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Abstract— This paper studies the resilience of second-order
networked dynamical systems to strategic attacks. We discuss
two widely used control laws, which have applications in power
networks and formation control of autonomous agents. In the
first control law, each agent receives pure velocity feedback
from its neighbor. In the second control law, each agent receives
its velocity relative to its neighbors. The attacker selects a subset
of nodes in which to inject a signal, and its objective is to
maximize the H2 norm of the system from the attack signal to
the output. The defender improves the resilience of the system
by adding self-feedback loops to certain nodes of the network
with the objective of minimizing the system’s H2 norm. Their
decisions comprise a strategic game. Graph-theoretic necessary
and sufficient conditions for the existence of Nash equilibria are
presented. In the case of no Nash equilibrium, a Stackelberg
game is discussed, and the optimal solution when the defender
acts as the leader is characterized. For the case of a single
attacked node and a single defense node, it is shown that the
optimal location of the defense node for each of the control
laws is determined by a specific network centrality measure.
The extension of the game to the case of multiple attacked and
defense nodes is also addressed.

I. INTRODUCTION

A. Motivation

The resilience of cyber-physical systems to strategic at-
tacks is one of the primary concerns in the design level
and real-time operation of interconnected systems. Examples
of such systems include power networks, water and gas
networks, and transportation systems. A subtle difference
between faults and attacks is that in the latter, the attacker
uses knowledge of vulnerabilities to maximize its effect
and/or minimize its visibility or effort to attack. The defender
thus has to adopt an intelligent strategy to counter the
attacker. One approach to modeling interactions between
intelligent attackers and defenders is via game theory.

B. Related Work

Security and resilience of cyber-physical systems from
the game-theoretic standpoint has attracted attention in the
past decade; see [1]–[6] and references therein. The notion
of games-in-games in cyber-physical systems reflects two
interconnected games, one in the cyber layer and the other in
the physical layer, for which the payoff of each game affects
the result of the other one [7]. Some approaches discussed
appropriate game strategies, e.g., Nash or Stackelberg, based
on the type of adversarial behavior (active or passive) [3],
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[8]. The evolution of networked systems are modeled as
cooperative games [9] and the resilience of these games
to adversarial actions and/or communication failures are
investigated [10], [11]. There is a large literature on the
security of first and second order systems [12]–[14]. To
date, no approach uses game theory to model the actions of
intelligent attackers and defenders in second order systems.

C. Contributions

The contributions of this paper are as follows:
• We discuss an attacker-defender game on the resilience

of two canonical forms of second order systems. The
attacker targets a set of nodes in the network to max-
imize the system H2 norm from the attack signals to
the output, while the defender chooses a set of nodes
(to install feedback control) in order to minimize this
system norm (or mitigate the effect of the attack).

• Necessary and Sufficient conditions for the existence of
Nash equilibrium (NE) for the game for each of the two
second-order dynamics is discussed (Propositions 2 and
3). For the cases where there is no NE, a Stackelberg
game is discussed when the defender acts as the game
leader (Theorems 1 and 3 and Corollary 1).

• For the case of a single attacked node and a single
defense node, it is shown that the optimal location of
the defense node in the network for each of the second
order systems introduces a specific network centrality
measure (Remark 3).

• The extension of the game to the case of multiple
attacked and defense nodes is also addressed (Theorems
2, and 4).1

It worth noting that for resilient distributed control algo-
rithms proposed in the literature, a large level of network
connectivity is required to bypass the effects of malicious
actions [14], [15]. However, in many real-world applications,
e.g., power systems, the underlying topology is designed and
can not be changed. From this view, the defense mechanism
proposed in this paper has an advantage compared to the
previous methods in the sense that it does not rely on the
connectivity level of the underlying network.

