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Covariance steering in zero-sum

linear-quadratic two-player differential games

Yongxin Chen, Tryphon T. Georgiou and Michele Pavon

Abstract

We formulate a new class of two-person zero-sum differential games, in a stochastic setting, where a speci-

fication on a target terminal state distribution is imposed on the players. We address such added specification by

introducing incentives to the game that guides the players to steer the join distribution accordingly. In the present

paper, we only address linear quadratic games with Gaussian target distribution. The solution is characterized by a

coupled Riccati equations system, resembling that in the standard linear quadratic differential games. Indeed, once

the incentive function is calculated, our problem reduces to a standard one. Tthe framework developed in this paper

extends previous results in covariance control, a fast growing research area. On the numerical side, problems herein

are reformulated as convex-concave minimax problems for which efficient and reliable algorithms are available.

I. INTRODUCTION

Differential games [1], [2] represent a class of games where players are constrained by continuous-

time dynamics. They represent a natural marriage of game theory and optimal control, and have had a

huge impact in economics, management sciences, operations research as well as more traditional control

involving several interacting agents [1], [2]. Standard (non-cooperative) differential games stipulate that

each player seeks a strategy that maximizes her/his payoff. Thus, the counterpart of optimal control policy

in this setting is a Nash equilibrium [3] –the optimal strategy for each requires/assumes that the other

agents choose an equilibrium-policy where none gains by moving away from. In general, differential

games are challenging both in theory as well as in implementation and numerics.

In this work, we consider two-player zero-sum differential games, a special type of differential games

involving two agents competing with each other where one’s gain is precisely the other’s loss. Such models

are often encountered in economics [2], and turned out to play an important role in robust control theory

[4]. From an optimization point of view, deriving a Nash equilibrium strategy is equivalent to finding

a saddle point of the utility function. For general minimax optimization [5], a global, sometimes even

local, saddle point may not exist. One condition that guarantees existence of global saddle point is that

the cost is convex over the minimization variable and concave over the maximization variable [6], [7]. In

this paper, we focus on linear-quadratic games [8]–[12] where the convex-concave assumption is indeed

valid.

In most of the literature on differential games, the focus is on existence and properties of solutions to

specific problems. Herein, we advance a somewhat different perspective, and seek a systematic approach

of introducing incentives to the game, so as to steer the response of the players towards some desirable

pattern. In general terms, our rationale is similar to that of “mechanism design,” in economic theories,
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to regulate via incentives. More precisely, it is akin to a cost selection in optimal control problems, so

as to induce an optimal policy with desired properties. However, one major difference is that in control

problems, there is a direct correspondence between cost and optimal policy, whereas in differential games,

in principle, the agents may respond in a variety of ways to the same incentive. The situation is remedied

and the correspondence is restored when we hypothesize that the players are rational and follow Nash

equilibrium policies.

In the present work, specifically, we consider stochastic games and our goal is to design a proper

incentive so that the system state of the players reaches a target probability distribution, always under the

tacit assumption that they follow a Nash policy. In other words, although the game is noncooperative in

that each player seeks maximal advantage, an implicit level of cooperation is imposed by the end-point

requirement of specifying a target state distribution. Thus, while in economics and social sciences, game

theory provides a model and an explanatory frame [13], our setting is motivated by design where we

seek to modify the players behavior in a manner that forces the said terminal target distribution. The

linear-quadratic setting is amenable to develop the basic paradigm of how to steer antagonistic players

in a zero-sum game towards a desirable stochastic state distribution via a suitable choice of a quadratic

teminal cost to serve as an incentive. We note that a similar viewpoint has been explored in a mean-field-

game setting, representing competition among a huge group of identical agents, with the goal to steer the

distribution of the cohort via incentives [14].

The present builds on recently developed theory of optimal control with stochastic state-constraints

that is known (in the linear-quadratic Gaussian setting) as covariance control [15]–[26]. Covariance control

is motivated by the desire to enforce precise probabilistic specifications so as to reduce conservativeness

and improve effectiveness of control strategies. Surprisingly, covariance control ties stochastic control with

two other seemingly disconnected research topics with a long history, optimal mass transport (OMT) and

Schrödinger bridges (SB), see [27] and the references therein. Despite clear differences in the rationale

for covariance control with that of the present paper, there are deeper points of contact and, in fact, the

latter can be viewed as an extension of the former.

The paper is structured as follows. Section II contains background material as well as a formulation

of our basic problem. Its solution is given in Section III whereas results for the case of infinite horizon

are presented in Section IV. We conclude with a few short remarks in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

We briefly introduce the covariance control and linear quadratic differential game theories. Both are

needed to solve the covariance steering problems in differential games, whose problem formulation is also

presented in this section.

