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Abstract— How can a system designer exploit system-level
knowledge to derive incentives to optimally influence social
behavior? The literature on network routing contains many
results studying the application of monetary tolls to influence
behavior and improve the efficiency of self-interested network
traffic routing. These results typically fall into two categories:
(1) optimal tolls which incentivize socially-optimal behavior for
a known realization of the network and population, or (2)
robust tolls which provably reduce congestion given uncertainty
regarding networks and user types, but may fail to optimize
routing in general. This paper advances the study of robust
influencing, mechanisms asking how a system designer can
optimally exploit additional information regarding the network
structure and user price sensitivities to design pricing mech-
anisms which influence behavior. We design optimal scaled
marginal-cost pricing mechanisms for a class of parallel-
network routing games and derive the tight performance
guarantees when the network structure and/or the average user
price-sensitivity is known. Our results demonstrate that from
the standpoint of the system operator, in general it is more
important to know the structure of the network than it is to
know distributional information regarding the user population.

I. INTRODUCTION

In systems whose performance is driven by social be-
havior, it is well known that the self-interested choices of
individuals can dramatically degrade system performance.
This inefficiency resulting from selfish behavior is commonly
characterized by the ratio between the worst-case social
welfare resulting from choices of self-interested users and
the optimal social welfare; this is typically referred to as the
price of anarchy [1] and has become a highly studied area
in resource allocation [2], [3], distributed control [4], and
transportation [5], [6]. A common line of research studies
how this inefficiency can be mitigated by using pricing
mechanisms and information systems which incentivize users
to make decisions more in line with the social optimum [7],
[8]. Naturally, an effective implementation of incentives is
heavily dependent on how the users respond to the incentives.

In this paper, we study the design of incentive mechanisms
to influence social behavior in a class of congestion games;
our particular focus here is on the relationship between a
designer’s ability to effectively influence selfish behavior and
the designer’s uncertainty regarding various system parame-
ters.
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Specifically, we consider a network routing problem in
which a unit mass of users need to be routed across a
network of two parallel edges with affine latency functions.
Finding a flow that minimizes the total latency in the system
is straightforward if the system designer has full control
over deciding the path of each user. However, a network
flow resulting from users’ self-interested decisions need
not be optimal [9]–[12]. Modeling the routing problem as
a non-atomic congestion game, we characterize this self-
interested behavior as a Nash flow; that is, a network flow
in which every user individually chooses the lowest-latency
path, given the choices of other users.

Financial incentives in the form of road tolls are a common
approach to mitigate the inefficiency due to selfish behavior;
these tolls modify users’ preferences, inducing new, more-
efficient Nash flows. In the case where the system designer
is fully aware of the network topology, population size,
and the users’ price-sensitivity, tolls can be designed that
influence users to self-route in a manner that minimizes total
latency [13]–[15]. Though these tolls can induce optimal
behavior, the required information can be difficult or impos-
sible to obtain, and lack robustness to uncertainty in various
system parameters [16].

Alternatively, in the case where the system designer is
unaware of the structure of the network or population size,
and knows only the possible support of user price-sensitivity,
there exist robust taxation mechanisms which improve the
efficiency for certain classes of networks. These tolls are
not guaranteed to induce perfectly optimal behavior, but
they bound the price of anarchy strictly below the nominal
un-influenced value of 4/3 [17]. The study of information
value in system design has been considered in areas such as
optimal control [18] and multi agent systems [19].

In this paper, we seek to bridge the gap between optimal
taxation mechanisms which require detailed information, and
robust tolls that require less information but fail to perfectly
optimize routing. In [17], the system designer is oblivious to
the network structure and knows only the possible support
of the distribution of user price-sensitivities; using only
this information, the designer selects optimal robust tolls to
minimize the price of anarchy. Our contributions augment
this information in three ways: one in which the designer
additionally knows the network structure, one in which the
designer additionally knows the average user-sensitivity, and
one in which both structure and average sensitivity are
known. For each information environment, we determine the
tolling scheme that uses all available information optimally,
and the resulting efficiency guarantees are compared to
previously-known results for robust tolls.
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In comparing the performance of these mechanisms, we
ask which piece of information is more valuable to the
system designer when used optimally: network structure or
users’ average price sensitivity. Intriguingly, the answer is
highly context-dependent. In some cases, we find that the
mean-sensitivity is highly informative and is thus a more
valuable piece of information than the network structure.
However, taken in worst-case, we find that the network
structure is more valuable than the mean.