II. GRAPH THEORY

We use G = {V, E} to denote an undirected graph where
V is the set of vertices (or nodes) and E ⊆ {{vi, vj}|vi, vj ∈
V, i 6= j} is the set of undirected edges, where e = {vi, vj} ∈
E if an only if there exists an undirected edge between vi and

1 Proofs of all the results of this paper are placed in the Appendix.
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vj . Let n = |V|. The adjacency matrix of G is denoted A,
where Aij = 1 if there is an edge between vj and vi in G and
zero otherwise. The neighbors of vertex vi ∈ V in the graph
G are denoted by the set Ni = {vj ∈ V | {vj , vi} ∈ E}.
We define the degree for node vi as di =

∑
vj∈Ni

Aij . The
Laplacian matrix of an undirected graph is denoted by L =
D−A, where D = diag(d1, d2, ..., dn). We use ei to indicate
the i-th vector of the canonical basis. The eccentricity ε(v)
of a vertex v in a connected graph G is the maximum graph
distance between v and any other vertex u ∈ G. The center
of a graph is a set of vertices with minimum eccentricity. The
effective resistance between a pair of nodes i and j, denoted
Rij , is the electrical resistance measured across nodes i and
j when the network represents an electrical circuit where
each edge e has electrical conductance we [16]. The effective
eccentricity εf (v) of a vertex v in a connected graph G is
the maximum graph effective resistance between v and any
other vertex u of G. The effective center of a graph is a set
of vertices with minimum effective eccentricity. A degree
central node in the network is the node with the largest
degree.

III. SYSTEM MODEL AND PRELIMINARIES

Consider a network of agents V where each agent follows
second-order dynamics

ẋi(t) = vi(t),

v̇i(t) = ui(t) + wi(t), (1)

where xi(t) and vi(t) represent position (or phase) and
velocity (or frequency), respectively. ui(t) and wi(t) are the
control input and additive disturbance to the dynamics. The
control policy can be either of the following two

ui = −
∑
j∈Ni

aij(xi − xj)− (bi + b0)vi. (2a)

ui = −
∑
j∈Ni

aij(xi − xj)−
∑
j∈Ni

bij(vi − vj)− a0xi − b0vi.

(2b)

Here aij , bij , a0 and b0 are nonnegative control gains. Con-
trol law (2a) uses the relative position and absolute velocity
as feedbacks whereas (2b) uses both relative position and
velocity as control feedbacks. To simplify our analysis, we
assume that aij = bij = 1 and a0 = b0 = k > 0, where
k is called the defender’s control gain.2 Note that all of
the analysis in this paper can be readily extended to the
weighted case. Control laws (2a) and (2b) are canonical
forms of well-known second-order systems. In particular,
(2a) is the linearized swing equation for a network of
power generators [17], [18], and (2b) describes the formation
control of autonomous agents, e.g., a platoon of connected
vehicles [19].

2This parameter is private and only known by the system designer.

A. Attack Model

Let F denote the set of nodes under attack. The state of a
node which is under attack evolves as

ẋi(t) = vi(t) + ζ1i(t),

v̇i(t) = ui(t) + wi(t) + ζ2i(t), i ∈ F, (3)

where ζ1i(t) and ζ2i(t) are the effects of attack signals on
the first and the second states, respectively. In vector form,
(3) is given by

Ẋ = AX +B1w(t) +B2ζ(t), (4)

where X = [x ẋ]T , ζ = [ζ1 ζ2]T . Depending on
whether control law (2a) or (2b) is in place, the matrix A
respectively takes on the form

A =

[
0n In

−L −H

]
, or A =

[
0n In

−L̄ −L̄

]
, (5)

where L̄ , L + kDy and H , In + kDy where Dy =
diag(y). y is a binary vector, i.e., yi ∈ {0, 1}, whose i-th
element is one if node i has a self feedback and zero if it does
not. We assume that Dy has at least one nonzero diagonal
element so that L̄ is non-singular [20]. Here B1 = [0 In]T

and B2 = I2 ⊗ F , since we assume that if node i is under
attack, then its both states are affected by the attack signal.
Matrix B2 encodes the decisions of the attacker. The i-th row
of F has a single 1 if node i is affected by the attack, and all
zeros otherwise. The set of nodes under attack and the set of
nodes with feedback (defense nodes) are denoted by F and
D, respectively. An example of attacker and defender actions
on a networked system is schematically shown in Fig. 1 (a).