A. Covariance control

We begin by considering a standard linear stochastic system

dx(t) = Ax(t)dt +Bu(t)dt+ Cdw, x(0) ∼ N (0,Σ0), (1)

where x ∈ R
n denotes the state, u ∈ R

m is the control input, and w is a standard Wiener process

(Brownian motion). The pair (A, B) is assumed to be controllable. The goal in covariance control over,

e.g., a finite time interval [19], [20], is to determine an optimal feedback control law that drives the state

from an initial Gaussian distribution N (0,Σ0) to a target terminal Gaussian distribution N (0,ΣT )
1 at

1For the simplicity of exposition, we focus only on zero-mean distributions. The cases with nonzero-mean distributions can be analyzed

similarly.
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time t = T while minimizing the quadratic cost functional

J(u) = E{

∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2]dt}. (2)

As usual, Q is a suitable matrix that defines cost in the state variables. It is a nonstandard stochastic

control problem due to the constraint x(T ) ∼ N (0,ΣT ). Nevertheless, the optimal policy is similar to

that in standard linear-quadratic regulator theory and given in state feedback form [19], [20],

u(t, x) = −B′Π(t)x,

where Π is a time-varying matrix which, together with a second time-varying matrix H , satisfies the

following coupled system of differential equations

Π̇ = −A′Π−ΠA +ΠBB′Π−Q (3a)

Ḣ = −A′H −HA−HBB′H +Q (3b)

+(Π +H)(BB′ − CC ′)(Π +H)

Σ−1

0
= Π(0) +H(0), (3c)

Σ−1

T = Π(T ) +H(T ). (3d)

Equations (3) relate to a system of nonlinear equations in classical 1932-work by Erwin Schrödinger

on the so-called Schrödinger bridge problem [28], and can also be seen to constitute a coupled pair of a

Fokker-Planck equation and a Hamilton-Jacobi equation, see [20], [27]. When B = C, Π and H are only

coupled through the boundary conditions. In this special case, the equations have a closed-form solution

[19], [21]. In general, not only closed-form solutions may not exist but even the existence remains an open

research topic [20]. However, a numerical scheme allows constructing solutions that are approximately

optimal to an arbitrary precision [20] and so, from a practical point of view, the covariance control problem

described in this section can be considered completely solved.

B. Linear quadratic differential games

Consider now the stochastic dynamical system

dx(t) = Ax(t)dt +B1u(t)dt+B2v(t)dt+ Cdw, x(0) ∼ ρ0 (4a)

where x ∈ R
n is the (combined) state, u ∈ R

m, v ∈ R
p are the control inputs of the two players,

player 1 and 2, respectively, and w is standard Wiener process as before. The pairs (A, B1) and (A, B2)
are assumed to be controllable. The initial state x(0) is taken to be a random vector with probability

distribution ρ0. The two players compete with each other aiming at minimizing their own cost through

proper feedback control policies [1].

The cost function for agent 1 is

J1(u, v) = E{

∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+x(T )′Fx(T )} (4b)

and the cost for agent 2 is

J2(u, v) = −J1(u, v), (4c)
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For suitable quadratic forms specified by matrices Q and F that dictate running and terminal state cost,

respectively. Overall, in this zero-sum-game setting, agents/players seek the solution of the minimax

problem

min
u

max
v

J1(u, v) (4d)

where the optimization is taken over all the feasible feedback control policies. For notational simplicity

we take ‖u(t)‖2, ‖v(t)‖2 as the running cost for the respective control variables, that is, with respective

“weights” the identity matrices. More generally, when using suitable weighted quadratic norms, one may

proceed in a similar manner. Either way, the solution is similar to that in linear quadratic control problems

and is provided in the following theorem [8]–[10].

Theorem 1: If the solution to the Riccati equation

Π̇ + A′Π + ΠA− Π(B1B
′

1
− B2B

′

2
)Π +Q = 0, Π(T ) = F (5)

exists over the time interval [0, T ], then the differential game associated with (4) has a unique solution,

given by the linear state feedback control

u∗(t, x) = −B′

1
Π(t)x (6a)

v∗(t, x) = B′

2
Π(t)x. (6b)

We provide an elementary derivation below that relies on “completion of squares.” Complete arguments

to further argue uniqueness follow along similar lines in [9], [11], [12], to which we refer for specifics.