II. MODEL AND PERFORMANCE METRICS

A. Routing Game

Consider a routing problem, in which a unit mass of traffic
must be directed through a parallel network from an origin
node to a destination node over a set of edges E. A feasible
flow over the network is an assignment of traffic to each edge
f = {fe}e∈E ∈ ∆(E) where fe ≥ 0 denotes the flow on an
edge e and ∆(E) denotes the standard probability simplex
over the set E; that is,

∑
e∈E fe = 1. To characterize transit

delay, each edge e ∈ E in the network has a latency function
of the form

`e(fe) = aefe + be. (1)

where ae ≥ 0 and be ≥ 0. The latency on an edge is thus
a non-decreasing, non-negative function of the flow on that
edge. The system cost of a flow f is characterized by the
total latency in the network, defined as

L(f) =
∑
e∈E

fe · `e(fe), (2)

and we denote the flow that minimizes this total latency as
fopt ∈ arg minf∈∆E L(f). We specify a particular network
by the tuple G = (E, {`e}e∈E).

This paper studies taxation mechanisms designed to in-
fluence the emergent collective behavior of self-interested,
price-sensitive users. We model this routing problem as a
congestion game where each edge e ∈ E is assigned a flow
dependent tolling function τe : [0, 1]→ R+. A user x ∈ [0, 1]
has a price-sensitivity s(x) > 0; this price-sensitivity is
subjective for each user and relates the user’s cost from
being tolled to their cost from experiencing delays and is
the reciprocal of the user’s value of time. We write e(x) to
denote the edge chosen by user x. The cost function for a
user x that is on an edge e(x) ∈ E can be expressed as

Jx(f) = `e(x)

(
fe(x)

)
+ s(x)τe(x)

(
fe(x)

)
. (3)

A flow f is a Nash flow if for every user x ∈ [0, 1]

Jx(f) ∈ arg min
e∈E

{`e (fe) + s(x)τe (fe)}. (4)

A game is therefore characterized by a network G, player
sensitivity distribution s : [0, 1] → R+, and a set of tolling
functions {τe}e∈E , denoted by the tuple (G, s, {τe}e∈E). It
is shown in [20] that a Nash flow will always exist in a
congestion game of this form.

B. Taxation Mechanisms & Performance Metrics

To understand the robustness of a tolling scheme, we
consider the performance over a class of networks and
users’ sensitivities. For a network, G, we identify the latency
functions which constitute the network by L(G); further, for
a family of networks G, let L(G) =

⋃
G∈G L(G) be the set

of all latency functions that compose the networks in G.
A taxation mechanism T maps latency functions `e to

tolling functions τe. For a family of networks G, this mapping
is denoted T : L(G) → T , where T is the set of all linear
tolling functions on [0, 1]. These tolling functions are termed
scaled marginal-cost tolls and as discussed in Section III, are
an important class of tolling functions which are optimal in
many contexts. For a class of games G, a taxation mechanism
assigns a tolling function to an edge by the latency function
on said edge, independently of what specific network in G
is realized. It is important to note that our formulation fits
that of the classic Pigouvian-taxes [10] given by

τe(f) = fe ·
d

dfe
`e(fe) = aefe, ∀ e ∈ E. (5)

To formalize the notion of uncertainty in users’ response
to a taxation mechanism, we consider families of sensitivity
distributions that can occur when the system designer is only
aware of the lower bound SL and upper bound SU on users
price sensitives. We define the set of possible sensitivity
distributions as S = {s : [0, 1] → [SL, SU]}. When the
average price sensitivity s of the users is introduced to the
system designer, the set of possible distributions becomes
S(s) = {s ∈ S|

∫ 1

0
s(x)dx = s}; it is clear that S(s) ⊂ S.

To evaluate the performance of a tolling mechanism, let
Lnf(G, s, T ) be the total latency on a network G, with
price sensitivity distribution s, in the Nash flow fnf when
tolls are assigned according to taxation mechanism1 T , and
let Lopt(G) be the minimum total latency which occurs
under the optimal flow fopt. The price of anarchy compares
the Nash flow on a network with the optimal flow; this
characterizes the inefficiency of the network and can be
defined as

PoA(G, s, T ) =
Lnf(G, s, T )

Lopt(G)
≥ 1. (6)

We extend this definition to include families of networks and
sensitivity distributions, i.e.,

PoA(G, S, T ) = sup
G∈G

sup
s∈S

{
Lnf(G, s, T )

Lopt(G)

}
, (7)

such that the price of anarchy is now the worst-case ineffi-
ciency over possible networks and sensitivity distributions2.
Note that the same taxation mechanism T is applied to any
realized network-sensitivity distribution pair.

1The taxation mechanism is a mapping from latency functions to
tolling functions. A game with taxation mechanism T is therefore denoted
(G, s, {T (`e)|`e ∈ G}). For brevity, we simply denote this as (G, s, T ).

2A trivial taxation mechanism of assigning zero tolling functions to each
edge (i.e., τe = 0 for all e ∈ E) will have a price of anarchy of 4/3 for
this class of networks [11].



