at
a faster update rate. The evolution of the slow states over the short prediction
horizon is computed (d). If any deviation or constraint violation is predicted
over Hp, the scheduling layer constraint set is tightened proactively.

According to the accurate demand preview (Ûk =
[û(k|k)ᵀ, · · · , û(k + Hp − 1|k)ᵀ]ᵀ), the evolution of the
system states x over the piloting layer horizon Hp can be
predicted based on (1):
x(k + j + 1|k) = Ax(k + j|k)

+B1ũ
∗(k + j|k) +B2û(k + j|k) (8)

where j = 0, · · · , Hp−1 and ũ∗(k+j|k) is the vector of the
control inputs at k+ j computed based on the piloting layer
optimal control problem (7) solution at time step k. Based
on the state predictions (8), the constraint violation of the
slow states of interest can also be predicted at subsequent
time steps, which will be used to tighten the state constraint
set for the optimization problem at the scheduling layer. We
denote the tightened constraint set over the piloting layer
horizon at k + j + 1, j = 0, · · · , Hp − 1, by Xj , which is
computed as follows:
Xj = {x(k|k)| (9)

Pxx(k + j + 1|k) ≤ (qx − q̄x(k + j + 1|k))},

where qx = [q1
x, · · · , q

nq
x ]ᵀ ∈ Rnq represents the state

constraints, and is used in the definition of the original state
constraint set X = {xk|Pxxk ≤ qx}. Note that if we assume
qx represents the upper and lower bounds on each state and
each row of Px corresponds to one constraint, then non-
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zero elements of Px are either 1 (upper limit) or −1 (lower
limit). We then define q̄x(k+ j+1|k) in (9) as the vector of
predicted constraint violation at k+ j+ 1 based on the state
prediction made at k (8). If qiqx (iq = 1, · · · , nq) corresponds
to xix (ix = 1, · · · , n), then the ithq element of q̄x at k+j+1,
i.e., q̄iqx (k + j + 1|k), is calculated as follows:
q̄iqx (k + j + 1|k) = (10)

0 if xix is fast
0 if xix(k + j + 1|k) < q

iq
x & xix is slow

xix(k + j + 1|k)− qiqx
if xix(k + j + 1|k) ≥ qiqx & xix is slow

Note that since we are interested in the slow states constraint
enforcement, the elements of q̄x corresponding to fast states
are set to zero in (10).

Eventually and based on the computed Xjs in (9), the
robust constraint set (X robust) to be implemented at the next
time step k + 1 at the scheduling layer is computed as:

X robust = X ∩ X1 ∩ · · · ∩ Xk+Hp−1, (11)

based on which, the scheduling layer MPC of the robust H-
MPC is re-formulated as follows:

min
Ũs

ks

Hs∑
j=0

`scheduling(ks + j|ks),

s.t. xs(ks + j + 1|ks) = Asxs(ks + j|ks)
+Bs1ũs(ks + j|ks) +Bs2ûs(ks + j|ks),
xs(ks + j|ks) ∈ X robust,

ũs(ks + j|ks) ∈ U , xs(ks|ks) = xsks ,

(12)

Remark: Note that one can propose to tighten the constraint
whenever a violation of the constraint is detected at the
piloting layer at time step k. This event-triggered “passive”
constraint tightening approach can be incorporated in the H-
MPC at the scheduling layer (4) by replacing the original
constraint set X with X passive, which is computed as follows:

X passive = {x(k|k)|Pxx(k|k) ≤ (qx − q̄x(k|k))}, (13)

where q̄x(k|k) is the vector of measured (detected) constraint
violation at each time step k. While X passive is easy to
compute, it leads to marginal improvement in the H-MPC
robustness, see [4] for an example. This can be explained
with respect to the slow dynamic characteristics which call
for a long prediction horizon with enough lead time to ensure
an effective constraint enforcement. In other words, if the
H-MPC constraint set is tightened based on (13) after the
occurrence of the violation, compensating for the occurred
violation in the subsequent time steps may not be effective as
it takes extra effort from the controller, potentially reducing
the system efficiency.