Let Π be the solution to the Riccati equation (5), then E{x(0)′Π(0)x(0)} is clearly a constant depending

only on the initial distribution ρ0. Thus, the cost J1(u, v) is equivalent to

E{

∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+d[x(t)′Π(t)x(t)]}

= E{

∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+(Ax(t)dt+B1u(t)dt+B2v(t)dt+ Cdw)′Π(t)x(t)

+x(t)′Π(t)(Ax(t)dt +B1u(t)dt+B2v(t)dt+ Cdw)

+ tr(ΠCC ′)dt+ x(t)′Π̇(t)x(t)dt}

= E{

∫ T

0

‖u(t) +B′

1
Π(t)x(t)‖2 − ‖v(t)− B′

2
Π(t)x(t)‖2

+ tr(ΠCC ′)dt},

where we have used the Riccati equation (5) and the fact that E{dw} is zero in the above. Clearly, the

policy in (6) is a stationary point of J1(u, v). Indeed, for any feedback control policy u, v, we have that

J1(u
∗, v∗)−J1(u

∗, v) = E{

∫ T

0

‖v(t)− B′

2
Π(t)x(t)‖2dt}≥0,

and

J1(u, v
∗)−J1(u

∗, v∗) = E{

∫ T

0

‖u(t)−B′

2
Π(t)x(t)‖2dt}≥0.
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C. Problem formulation

We consider the covariance control problem over a differential game system. Departing from the

problem in (4), in our new problem the terminal cost x(T )′Fx(T ) is a design parameter and the goal is

to drive the state to a target terminal distribution. This is formally stated as follows.

Problem 1: Consider the differential game with stochastic dynamics

dx(t) = Ax(t)dt +B1u(t)dt+B2v(t)dt+ Cdw

x(0) ∼ N (0,Σ0)

and cost J2 = −J1,

J1(u, v) = E{

∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+x(T )′Fx(T )}.

Here F is a design parameter. Determine a value for F so that the state reaches the specified target

distribution N (0,ΣT ) at terminal time t = T , assuming that the two players are rational.

We remark that the Riccati equation (5) may fail to have a solution [8], [12]. The choice of F in that

case requires great care.

III. MAIN RESULTS

Starting from a proper F , the Nash equilibrium is characterized by Theorem 1, yielding the closed

loop system

dx = Ax−B1B
′

1
Πx+B2B

′

2
Πx+ Cdw.

Its state covariance Σ(t) = E{x(t)x(t)′} satisfies the Lyapunov equation

Σ̇ = (A− B1B
′

1
Π+B2B

′

2
Π)Σ

+Σ(A−B1B
′

1
Π +B2B

′

2
Π)′ + CC ′ (7)

with initial condition Σ(0) = Σ0. Let

H = Σ−1 − Π.

Then, a straightforward calculation shows that H satisfies the differential equation

Ḣ = −A′H −HA−H(B1B
′

1
−B2B

′

2
)H +Q

+(Π +H)(B1B
′

1
− B2B

′

2
− CC ′)(Π +H)

for some suitable boundary condition. To achieve the target covariance Σ(T ) = ΣT , Π, H must satisfy

Π(T ) +H(T ) = ΣT . Thus, we arrive at the coupled system of differential equations

Π̇ = −A′Π−ΠA +Π(B1B
′

1
− B2B

′

2
)Π−Q (8a)

Ḣ = −A′H −HA−H(B1B
′

1
−B2B

′

2
)H +Q (8b)

+(Π +H)(B1B
′

1
− B2B

′

2
− CC ′)(Π +H)

Σ−1

0
= Π(0) +H(0), (8c)

Σ−1

T = Π(T ) +H(T ) (8d)

Theorem 2: Suppose (8) has a solution over t ∈ [0, T ], then F = Π(T ) solves Problem 1.
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Proof: When the terminal cost in (4) is x(T )′Fx(T ), by Theorem 1, the differential game (4) has a

unique solution given by (6). The resulting state covariance satisfies the Lyapunov equation (7). Since by

definition Σ−1 = Π+H , it matches the boundary condition Σ(T ) = ΣT . This completes the proof. 2

The equation system (8) has a similar structure to that in (3). When B1 = B,B2 = 0, (8) reduces to

(3). Indeed, in this case, player 2 does not affect the system and Problem 1 boils down to the standard

covariance control problem described in Section II-A. When B1B
′

1
−B2B

′

2
= CC ′, the two variables Π, H

are coupled only through the boundary conditions. If in addition B1B
′

1
−B2B

′

2
≥ 0 and (A,B1B

′

1
−B2B

′

2
)

is controllable, then (8) has a closed form solution [21]. In general, whether the solution to (8) exists

remains an open question. However, just like the covariance control problem, the solution to Problem 1

can be approximated to an arbitrary precision, as shown below.