Any sensitivity
distribution

S

mean-agnostic
S(s)
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G
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PoA∗ (G, S) ≈ 1.176
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PoA∗ (G, S) ≤ 1.09
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PoA∗ (G, S(s)) ≤ 1.0494
(D)

PoA (G,T ) = 1
[14]

Fig. 1. Price of anarchy bounds over different classes of games with optimal taxation mechanisms. Each class of games consists of parallel networks
with affine latency functions. Information available to the system designer is embedded in the class of games (e.g. the network-aware classes only contain
games with the same network). Smaller classes denote more certainty in the structure of the composing games, allowing for more effective toll design.
These numbers are generated for SL = 1 and SU = 10, and a worst case over networks and mean sensitivities.

C. Optimal Tolling & Our Contributions

When designing a taxation mechanism, the goal of the
system designer is to minimize worst-case inefficiency while
the network and/or users’ sensitivities are not known. Thus,
we define an optimal tolling mechanism as

T ∗ ∈ arg inf
T :L(G)→T

PoA(G, S, T ),

such that it is the scaled marginal-cost taxation mechanism
which minimizes the price of anarchy expressed in (7) for
a given family of networks G and sensitivity distributions S.
Further, we define the price of anarchy bound under an
optimal tolling mechanism as

PoA∗(G, S) , inf
T :L(G)→T

PoA(G, S, T ). (8)

In this paper, we consider networks with two parallel links
(the family of which we simply denote G), to demonstrate
the value of information to a system designer by compar-
ing the price of anarchy bounds when different amounts
of information are available. It is not currently known if
these bounds extend to richer classes of networks, but these
networks often display worst-case inefficiency over larger
classes of networks and allow us to analyze the benefit of
these partially informed tolls [21].

The information available to the system designer is en-
coded in these families of networks and sensitivity distribu-
tions. When the system designer is network-aware, the family
of networks for which the taxation mechanism is defined is
a singleton (i.e., the system designer knows the network).
Otherwise, we say the system designer is network-agnostic
when only a family of possible networks is known. We look
at the following four cases when the system designer is aware
of the network, mean sensitivity, both, or neither:
Network-agnostic & mean-agnostic: We first consider the
case that the system designer knows only the lower and upper
bound on user’s sensitivities. This was originally considered
in [17] for parallel routing problems under a utilization
constraint; here, we generalize this known result for networks
with no utilization constraint. The price of anarchy bound
under an optimal toll in this scenario is denoted

PoA∗(G, S) = inf
T :L(G)→T

PoA(G, S, T ), (9)

and a general expression is given in Theorem 1. A realization
of this is given in box (A) of Figure 1.

Network-agnostic & mean-aware: Second, we consider the
scenario in which the system designer knows the mean of
users’ sensitivities, as well as the lower and upper bound.
Here, the number of possible sensitivity distributions is
reduced, and the system designer will be able to make better
guarantees on worst-case inefficiency. The price of anarchy
bound under an optimal toll in this scenario is denoted

PoA∗(G, S(s)) = inf
T :L(G)→T

PoA(G, S(s), T ), (10)

and a general expression is given in Theorem 2. A realization
of this is given in box (B) of Figure 1.
Network-aware & mean-agnostic: Next, we consider when
the system designer again knows only the lower and upper
bound on users’ sensitivities, but is also aware of the net-
work structure. The system designer will be able to make
better guarantees on worst-case inefficiency when there is
no uncertainty in the network that was realized. The price of
anarchy under an optimal toll in this scenario is denoted

PoA∗(G, S) = inf
T :L(G)→T

PoA(G, S, T ), (11)

and a general expression is given in Theorem 3. A realization
of this is given in box (C) of Figure 1.
Network-aware & mean-aware: Finally, we consider the
case when the system designer knows the lower bound, upper
bound, and mean of users’ sensitivities and also knows the
network structure. Here, the system designer will be able to
guarantee the best performance of any of the scenarios we
consider. The price of anarchy bound under an optimal toll
in this scenario is denoted

PoA∗(G, S(s)) = inf
T :L(G)→T

PoA(G, S(s), T ), (12)

and a general expression is given in Theorem 4. A realization
of this is given in box (D) of Figure 1.

Though it is clear that a network-aware mechanism will
provide better guarantees than a similar network-agnostic
mechanism, and that a mean-aware mechanism will provide
better guarantees than a similar mean-agnostic mechanism, it
is not obvious what will provide a better gain in performance
when introduced to an uninformed system designer: network-
awareness or mean-awareness.