IV. CASE STUDY: VEHICLE THERMAL MANAGEMENT

A simplified model of a vehicle is considered in this
section to demonstrate the effectiveness of the proposed
robust H-MPC. The main structure of the model is adopted
from [13] and a new state has been added to the model to

represent the slow state. The model has four states, including
the position of the vehicle (x1), vehicle speed (x2), on-
board stored energy (x3), e.g., battery state of charge, and
thermal index of the vehicle energy storage (x4), e.g., battery
temperature. Compared to the first three states, the fourth
state has a relatively slower dynamics. The control inputs
to the model are acceleration (ũ1), deceleration (ũ2), and
the power consumed for thermal management of the energy
storage (ũ3). The power to an external load (û) should also
be delivered by the energy storage. The power demand is
assumed to be non-adjustable, e.g., an auxiliary load on the
battery to fulfill a demand within the vehicle.

The simplified vehicle model has the following structure:

xk+1 =

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

xk (14)

+

 1 1 0
1 −1 0
−0.8 0.8 −0.15
1 1 −0.85

 ũk +

 0
0

−0.25
1

 ûk

where x = [x1, x2, x3, x4]ᵀ and ũ = [ũ1, ũ2, ũ3]ᵀ. The
controller design objective is to track a given desired po-
sition (xd1) while enforcing the state and input constraints.
Specifically, the thermal index of the energy storage (x4)
is preferred to be maintained below its upper optimum
operation limit xUL4 . It is noted that while the vehicle tracks
the reference position, the energy storage needs to deliver
power to satisfy the external load (û). Moreover, operating
the vehicle by adjusting ũ and responding to û consumes
the on-board vehicle energy. The operation of the vehicle is
required to be optimized such that the on-board energy lasts
until the end of the vehicle mission. The state and input
constraints are listed below:

[−1,−20, 0, 0]ᵀ ≤ xk ≤ [100, 20, 100, 30]ᵀ (15)
[−1,−1,−1]ᵀ ≤ ũk ≤ [1, 1, 1]ᵀ. (16)

In practice, the exact demand preview is assumed to
be unknown over the entire vehicle mission, however, an
approximate knowledge of the demand is available to the
vehicle. Moreover, we assume the vehicle is connected to a
server which can provide short-range and accurate demand
predictions to the vehicle. The actual and approximate pro-
files of the power demand as the load (û) on the on-board
energy storage are shown in Fig. 1-(a,c).

In order to evaluate the H-MPC performance for the
vehicle model (14), first a centralized single-layer MPC (S-
MPC) is designed. To this end, we consider an S-MPC
formulated over a finite-horizon (N ) with ũ1, ũ2, ũ3 being
the optimization variables according to (2). The stage cost
of S-MPC, `S-MPC, is defined as follows:

`S-MPC = λ1ũ
2
1 + λ2ũ

2
2 + λ3(x1 − xd1)2 (17)

where xd1 is the desired and known position trajectory. X
and U are the convex sets properly defined according to (15)
and (16), respectively. The S-MPC optimization problem is
solved at every time step, then the horizon is shifted by one
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step (T = 1 sec), and only the current control is commanded
to the system. The S-MPC simulation is carried out on a
desktop computer, with an Intel® Core i7@2.60 GHz pro-
cessor, in MATLAB®/SIMULINK® using YALMIP [14] for
formulating the optimization problem, and IPOPT [15] for
solving the optimization problem numerically. Additionally,
in order to ensure the feasibility of the S-MPC solution, slack
optimization variables are used to soften the constraints on
the position (x1) and thermal index (x4). In all simulated
cases, a very large weighting factor (e.g., 106) has been
considered for the slack variable term in the MPC stage cost
to ensure a comparable performance.