A. Alternative formulation

Since the optimal policies to linear quadratic differential games are linear, without loss of generality,

when taking an optimization approach, we can restrict ourself to the linear policies u = K1x, v = K2x.

The cost function function J1(u, v), excluding the terminal cost, becomes
∫ T

0

tr(QΣ +K1ΣK
′

1
−K2ΣK

′

2
)dt.

This leads to the minimax problem

min
K1

max
K2,Σ>0

∫ T

0

tr(QΣ +K1ΣK
′

1
−K2ΣK

′

2
)dt

Σ̇ = (A +B1K1 +B2K2)Σ

+Σ(A+B1K1 +B2K2)
′ + CC ′

Σ(0) = Σ0, Σ(T ) = ΣT .

Adopting a standard reparametrization Y1 = K1Σ, Y2 = K2Σ, we obtain

min
Y1

max
Y2,Σ>0

∫ T

0

tr(QΣ + Y1Σ
−1Y ′

1
− Y2Σ

−1Y ′

2
)dt

Σ̇ = AΣ + ΣA′ +B1Y1 + Y ′

1
B′

1
+B2Y2 + Y ′

2
B′

2
+ CC ′

Σ(0) = Σ0, Σ(T ) = ΣT .

Invoking the Schur complement, we deduce the equivalent problem

min
Y1,Z1

max
Y2,Z2,Σ

∫ T

0

tr(QΣ + Z1 − Z2)dt (9a)

Σ̇=AΣ+ΣA′+B1Y1+Y ′

1
B′

1
+B2Y2+Y ′

2
B′

2
+CC ′ (9b)

Σ(0) = Σ0, Σ(T ) = ΣT (9c)
[

Z1 Y1

Y ′

1
Σ

]

≥ 0,

[

Z2 Y2

Y ′

2
Σ

]

≥ 0. (9d)

The cost is convex over Y1, Z1 and concave over Y2, Z2,Σ, and the constraints are convex, therefore

the above formulation (9) is a convex-concave minimax problem. We remark that the feasible set is not

empty [20]. Though, the optimization variable is of infinite dimension. The problem in a finite-dimension

setting has been extensively studied and many algorithms have been proposed [5]–[7]. The Lagrangian

multiplier associated with the constraint (9b) turns out to be Π. The optimal F in Problem 1 can therefore

be recovered by taking F = Π(T ).
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IV. INFINITE HORIZON CASES

In this section we investigate the covariance steering problem for differential games in the infinite

horizon setting. The goal is to select some incentive function so that the system-state attains a stationary

Gaussian distribution with a specified covariance, formally stated below.

Problem 2: Consider the differential game associated with the dynamics

dx(t) = Ax(t)dt +B1u(t)dt+B2v(t)dt+ Cdw (10)

and costs J2 = −J1,

J1(u,v)=lim sup
T→∞

1

T
E{

∫ T

0

[x(t)′Qx(t)+‖u(t)‖2−‖v(t)‖2]dt} (11)

where Q is a design variable. Find a Q such that the state reaches the stationary distribution N (0,Σ),
provided the two players are rational. By “rational” we mean that they both seek to gain maximal

advantage, while at the same time, assume that their opponent does the same.

In the above, we assume that (A,C) is controllable, to avoid possibly degeneracy of the state distribution.

Again, without loss of generality, we only consider the linear policy u = K1x, v = K2x. Assuming the

controlled system

dx = (A+B1K1 +B2K2)xdt+ Cdw

is stable, namely, A + B1K1 + B2K2 is Hurwitz, then the state covariance reaches the specified value

Σ > 0 with

(A +B1K1 +B2K2)Σ + Σ(A +B1K1 +B2K2)
′ + CC ′ = 0.

The cost J1, with Q = 0, can then be written as

tr(K1ΣK
′

1
−K2ΣK

′

2
).

Consider the minimax optimization

min
K1

max
K2

tr(K1ΣK
′

1
−K2ΣK

′

2
) (12a)

(A+B1K1 +B2K2)Σ + Σ(A +B1K1 +B2K2)
′

+CC ′ = 0, (12b)

where Σ > 0 is a given target covariance. Clearly, the cost is convex over K1 and concave over K2.