B. Attacker-Defender Game

Because we do not have a priori knowledge of the
frequency contents of the attack signal, we must choose
a system norm which captures the average impact of all
frequencies of the attack input. We therefore choose system
H2 norm, which is widely used to measure the level of
coherence in synchronization of coupled oscillators [21],
[22]. We first calculate the H2 norm of (4).

Proposition 1: TheH2 norms of (4) from the attack signal
ζ(t) to output y = ẋ for control laws (2a) and (2b) are

||G1||22 =
1

2

∑
i∈F

H−1
ii di +

1

2

∑
i∈F

H−1
ii ,

||G2||22 =
1

2
f +

1

2

∑
i∈F

L̄−1
ii , (6)

where f is the number of attacked nodes, G1 and G2 are
transfer functions of (4) from ζ(t) to ẋ for control laws (2a)
and (2b), respectively. H−1

ii and L̄−1
ii are the i-th diagonal

elements of H−1 and L̄−1, respectively.
Now, we formally define the attacker-defender game.

Definition 1 (Attacker-Defender Game): The attacker
chooses a set of f nodes to attack, F ⊆ V , in order to
maximize the H2 norm from the attack signal ζ(t) to the
output y = ẋ. The defender places local feedback control
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Fig. 1: (a) An example of an attacker-defender game and
matrices H and L̄, (b) graph topology discussed in example
1, (c) a graph structure where ∆1 = ∆2, thus does not admit
NE, (d) star graph admits largest threshold for k over all
connected graphs as ∆1 = n− 1 and ∆2 = 1.

at f nodes, D ⊆ V , to minimize the system H2 norm.3 The
result is a zero-sum game in which the payoff, based on
(6), is given by

J1(F,D) =
1

2

∑
i∈F

H−1
ii di +

1

2

∑
i∈F

H−1
ii ,

J2(F,D) =
1

2
f +

1

2

∑
i∈F

L̄−1
ii . (7)

The set of attacked nodes F determine matrix B2, and the set
of defense nodes D determines matrix Dy and consequently
matrices H and L̄ in (5).

The actions of the attacker and the defender, when f
nodes are under attack and f nodes are defended, define
a matrix game M(n

f)×(n
f). Here Mij = J(Fj ,Di), where

Fj corresponds to the set chosen by the attacker and Di

corresponds to the set chosen by the defender. In other words,
the attacker, the maximizer, chooses columns of matrix M
and the defender, the minimizer, chooses the rows.

IV. ATTACKER-DEFENDER GAME ON J1(F,D)

In this section, we discuss equilibrium strategies for the
attacker-defender game when the control law is (2a). First,
consider a single attacked node and single defense node.

A. Single Attacked-Single defense Nodes

In this case, attacker’s payoff is

J(F,D) =
H−1
ii

2
(di + 1) , i ∈ F. (8)

A Nash equilibrium may not exist, as discussed in the
following example.

Example 1: For the path graph of length 3 shown in Fig. 1
(b), payoff matrix becomes

M =
1

2


2
k+1 3 2

2 3
k+1 2

2 3 2
k+1

 , (9)

3Due to the lack of knowledge of the number of attack signals, the
defender considers f as an upper bound of the number of attacked nodes
and acts based on this worst-case scenario.

where the attacker (maximizer) chooses columns and the
defender (minimizer) chooses the rows. For k 6 1

2 both
the attacker and defender choose node 2 at NE, and the
equilibrium payoff is J∗ = 3

2k+2 . For k bigger than this
threshold, there is no NE for the game.

The following is a necessary and sufficient condition for
the existence of an NE for the attacker-defender game.

Proposition 2: Suppose that in the game on J1(F,D) in
(7), there are one attacked and one defense nodes. Then there
exists an NE if and only if k 6 ∆1−∆2

∆2+1 , where ∆1 and ∆2

are the largest and second largest degrees of nodes in graph
G. In this case, the game value is J∗ = ∆1+1

2k+2 and the NE
strategy is that both attacker and defender choose the node(s)
with the largest degree.