Fig. 2 shows the performing of the S-MPC with short
(N = 10 (10 sec)) and long (N = 100) prediction horizons.
Under the unrealistic assumption that the controller has the
exact knowledge of the demand profile shown in Fig. 1-(c),
Fig. 2-(a) shows that the S-MPC with long horizon tracks the
desired position accurately with no x1 constraint violation
while enforcing the constraint on the thermal index state x4.
When the shorter horizon is used, the S-MPC cannot mitigate
the violations of x4 constraint; thus, it compromises x1 track-
ing (Fig. 2-(b)) to avoid further increase in the thermal index.
The reason for this deviation in the S-MPC performance with
shorter prediction horizon is that the controller does not have
enough lead time to take proactive actions in response to the
external power demand early on. Moreover, compared to the
long horizon S-MPC, the short horizon controller consumes
more energy (Fig. 2-(c)).

Fig. 2. Performance of the S-MPC with different prediction horizon
lengths: (a) tracking the desired position trajectory, (b) thermal index, and
(c) on-board energy.

It was shown that extending the prediction horizon im-
proves S-MPC tracking and constraint satisfaction perfor-
mance. While this observation is not a surprise, as discussed
in Sec II, long horizon optimization for slow states is asso-
ciated with demand forecast uncertainty and computational
complexity. Fig. 2 also shows the S-MPC performance with
N = 100 when the incorporated preview is based on the
approximate knowledge of the demand profile (Fig. 1-(a)).
As can be seen, the uncertainty in the demand preview

significantly alters the long horizon S-MPC performance.
The desired position is not being tracked preferably and the
thermal index constraint violation occurs more often. Addi-
tionally, according to Fig. 2-(c), the S-MPC with the average
demand preview has the highest energy consumption.

To address the demand forecast uncertainty impact on the
S-MPC performance, a robust H-MPC is designed for the
vehicle model (14) according to the proposed framework in
Secs. II and III. The scheduling layer MPC is based on the
optimization problem formulated in (4) with the same stage
cost defined in (17), and with a slower update rate. The long
prediction horizon of the scheduling layer MPC is set to
Hs = 20 (100 sec). The sampling time of the scheduling
layer MPC is Ts = 5 sec, thus ν = 5. The robust constraint
set X robust is calculated according to the procedure (9)-(11)
proposed in Sec. III.

The scheduling layer MPC optimization problem is solved
according to the average demand preview shown in Fig. 1-(a).
This solution is used to calculate the optimal thermal index
trajectory (∗xslow

4 ). This scheduled ∗xslow
4 trajectory is then

incorporated in the stage cost of the piloting layer, which is
formulated according to (7) as a finite-horizon optimization
problem over a relatively shorter prediction horizon (Hp =
20 (20 sec)) and with a faster sampling period of Tp = T =
1 sec. Note that it is assumed the exact knowledge of the
demand preview is available to the piloting-layer MPC over
the receding horizon Hp = 20 (20 sec). The stage cost of
the piloting layer MPC (`piloting) is defined as:
`piloting = λ1ũ

2
1 + λ2ũ

2
2 + λ3(x1 − xd1)2 + λ4(x4 − ∗xslow

4 )2.
(18)

Since Ts > Tp, the scheduled ∗xslow
4 trajectory is passed

on as a piecewise constant function according to (6). Fig. 3
shows the comparison between the S-MPC and the baseline
H-MPC with X as the constraint set. The H-MPC, unlike the
S-MPC with average demand preview, manages to deliver
an acceptable x1 tracking performance (Fig. 3-(a)). Since
the robust constraint set X robust is not being incorporated
in the baseline H-MPC (4), often violation of thermal in-
dex state x4 is still observed in Fig. 3-(b). Additionally,
compared to the S-MPC with long prediction horizon and
average demand preview, the H-MPC shows less energy
consumption (Fig. 3-(c)) Overall, the H-MPC slightly relaxes
the accurate x1 tracking requirement by putting part of the
effort into tracking the scheduled ∗xslow

4 . However, due to the
uncertainty in the long-range demand forecast used at the
scheduling layer, x4 constraint enforcement is not achieved.
Note that operating the vehicles while the thermal index is
maintained close to the upper limit xUL4 is equivalent to less
energy consumption. Since the demand preview is uncertain,
steering x4 to xUL4 (e.g., 30oC) increases the chances of
constraint violation once the vehicle faces the actual power
demand.