Suppose the feasible set is not empty, then a solution to (12) exists. In fact, under the assumption that

B1, B2 are of full column rank, the solution is unique. With the new parametrization Y1 = K1Σ, Y2 = K2Σ,

(12) can be rewritten as

min
Y1

max
Y2

tr(QΣ + Y1Σ
−1Y ′

1
− Y2Σ

−1Y ′

2
) (13a)

AΣ+ ΣA′ +B1Y1 + Y ′

1
B′

1
+B2Y2 + Y ′

2
B′

2

+CC ′ = 0. (13b)

The feasible set is not empty if and only if (13b) has a solution (Y1, Y2), which is equivalent to the

condition [29]

rank

[

AΣ+ ΣA′ + CC ′ B

B′ 0

]

= rank

[

0 B

B′ 0

]

, (14)

where B = [B1B2].
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When R(B) ⊂ R(C), the constraint (12b) guarantees that A+B1K1+B2K2 is Hurwitz, by Lyapunov

theory. In general, the condition that A + B1K1 + B2K2 be Hurwitz needs to be verified separately; it

may have eigenvalues on the imaginary axis. Nevertheless, it is possible to maintain a state covariance

that is arbitrarily close. Indeed, for any feasible K1, K2, let

Kǫ
1
= K1 −

1

2
ǫB′

1
Σ−1, Kǫ

2
= K2 −

1

2
ǫB′

2
Σ−1

for ǫ > 0, then

(A+B1K
ǫ
1
+B2K

ǫ
2
)Σ + Σ(A +B1K

ǫ
1
+B2K

ǫ
2
)′

= −CC ′ − ǫBB′ ≤ −ǫBB′,

which implies that A+B1K
ǫ
1
+B2K

ǫ
2

is Hurwitz. The real state covariance Σǫ satisfies

(A+B1K
ǫ
1
+B2K

ǫ
2
)Σǫ + Σǫ(A +B1K

ǫ
1
+B2K

ǫ
2
)′ + CC ′ = 0,

Its difference ∆ = Σ− Σǫ ≥ 0 to Σ solves

(A+B1K
ǫ
1
+B2K

ǫ
2
)∆ +∆(A +B1K

ǫ
1
+B2K

ǫ
2
)′ = −ǫBB′,

which is clearly of order o(ǫ).

Therefore, without loss of generality, we assume that the unique solution to (9) corresponds to a stable

closed loop system. Next we discuss how (12) is related to Problem 2. The minimax problem (9) can be

rewritten as

min
K1

max
K2,Σ̂

tr(K1ΣK
′

1
−K2ΣK

′

2
) (15a)

(A+B1K1 +B2K2)Σ̂ + Σ̂(A+B1K1 +B2K2)
′

+CC ′ = 0, (15b)

Σ̂ = Σ. (15c)

Relaxing the last equality constraint using Lagrange multiplier method we arrive at

min
K1

max
K2,Σ̂

tr(K1ΣK
′

1
−K2ΣK

′

2
) + tr(ΠΣ̂)

(A+B1K1 +B2K2)Σ̂ + Σ̂(A+B1K1 +B2K2)
′

+CC ′ = 0,

which is exactly the optimization formulation to a standard infinite horizon differential game problem

with dynamics (10) and cost

lim sup
T→∞

1

T
E{

∫ T

0

[x(t)′Πx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt}.

In view of (11) we conclude that the solution to Problem 2 is Q = Π where Π is the optimal Lagrangian

multiplier of (15) associated with the constraint (15c).
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V. CONCLUSION

We formulated and studied a class of two-player zero-sum linear-quadratic differential games with

the added specification of a terminal state covariance of the combined system dynamics. Such an added

specification may be used to limit the range of operation for the combined two-player dynamics. Thus, the

two players must abide by this extra specification while, independently, also compete to ensure optimal

individual gains. We show that a suitable modification of the cost functional provides the appropriate in-

centive that drives the combined dynamics towards meeting the terminal state constraint. We characterized

solutions and numerical algorithms that effect convex-concave minimax optimization.

The present work is perhaps the first attempt to extend covariance control to the differential game

setting. Potential applications range from probabilistic path planing involving competitors, to the classic

pursuit-evasion problems. Possible future directions include general distribution-steering for more general

dynamics, nonzero-sum games, and games involving more than two players. On the technical side, it will

be important to study the implications of relaxing the standing assumption made in Section II-B that the

pairs (A, B1) and (A, B2) are controllable, to controllability of the pair (A, [B1, B2]). Under our current

assumption, individual players have control over the complete combined state space, whereas the relaxed

condition will allow for the possibility that players can only control respective individual dynamics.
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