Remark 1: According to Proposition 2, the value of k
which ensures the existence of NE is limited by the gap
between the largest and the second largest degrees in the
network. For the cases where this does not hold, e.g., when
the node with the largest degree is not unique as in Fig. 1 (c),
there is no NE. Moreover, the largest possible threshold for
graphs on n vertices corresponds to the star graph in which
the threshold becomes n−2

2 , as in Fig. 1 (d).
When there is no NE, we instead analyze a Stackelberg

game in which the defender acts as the leader. We can write
J1(F,D) in (7) as

J1(F,D) =
1

2
tr
(
FT (L+ I)H−1F

)
.

As leader, the defender solves the following optimization
problem

J∗(Dy) = min
Dy

1

2
tr
(
F ∗

T

(Dy)(L+ I)H−1F ∗
T

(Dy)
)
(10)

where Dy is chosen over all f defense nodes in V . F ∗(Dy)
is the best response of the attacker when the strategy of the
defender is Dy , i.e., F ∗(Dy) is the solution of the following
optimization problem

F ∗(Dy) = arg max
F

1

2
tr
(
FT (L+ I)H−1F

)
, (11)

where F is chosen over all f attacked nodes in V . Unlike NE,
a Stackelberg game always admits an equilibrium strategy.

Remark 2: We note that for the attacker to play the
Stackelberg game, i.e., find the optimal strategy (11), it is
not necessary to know the exact value of the feedback gain
k. According to proposition 2 and Theorem 2, which comes
later, it is sufficient for the attacker to only know if k is
above or below the threshold ∆1−∆2

∆2+1 in order to find its best
response strategy.

The following theorem, characterizes the equilibrium of
the Stackelberg game.

Theorem 1: Consider a Stackelberg attacker-defender
game on J1(F,D) in (7) in which there exists a single
attacked node and single defense node, the defender as
the game leader, and k > ∆1−∆2

∆2+1 . Then the equilibrium
strategy corresponds to the case where the defender chooses
v = arg maxi∈V di, i.e., the node with the largest degree.
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Fig. 2: The effect of the feedback value k on attacker’s
best response. The defender has chosen node 3 (its optimal
decision).

In this case, the attacker’s best response will be v̄ =
arg maxi∈V\v di, i.e., the node with the second largest de-
gree.

The following example discusses the role of the threshold
k̄ = ∆1−∆2

∆2+1 in the attacker’s strategy.
Example 2: For the graph shown in Fig. 2 we have ∆1 =

3,∆2 = 2. Hence, the threshold is k̄ = 1
3 . The attacker’s

decisions are plotted with respect to the defender’s best
action, i.e., the node with the largest degree. For k = 0.1 <
k̄, the attacker’s best action is the node with the largest degree
(as follows from Proposition 2) and for k = 1 > k̄, the
attacker’s best response is the node with the second largest
degree (as follows from Theorem 1). For k = k̄, the payoff
will be the same when the attacker chooses either nodes 3
or 4.

B. Multiple Attacked-Multiple Defense Nodes

Now consider the case that there exist f attacked nodes
and f defense nodes, i.e., |F| = |D| = f > 1. Here we
only consider a Stackelberg setup as it is more applicable to
security problems [2]. We remark that if the defender is the
leader, it reflects the defender’s need to consider the worst
case. Thus, it is more convenient to have the defender as the
game leader.

The Stackelberg game is a combinatorial problem. Thus,
in general, its computational cost would be high, unless it is
reduced with specific assumptions. With this in mind, in our
problem, finding optimal defense nodes when the defender
is the game leader is burdensome, unless the control gain
k is sufficiently large and the number of attacked nodes is
sufficiently small.

Theorem 2: Consider a Stackelberg attacker-defender
game on J1(F,D) in (7) where there exists f attacked
nodes and f defense nodes, f > 1 and n > 2f , with
the defender as the game leader. If k > 1

2 (fdmax −
2) then at the equilibrium the defender chooses v =
arg max D⊆V

|D|=f

∑
vi∈D di, i.e., f nodes with the largest de-

grees in the network. The best response of the attacker is to
choose v̄ = arg maxF⊆V\v

|F|=f

∑
vi∈F di.