Upon incorporation of X robust in (4), the robust H-MPC
(12) becomes able to take advantage of the short horizon and
more accurate demand preview over the piloting layer hori-
zon. As shown in Fig. 4, compared to the baseline H-MPC
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Fig. 3. Comparison between performances of S-MPC and H-MPC: (a)
tracking the desired position trajectory, (b) thermal index, and (c) on-board
energy (Hp = 20 sec, Hs = N = 100 sec).

(4) with X as the constraint set at the scheduling layer, the
robust H-MPC (12) with X robust shows significantly better x4

constraint enforcement under the uncertainty associated with
long horizon demand forecast. As shown in Fig. 4, the robust
H-MPC starts to tighten the xUL4 constraint early on to ensure
its enforcement during the period that the demanded load
on the battery is higher and any uncertainty in the demand
preview could lead to violation of the thermal index limit.

Fig. 4. Comparison between performances of H-MPC and robust H-MPC
in regulating the energy storage thermal index .

The performance of the robust H-MPC is also compared
with the H-MPC with X passive, which is computed accord-
ing to (13). Unlike X robust, in the passive approach X is
tightened whenever the violation of xUL4 is detected by
the piloting layer MPC. This means the scheduling layer
MPC is informed about the constraint violation only after
its occurrence, then it manages to update the scheduled
trajectories to reduce the chances of constraint violation in
subsequent time steps. Fig. 4 shows that compared to the
baseline H-MPC, the H-MPC with X passive can only slightly
decrease the x4 constraint violation. This can be explained
with respect to the slower dynamics of x4 which call for
a proactive constraint tightening algorithm to effectively

Fig. 5. Comparison between performances of H-MPC and robust H-MPC:
(a) tracking the desired position trajectory, and (b) on-board stored energy
(Hp = 20 sec, Hs = N = 100 sec)

improve the H-MPC robustness. This requirement has been
addressed by the proposed robust H-MPC framework in
this paper. Note that with baseline and passive H-MPCs,
enforcement of the original xUL4 constraint is infeasible. As
a results, the computed X and X passive shown in Fig. 4 are
based on the softened x4 constraint using slack variables.

The other interesting observation about the robust H-MPC
is its performance in tracking xd1 (Fig. 5-(a)) while enforcing
xUL4 constraint. Given the limited energy stored on-board
of the vehicle, the robust H-MPC slightly relaxes the x1

trajectory tracking objective (while it enforces x1 constraint)
during the period it puts more effort to mitigate xUL4 violation
by decreasing (cooling) the energy storage thermal index
from around t = 10 sec to t = 60 sec. After this time
period, since the robust H-MPC does not see any other major
external power demand over the long prediction horizon, it
increases the position tracking priority, see Fig. 5.

The energy consumption results of different studied H-
MPCs are shown in Fig. 5-(b). It can be seen that the robust
H-MPC has the lowest energy consumption, as compared
to the baseline and passive H-MPCs. This is an interesting
observation as it shows the robust H-MPC framework does
not necessarily lead to a conservative controller design which
is usually expected when designing a robust MPC under the
influence of unknown external disturbances. We recall that
for the specific class of dynamic systems with slow states
considered in this paper, steering the slow state to its limit
usually leads to lower energy consumption. The constraint
violation often occurs when the external power demand on
the energy storage is higher, meaning during the time periods
that the energy storage is required to deliver power for
operation of the vehicle, it also has to provide extra power
for regulating the thermal state. The robust H-MPC, on the
other hand, effectively shifts the thermal management load to
those periods during which the power demand is relatively
lower. Thanks to this intelligent thermal management load
shift by the robust H-MPC, not only less often thermal
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constraint violations are observed, but the overall efficiency
(fuel economy) of the vehicle is also higher, compared to the
baseline H-MPC.