To bring clarity to the results of this paper, we plot the
price of anarchy bounds with respect to s for the case
SL = 1 and SU = 10 in Figure 2. As expected, the



Fig. 2. Price of anarchy with respect to the mean sensitivity. Each plot
represents a bound for one of the four introduced tolling mechanisms: (A)
network agnostic, mean agnostic toll, (B) network agnostic, mean aware toll,
(C) network aware, mean agnostic toll, and (D) network aware, mean aware
toll. Each is below the untolled price of anarchy of 4/3. Price sensitivity
bounds SL = 1 and SU = 10 are shown; changing these values has a
minimal effect on the relation between the lines.

addition of information provides better guarantees on worst-
case inefficiency. Notice when s = SL or s = SU, the
price of anarchy is 1 for the mean-aware tolls, i.e., the
toll is optimal for any network. When the mean of user
sensitivity is at one of the bounds, then the only feasible
distribution is each user sharing that sensitivity. When all
users share a common sensitivity, tolls can by applied to
induce optimal routing [22]. However, the network-aware,
mean-agnostic taxation mechanism performs better than the
network-agnostic, mean-aware for means that are far from SL

and SU. This implies that knowing the mean sensitivity of
users is not enough to guarantee better performance than
knowing the structure of the network.

III. MAIN RESULTS

For each scenario we consider, we give a theorem report-
ing the price of anarchy bound, as well as a proposition re-
porting the scaling factor of the optimal scaled marginal-cost
toll. Note that in this paper, we focus our search for optimal
tolls to a search for scaled marginal-cost tolls. These taxation
mechanisms can be defined by a single scaling factor k, and
will be denoted T (k). It is shown in Lemma 2.2 in [17]
that the search for an optimal bounded toll is equivalent to a
search for an optimal linear toll in the network-agnostic case.
The form of the optimal taxation mechanism in the network
aware case remains an open question.

A. Network-agnostic, mean-agnostic

We first look at the case where the system designer has the
least amount of information available to them, and formulate
a price of anarchy bound under a taxation mechanism that
is optimal in this scenario.

Theorem 1: When only SL and SU are known, the price
of anarchy under an optimal, scaled marginal-cost tolling
mechanism is

PoA∗ (G, S) =

(
q − 1 +

√
q2 + 14q + 1

)2

8q
(
−q − 1 +

√
q2 + 14q + 1

) , (13)

where q := SL/SU.

To find this upper bound, we find the optimal scaled
marginal-cost toll. We then use this toll to find the worst-
case game which maximizes the price of anarchy under this
toll.

Proposition 1: When only SL and SU are known, the
optimal network-agnostic marginal-cost toll scaling factor is

kagn =
−SL − SU +

√
S2

L + 14SLSU + S2
U

2SLSU
. (14)

Proof: The expression (14) can be shown to be a
solution to the equation

4

4 (1 + kagnSL)− (1 + kagnSL)
2 =

(1 + kagnSU)
2

4kagnSU
. (15)

It is shown in [23] that when SL < SU, (15) always has a
exactly one solution on the interval (1/SU, 1/SL), and that
solution is the desired optimal scale factor. We show here
that (14) describes this particular solution. Let p = SU/SL.
In this regime, p > 1, so we have

1 + 14p+ p2 > 1 + 14p+ p2 + 8(1− p) = (p+ 3)
2
.

Thus,

kagn >
−1− p+

√
(p+ 3)

2

2SU
=

1

SU
. (16)

Likewise, letting q = SL/SU (so that q < 1), we have

1 + 14q + q2 < 1 + 14q + q2 + 8(1− q) = (q + 3)2,

yielding

kagn <
−1− q +

√
(q + 3)

2

2SU
=

1

SL
. (17)

Proof of Theorem 1: Using the optimal scaling factor from
Proposition 1, expression (13) can be found by substitut-
ing (14) into (15). �

B. Network-agnostic, mean-aware

When the mean sensitivity of users in the population
is available to the system designer, the set of possible
distributions is reduced to the set S(s) ⊂ S. This additional
information allows the system designer to find a new optimal
taxation mechanism that improves the inefficiency bound.

Theorem 2: When SL, SU and the mean sensitivity s
are known, the price of anarchy under an optimal, scaled
marginal-cost toll is given by

PoA∗ (G, S(s)) =
R2 − αR+ α

α− α2/4
, (18)

where R := (SU − s)/(SU − SL), and α = (1 + SUk(s))R,
with k(s) being the solution to (26).

To find this bound, we perform a series of reductions in
the set of distributions and networks we need consider in our
search for one which realizes worst-case inefficiency. First,
we show that for each network there exist two sensitivity dis-
tributions which realize the price of anarchy over all possible



distributions. Then, we demonstrate a method to transform a
network to one that has one linear and one constant latency
function and higher price of anarchy. Finally, we prove the
optimal scaling factor for a scaled marginal-cost toll equates
the price of anarchy for two specific networks and show that
these realize the given price of anarchy bound.

We first give a list of supporting Lemmas, then use these
to complete the proof of the theorem.

We say users x, y have the same type if s(x) = s(y).
Further let a bimodal distribution be one in which there exist
exactly two user types; the set of such distributions is denoted
Sbi(s) ⊂ S(s). We denote a bimodal distribution with types
S1 and S2 by (S1, S2). Note that for a given s, S1 and
S2, the mass of users with each sensitivity is well defined.
Additionally, we adopt the convention used elsewhere that
the network links are indexed such that b1 ≤ b2.