8

7

9

1

2

3 4 5 6

Graph’s Center

Degree Central Nodes

(a)

1

2

3

ℓ

Virtual agent 
(ground) 𝑘

𝑘

(b)

Fig. 3: (a) Optimal locations of the defense node for objective
functions J1(F,D) and J2(F,D), (b) Extended graph and the
virtual agent (ground).

V. ATTACKER-DEFENDER GAME ON J2(F,D)

In this section, we discuss the dynamics with control law
(2b) and objective function J2(F,D) in (7).

A. Single Attacked, Single Defense Nodes

Similar to the case of J1(F,D), we start with the case of
single attacked and single defense nodes. We first have the
following proposition.

Proposition 3: The attacker-defender game on J2(F,D)
in (7) with a single attack and single defense node does not
admit an NE.

Similar to the attacker-defender game on J1(F,D), in
the absence of NE, an optimal defense strategy can be
determined by finding the solution of the Stackelberg game.
Recalling the notion of the effective center of a graph, from
Section II, we have the following theorem which is proven
in Appendix F.

Theorem 3: Consider the Stackelberg attacker-defender
game on J2(F,D) in (7) on graph G with the defender as
the game leader. Then, a solution of the game corresponds to
the case when the defender chooses the effective center of G,
i.e., D∗ = arg minv∈V εf (v). In this case, the best response
of the attacker will be B∗(D) = arg maxj∈V RD∗j , i.e., a
node with the maximum effective resistance from D∗.

For the case of acyclic networks, Theorem 3 reduces to
the following corollary.

Corollary 1 (Acyclic Networks): Consider the Stackel-
berg attacker-defender game on J2(F,D) in (7), with the
defender as the game leader, over the connected undirected
tree G. At equilibrium, the defender chooses the center of
the graph and the attacker chooses the node with the greatest
distance from the center.

Remark 3 (Game Equilibriums and Network Centrality):
As mentioned before, the optimal location of the defense
node for the objective function J1(F,D) is the degree
central node (Theorem 1) and for J2(F,D) is the graph’s
center for acyclic networks (Corollary 1) or effective center
for general graphs (Theorem 3). These network centralities
(and consequently optimal defense node placements) can
differ substantially from each other. One of such examples
is the graph shown in Fig. 3 (a), in which by increasing the
length of the path, the two centralities become far apart.

B. Multiple Attacked, Multiple defense Nodes

In order to tackle this problem, we interpret the self-
feedback loops in the form of connections to some virtual



agent (or grounded node) as shown in Fig. 3 (b). In this
case, matrix L̄ would be a submatrix of the Laplacian matrix
L(n+1)×(n+1) of the extended graph (including `) where the
row and the column corresponding to ` are removed. Such
submatrices are called grounded Laplacian in the literature
[20]. With this is mind, it is known that the i-th diagonal
element of L̄−1 is Ri`, i.e., the effective resistance between
node vi and the virtual node ` [16].4 As an example, consider
nodes 1 and 2 in Fig. 3 (b) which are chosen as defenders
and nodes 1 and 3 which are under attack. In this case, we
have J2(F,D) = 1 + 1

2

∑
i∈F L̄

−1
ii = 1 + 1

2 (R1` + R3`).
Based on this fact, the proof of the following theorem is
straightforward.

Theorem 4: Consider the Stackelberg attacker-defender
game on J2(F,D) in (7) with f defense nodes and f attack
nodes, f > 1, with the defender as the game leader, over
the connected undirected graph G. Denote the virtual agent
corresponding to a set of f defense nodes D by `D. Then, a
solution of the game is when the defender chooses set D in
which the maximum sum of effective resistances between
`D and all combinations of f nodes in the network is
minimized, i.e., D∗ = arg minD⊆V maxF⊆V

∑
j∈FR`Dj . In

this case, the attacker chooses the set of f attacked nodes as
F∗ = arg maxF⊆V

∑
j∈FR`D∗ j .

As it is seen from Theorem 4, finding the optimal set of
defense nodes requires a high level of computation.

Remark 4: (The Effect of Increasing Connectivity):
Since the effective resistance between two nodes in the graph
is an increasing function of edge weights [20], adding extra
edges to the network (or increasing the weight of edges)
decreases the diagonal elements of L̄−1 and consequently
decreases the system H2 norm. Hence, unlike control law
(2a), increasing connectivity is beneficial from the defender’s
perspective for (2b).