V. SUMMARY AND CONCLUSIONS

The problem of robust hierarchical MPC (H-MPC) design
for constrained systems with multi-timescales and exposed to
external demands was considered in this paper. From a new
prospective, we proposed to use demand preview information
with different accuracies at different layers of an H-MPC
to proactively predict the (chances of) constraint violations
and compute a robust constrain set to enhance the overall
robustness of the H-MPC against the uncertainty associated
with long horizon demand forecast. The computation of the
robust constraint set is built upon the information that is
available at each layer of an H-MPC, but they are not often
being communicated between the layers. By leveraging this
information and accessing to demand preview information
with different accuracies, we showed that the robustness
of conventional H-MPC can be effectively improved. We
demonstrated the application of the proposed robust H-MPC
for a simplified vehicle thermal management case study.
The simulation results confirmed the effectiveness of the
proposed approach in regulating the thermal state of the
vehicle based on an uncertain knowledge of the demand
preview while improving the overall system efficiency, as
compared to a conventional H-MPC framework.

REFERENCES

[1] E.D.M. Medagoda and P.W. Gibbens. Multiple Horizon Model Pre-
dictive Flight Control. Journal of Guidance, Control, and Dynamics,
37(3):946–951, 2014.

[2] W.C. Clarke, C. Manzie, and M.J. Brear. Hierarchical Economic MPC
for Systems with Storage States. Automatica, 94:138–150, 2018.

[3] M.R. Amini, X. Gong, H. Wang, Y. Feng, I. Kolmanovsky, and J. Sun.
Sequential Optimization of Speed, Thermal Load, and Power Split in
Connected HEVs. In ACC, 2019. Philadelphia, PA, USA.

[4] M.R. Amini, I. Kolmanovsky, and J. Sun. Two-Layer Model Predictive
Battery Thermal and Energy Management Optimization for Connected
and Automated Electric Vehicles. In 57th IEEE CDC, 2018. Miami
Beach, FL, USA.

[5] M.R. Amini, H. Wang, X. Gong, D. Liao-McPherson, I. Kolmanovsky,
and J. Sun. Cabin and Battery Thermal Management of Connected and
Automated HEVs for Improved Energy Efficiency Using Hierarchical
Model Predictive Control. IEEE Transactions on Control Systems
Technology, 2019.

[6] J.P. Koeln and A.G. Alleyne. Robust Hierarchical Model Predictive
Control of Graph-Based Power Flow Systems. Automatica, 96:127–
133, 2018.

[7] J. Koeln, H. Pangborn, M. Williams, M. Kawamura, and A. Alleyne.
Hierarchical Control of Aircraft Electro-Thermal Systems. IEEE
Transactions on Control Systems Technology, 2019.

[8] D. Barcelliy, A. Bemporad, and G. Ripaccioliy. Hierarchical Multi-
Rate Control Design for Constrained Linear Systems. In 49th CDC,
2010. Atlanta, GA, USA.

[9] R. Scattolini and P. Colaneri. Hierarchical Model Predictive Control.
In 46th IEEE CDC, 2007. New Orleans, LA, USA.

[10] R. Scattolini. Architectures for Distributed and Hierarchical Model
Predictive Control–A Review. Process Control, 19(5):723–731, 2009.

[11] B. Picasso, D. De Vito, R. Scattolini, and P. Colaneri. An MPC
Approach to the Design of Two-Layer Hierarchical Control Systems.
Automatica, 46(5):823–831, 2010.

[12] Z. Yang, Y. Feng, X. Gong, D. Zhao, and J. Sun. Eco-trajectory
Planning with Consideration of Queue Along Congested Corridor for
Hybrid Electric Vehicles. In TRB, 2019. Washington, D.C., USA.

[13] J.P. Koeln and A.G. Alleyne. Two-Level Hierarchical Mission-Based
Model Predictive Control. In ACC, 2018. Milwaukee, WI, USA.

[14] J. Lofberg. YALMIP: A Toolbox for Modeling and Optimization in
MATLAB. In IEEE CACSD, 2004. New Orleans, LA, USA.
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