Lemma 2.1: A Nash flow f for a sensitivity distribution
s ∈ S(s), under a scaled marginal cost tax T , is likewise a
Nash flow for some distribution s′ ∈ Sbi(s) in which one
type of user is indifferent between the two edges and all
users on each edge are of a single type. This implies the
price of anarchy over sensitivities in S(s) is equal to the
price of anarchy over bimodal distributions in Sbi(s), i.e.,

PoA(G, S(s), T ) = PoA(G, Sbi(s), T ). (19)

Proof: Let s1 ∈ S(s) be some distribution of users’
sensitivities, and let Sind be the sensitivity that has equal cost
between the two links in the Nash flow fnf , i.e., solution to

(1 + Sindk)a1f
nf
1 + b1 = (1 + Sindk)a2f

nf
2 + b2. (20)

Note that in the case where Sind > SU or Sind < SL, any
distribution s ∈ S will have the same Nash flow with all
users choosing the same edge. First, consider the case where
Sind < µ(s1), where µ(·) is the mean of the distribution.
From Claim 1.1.2 in [24], if a user has a sensitivity S < Sind,
then they strictly prefer the first link; if they have a sensitivity
S > Sind then they strictly prefer the second.

Now, let s2 be a new distribution where each user who
had chosen edge 1 now has sensitivity Sind. The Nash flows
from s1 and s2 are the same, as the same number of users
have a sensitivity S ≤ Sind and thus the same users choose
the first edge. It is clear that µ(s2) > µ(s1) as no user has
a lower sensitivity and some have higher.

Now, consider a third distribution s3, where users who
chose edge 2 now have some sensitivity S′ ∈ (Sind, SU];
these users will now strictly prefer the second edge of the
network but the Nash flow will remain unchanged. If we
pick S′ = SU, the mean has surely increased again; if we
pick S′ = Sind, because we are in the case Sind < s, the
mean is lower than µ(s1). Because µ(s3) is continuous with
S′, we can select S′ so that µ(s3) = µ(s1). The case of
Sind > µ(s1) is similar.

The distribution s3 = (Sind, S
′) induces the same Nash

flow as s1 and now, one set of users is indifferent and users
of the same type exist on the same edge only.

Having shown in Lemma 2.1 that the price of anarchy
is realized by bimodal distributions, we further refine our

search for worst-case populations to just two specific bimodal
distributions with simple characterizations.

Lemma 2.2: For a given network G ∈ G and scaled
marginal-cost tax T with toll scaling factor k, two distri-
butions s(s,G,k)

l and s
(s,G,k)
u , that maximize and minimize

(respectively) the flow on the first edge of the network,
realize the price of anarchy over those in Sbi(s),

PoA(G, Sbi(s), T ) = PoA(G, {s(s,G,k)
l , s(s,G,k)

u }, T ) (21)
Proof: The proof follows from the fact that total latency

is quadratic with the flow, thus the largest price of anarchy
will come from the flow that is furthest from optimal. From
Lemma 2.1, we see that any flow induced by a distribution
s ∈ S(s) can be realized by a bimodal distribution that has
one set of users observing equal cost between the links and
each edge containing only one sensitivity type. We therefore
define s

(s,G,k)
l as the distribution that maximizes fnf

1 and
s

(s,G,k)
u as the distribution which maximizes fnf

1 .
We next reduce our search for a worst-case network to a

set of graphs that have a linear latency function on the first
edge and a constant latency on the second, denoted Glc.

Lemma 2.3: For any G ∈ G, there exists a Ĝ ∈ Glc ⊂ G
that, under the same scaled marginal cost tolling mechanism
T (k), has a higher price of anarchy, implying,

PoA(G, S(s), T (k)) = PoA(Glc, S(s), T (k)). (22)
Proof: Consider a network G ∈ G with affine latency

functions on each link `i(f) = aif + bi. Let Ĝ have cost
functions ˆ̀

i(f) = âif + b̂i with âi ≥ 0 and b̂i ≥ 0.
We first show that simply removing the constant latency

term on the first edge b1 strictly increases the price of anarchy
under any scaled marginal-cost toll.

Using the optimal and Nash flow in (23), if b̂2 = b2 − b1
and b̂1 = 0 then G and Ĝ will have the same optimal flow
and Nash flow for a distribution s. From (2), we observe
that Lopt(G) = Lopt(Ĝ) + b1 as well as Lnf(G, s, k) =
Lnf(Ĝ, s, k) + b1; therefore,

PoA (G, S(s), T (k)) =
Lnf

(
Ĝ, s, T (k)

)
+ b1

Lopt(Ĝ) + b1

≤
Lnf

(
Ĝ, s, T (k)

)
Lopt(Ĝ)

= PoA(Ĝ, S(s), T (k)).

Thus, for any network G ∈ G, there exists a network Ĝ with
a linear latency function on an edge with higher price of
anarchy.

Next, we show a network G ∈ G will have the same
price of anarchy as a network Ĝ ∈ G under the same scaled
marginal cost toll if the latency functions of Ĝ equal the
latency functions of G times a scaling factor c.

Under a distribution s ∈ S, G and Ĝ will have the same
Nash flow. Using the indifferent sensitivity Sind that is the
solution to (20), the Nash flow and optimal flow on the first
edge are

fopt
1 =

2a2 + b2 − b1
2(a1 + a2)

, fnf
1 =

(1 + Sindk)a2 + b2 − b1
(1 + Sindk)(a1 + a2)

.

(23)



Under the same distribution s, the same sensitivity Sind will
satisfy

(1 + Sindk)ca1f
nf
1 + cb1 = (1 + Sindk)ca2f

nf
2 + cb2, (24)

which are the latency functions for the network Ĝ. It is now
clear that G and Ĝ will have the same Nash and optimal
flows. From the definition of total latency in (2), the latency
in Ĝ will be c times the latency in G under the same flow.
The price of anarchy, which is the ratio of two total latencies,
will be identical in G and G′.

Lastly, we show that by decreasing a2 in a network, the
price of anarchy will increase. In Lemma 2.1, it was shown
that any feasible Nash flow can be induced by a bimodal
sensitivity distribution in which users are segregated on either
link by their sensitivity. The price of anarchy for the network
G with a Nash flow caused by s will therefore be,

PoA(G, s, T (k)) =
`1(fnf

1 )fnf
1 + `2(fnf

2 )fnf
2

`1(fopt
1 )fopt

1 + `2(fopt
2 )fopt

2

. (25)

Let us consider the case where fnf
2 > fopt

2 . Now, consider
a new network, Ĝ which replaces latency function `2(f) =
a2f+b2 in G with ˆ̀

2(f) = a2f+ b̂2 where b̂2 = b2 +δ such
that δ > 0. Because the users are segregated on the links, the
Nash flow will not change. Note that because fnf

2 > fopt
2

`2(fnf
2 )

`2(fopt
2 )

=
a2f

nf
2 + b2

a2f
opt
2 + b2

<
fnf

2

fopt
2

.

It can now be shown that

Lnf(G, s, T (k))

Lopt(G)
<
Lnf(G, s, T (k)) + δfnf

2

Lopt(G) + δfopt
2

=
Lnf(Ĝ, s, T (k))

Lopt(Ĝ)
.

Thus the price of anarchy has increased in the new net-
work Ĝ, under the same sensitivity distribution and scaled
marginal cost toll, when b2 was increased, which has the
same effect as decreasing the other terms and holding b2
constant. A very similar argument can be followed for when
fnf

2 < fopt
2 by picking â2 = a2−δ, and the price of anarchy

again increases.
We further reduce our search for a worst case network to

two specific networks. For a given set of distributions S(s)
and toll scaling factor k, we define two networks:

(1) Gβ ∈ Glc with latency functions `1(f1) = f1 and
`2(f2) = β and satisfies s(s,Gβ ,k)

l = (SL, SU), and
(2) Gα ∈ Glc with latency functions `1(f1) = f1 and

`2(f2) = α and satisfies s(s,Gα,k)
u = (SL, SU). Due to the

discussion in the proof of Lemma 2.3, any network in Glc

with cost functions satisfying b2/a1 = β will have the same
price of anarchy as Gβ , and the same is true for for Gα.

Lemma 2.4: For linear constant networks, under sensitiv-
ity distributions in S(s) with toll scaling factor k, the network
Gα or Gβ will realize the upper bound on the price of
anarchy, i.e.,

PoA(Glc, S(s), T (k)) = PoA({Gα, Gβ}, S(s), T (k)).

Proof: It can be seen by differentiation of (23), the
price of anarchy increases with the value of the indifferent
sensitivity when fnf

1 < fopt
1 and decreases when fnf

1 < fopt
1 .

Recall that s(s,G,k)
l has f1l > fopt

1 and indifferent sensitivity
Sl 1; similarly, s(s,G,k)

u has f1u < fopt
1 and indifferent

sensitivity Su2. It is therefore true that having Sl 1 = SL

or Su2 = SU is a necessary condition for the network which
maximizes the price of anarchy.

Further, in bimodal distributions (S1, S2) where users are
homogeneous on either link, fnf

1 = (S2− s)/(S2−S1). For
s

(s,G,k)
l when users with sensitivity Sl 1 = SL are indifferent,

the largest flow that can occur on f1 occurs when s(s,G,k)
l =

(SL, SU). Similarly, for s(s,G,k)
u , when users with sensitivity

Su2 = SU are indifferent, the least flow in f1 has s(s,G,k)
u =

(SL, SU). One of these two conditions must be met by a
network G ∈ Glc to maximize the price of anarchy. Those
networks are the defined Gα and Gβ .

Proposition 2: When SL, SU and the mean sensitivity s
are known, the optimal network-agnostic marginal-cost toll
scaling factor k(s) will be the solution on (1/SU, 1/SL) to

4(1 + SUk − SUkR)

(4 +R)(1 + SUk) + (SUk + S2
Uk

2)R

=
4(1 + SLk − SLkR)

(4 +R)(1 + SLk) + (SLk + S2
Lk

2)R
, (26)

Proof: The k that solves (26) equates the price of
anarchy for Gβ and Gα. To show this is optimal, it is
sufficient to show that the price of anarchy for the network
Gβ is monotone decreasing with k while the price of anarchy
for the network Gα is monotone increasing with k. If the
networks have this monotonic relation with k, then the k
that minimizes the price of anarchy must equalize them.

Consider a network G ∈ Glc characterized by γ = b2/a1.
If this satisfies that s(s,G,k)

l = (SL, SU) or s
(s,G,k)
u =

(SL, SU), then the price of anarchy for this network will
be

PoA(G, S(s), T ) =
R2 − γR+ γ

γ − γ2/4
. (27)

This expression is locally minimized by γ = 2R, further,
by differentiation, it can be observed that it is monotone
decreasing for 0 < γ < 2R and monotone increasing for
γ > 2R.

For the previously defined network Gβ , under the bimodal
distribution (SL, SU),

(1 + SLk)R = β, (28)

where β is dependent on the scaling factor k. From [23], the
optimal scaling factor k will be in (1/SU, 1/SL). Therefore,
for any k, β < 2R. The price of anarchy for this network
is therefore monotone decreasing with β, and from (28), β
is clearly increasing with k. The price of anarchy of the
network is therefore decreasing with k. Similarly for Gα,
under the distribution (SL, SU),

(1 + SUk)R = α > 2R, (29)

and the price of anarchy will be increasing with k.



Proof of Theorem 2: From Lemma 2.4, a network Gα realizes
the price of anarchy when the toll scaling factor is chosen
optimally as in Proposition 2. The price of anarchy for this
network is found by substituting α from (29) into the latency
function ratio in (27). �

C. Network-aware, mean-agnostic

If the system designer is made aware of the structure
of the network, then the optimal network-aware taxation
mechanism will out-perform one that is designed without
such knowledge. Though it is still an open question as to
what tolls are optimal for a network-aware system designer
in this scenario, we opt to still consider linear tolling func-
tions to provide a means of comparing with the previously
introduced, network-agnostic taxation mechanisms.

Theorem 3: When only SL and SU are known, the price
of anarchy under an optimal network-aware scaled marginal-
cost toll is tightly upper bounded by

PoA∗ (G, S) ≤ 4

3

(
1−

√
q(

1 +
√
q
)2
)

(30)

where q := SL/SU.
For the proof of this bound, we implicitly assume that the

system operator can determine hypothetical homogeneous
low-sensitivity Nash flows associated with each tolling fac-
tor; this is reasonable since the Nash flow for a homogeneous
population is known to be the solution to a convex optimiza-
tion problem [11]. In the following, we write fnf

i (G,S, k)
to denote the amount of traffic on link i in a Nash flow on
network G with homogeneous sensitivity S and toll scale
factor k.

Proposition 3: For any network G ∈ G and any SU ≥
SL > 0, let kgm = (SLSU)

−1/2. The following is an optimal
network-aware marginal-cost toll scaling factor:

k(G) =

{
0 if fnf

2 (G,SL, k
gm) = 0,

kgm otherwise. (31)

Proof: Consider the following cases, differentiated by
the structure of Nash flows resulting from k = kgm :=
(SLSU)−1/2:

1) fnf
2 (G,SL, k

gm) > 0 , and
2) fnf

2 (G,SL, k
gm) = 0.

It is shown in [24] that in Case (1), it must be true that
Lnf (G,SL, k) = Lnf (G,SU, k) and that this choice of k
is uniquely optimal, resulting in the price of anarchy given
in (30).

Consider Case (2). Here, the extreme low-sensitivity pop-
ulation with s = SL strictly prefers link 1 when k = kgm,
effectively stripping the designer of her influence over the
price of anarchy. It can easily be shown (using, e.g., tools
from [24]) that

k′ ≤ kgm =⇒ Lnf (G,SL, k) = Lnf (G, ∅) , (32)

but that

k† > kgm =⇒ Lnf
(
G,SU, k

†) > Lnf (G, ∅) . (33)

That is, in this regime, the designer cannot change the
behavior of s = SL without increasing tolls, but cannot
increase tolls because this would cause the high-sensitivity
population with s = SU to route more inefficiently. That is,
k = 0 is an optimal tolling coefficient in this case.3

Proof of Theorem 3 It follows easily from the results in [24]
that in Case (2) when k ≤ kgm, it is true for any s that
Lnf(G, s, k) ≤ Lnf(G,SU, k

gm); the price of anarchy bound
for this scenario is thus precisely that in [24], where now we
include games which need not have flow on every edge in
an untolled Nash flow. �

D. Network-aware, mean-aware

Finally, we consider the network-aware, mean-aware
scaled marginal-cost toll to illustrate the gain in performance
when both network and population information is available.

Theorem 4: When SL, SU and the mean sensitivity s are
known, under an optimal network-aware scaled marginal-
cost tolling mechanism, the price of anarchy is tightly upper
bounded by

PoA∗ (G, S(s)) ≤ R2 − βR+ β

β − β2/4
, (34)

where R = (SU−s)/(SU−SL) and β is the unique solution
on the interval [0, 2] to

β = R

(
1 +

√
1 +R− β

s/SL +R− β

)
. (35)

We prove the theorem by making several of the same
reductions as in Theorem 2. However, we now derive an
optimal network-aware toll scaling factor k(s,G) and show a
unique network will realize the upper bound on inefficiency
in this setting.

Proposition 4: For a network G ∈ G with price sensitivity
distributions s ∈ S(s) with extreme sensitivity distributions
s

(s,G,k)
l = (Sl 1, Sl 2) and s

(s,G,k)
u = (Su1, Su2), the optimal

toll scaling factor for a scaled marginal cost toll will take
the form,

k(s,G) =
1√

Sl 1Su2

. (36)

Proof of Proposition 4: From Lemma 2.1, under the same
tolling mechanism, the set of Nash flows caused by S(s)
is equivalent to those caused by distributions with bounds
[Sl 1, Su2] and no mean constraint. The optimal scaling factor
will therefore minimize the price of anarchy over this set
of distributions. From [24], the optimal scaling factor for a
scaled marginal-cost toll will take this form. �

In Lemma 2.3, it was shown that a transformation from
a network G ∈ G to a network Ĝ ∈ Glc will increase the
price of anarchy; we also note that this transformation had
no dependence on the toll scaling factor and we can thus
choose a k that is optimal for the resulting network.

3In this case, the set of price-of-anarchy-minimizing tolling coefficients
is not a singleton in general: any coefficient satisfying Lnf(G,SL, k) ≥
Lnf(G,SU, k) is optimal. Implication (32) means that this set always
contains k = 0.



Corollary 1: When making a reduction from G ∈ G to
Ĝ ∈ Glc, the price of anarchy increases regardless of the toll
scaling factor k, including when k = k(s,G) for each network
before and after the reduction.
Proof: In the proof of Lemma 2.3, the relation between k and
the price of anarchy was not used; instead, it was shown that
the price of anarchy increases as the network is transformed
from any two link network, to one that was in Glc. Consider
having network G with the non-optimal toll scaling factor
k(s,Ĝ). When the reduction from G to Ĝ is done, by Lemma
2.3 we have

PoA(G, S(s), T (k(s,G)) ≤ PoA(G, S(s), T (k(s,Ĝ))

≤ PoA(Ĝ, S(s), T (k(s,Ĝ)). �

Proof of Theorem 4: It is shown in Lemma 2.4 that a set
of two networks realizes the price of anarchy. The price
of anarchy for the network Gβ is found by (27). Now, let
G′, defined by β′, be a network that has the same price of
anarchy when the flow R is on the first link, One solution
is clearly β = β′, the other is β′ = (4−β)R

R2−βR+β . Using the
cost function of network G, we have β = (1 + SLk(s,G))R.
Thus, if β′ satisfied s(s,G,k)

u = (SL, SU) for the same mean
sensitivity, then

β′ =
(4− β)R

R2 − βR+ β
= (1 + SUk(s,G′))R. (37)

However, it can be shown that the right hand side of (28)
is strictly less than the left hand side. This imposes that the
flow f1 = R can not be a Nash flow in G′ under distributions
in S(s) and therefore not achieve the same price of anarchy
as G. This implies that the price of anarchy for Gβ is greater
than that of Gα when both are tolled optimally with respect
to Proposition 4.

As this network is optimally tolled, from Proposition 4, it
will be the case that

Su2 =
s− SL

1 +R− β
+ SL. (38)

Now, in sensitivity distribution s
(s,G,k)
l = (SL, SU), users

with sensitivity SL are indifferent with optimally scaled
toll k(s,G). Using β from (28) and substituting the optimal
scaling factor with extreme sensitivity from (38) leads to the
characterization of β in the theorem statement, and the price
of anarchy is found by substituting this into (27). �

IV. CONCLUSION

This paper represents a study of the challenges and
opportunities afforded to a system designer when faced
with information. While it is clear that gathering additional
information about a problem can help a designer to influence
behavior more effectively, the question of how to use the
information optimally is not trivial, even for simple classes
of problems. Ongoing work focuses on extending this paper’s
results to more general classes of networks and determining
when precisely scaled marginal-cost taxes are optimal over
all taxation mechanisms.
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