APPENDIX

A. Proof of Proposition 1

Proof: We prove for the first case, the second case
(2b) follows a similar procedure. We compute the H2 norm
using the trace formula ||G||22 = tr(BT

2WoB2), where
Wo is the observability Gramian Wo =

∫∞
0
eA

TtCTCeAt

and it is uniquely obtained from the Lyapunov equation
WoA + ATWo = −CTC with an additional constraint
Wov = 02n where v = [1T

n 0T
n]T is the mode corresponding

to the marginally stable eigenvalue of A. It is due to the
fact that the marginally stable mode v is not detectable, i.e.,
CeAtv = Cv = 02n for all t > 0, and since the rest of
the eigenvalues are stable, the indefinite integral exists. The
proof of the uniqueness ofWo is the same as [23, Lemma 1]
and is omitted here. To calculate the observability Gramian,
we have[
W11 W12

W21 W22

]
A+AT

[
W11 W12

W21 W22

]
=

[
0n 0n

0n −In

]
(12)

4When the graph is a tree, the effective resistance and physical distance
become the same.

By solving (12) we get W11 = 1
2LH

−1, W22 = 1
2H
−1 and

W12 = W21 = 0. Hence we have ||G||22 = tr(BT
2WoB2) =

tr(FTW11F + FTW22F ) which yields the result.

B. Proof of Proposition 2
Proof: It is easy to verify that each element of the

matrix game M is

Mij =

{
dj+1
2k+2 i = j,
dj+1

2 i 6= j.
(13)

We first prove the sufficient condition, i.e., assume k 6
∆1−∆2

∆2+1 . Then, if the attacker changes its strategy (unilat-
erally) from the node with the maximum degree to some
node vi, according to (13) and the upper bound for k, the
game value becomes J = di+1

2 6 ∆1+1
2k+2 . Moreover, if the

defender wants to change its strategy to another node vi,
based on (13) since the smallest element of each column is
its diagonal element, it will get J = di+1

2 > ∆1+1
2k+2 . Hence,

neither the attacker nor the defender are willing to change
their strategy unilaterally.

Now suppose that having both attacker and defender
choose the node with the largest degree is NE. Then we have
to have ∆1+1

2k+2 > dj+1
2 for all j = 1, 2, ..., n which results in

k 6 ∆1−di
di+1 for all j = 1, 2, ..., n and this proves the claim.

C. Proof of Theorem 1
Proof: When k > ∆1−∆2

∆2+1 , for each row (defender’s
action) of matrixM, the largest element (the best response of
the attacker) will be 1

2 (∆1+1), except the row corresponding
to the node with the largest degree. In that row, the largest
element will be 1

2 (∆2 + 1). Since ∆1 > ∆2, the optimal
action of the defender will be v = arg maxi∈V di. The best
response of the attacker will be the node with the second
largest degree. This solution may not be unique, however,
the optimal value of this game is unique and given by J∗ =
∆2+1

2 .

D. Proof of Theorem 2
Proof: For multiple attacked-multiple defense nodes

case, each element of the matrix game Mij (corresponding
to defender decision set Di and attacker decision set Fj) is

Mij =



∑
j∈Fj

dk

2k+2 + f
2k+2 i = j,

∑
k∈Fj∩Di

dk

2k+2 +
γij
1

2k+2

+ 1
2 (
∑
k∈Fj\Di

dk + γij2 ) i 6= j,

(14)

where γij1 = |Fj ∩ Di| and γij2 = |Fj \ Di| = f − γij1 .
Since the defender is the game leader, it has to choose a row
in game matrix M whose maximum element is minimum
(over all other rows). When k is lower bounded by k >
1
2 (fdmax − 2), considering a fixed set D (set of defense
nodes), for each set of attacked nodes F we have∑

j∈F∩D dj

2k + 2
+

γ1

2k + 2
6 2. ∀F ⊆ V (15)



Inequality (15) together with (14) shows that for the row
corresponding to set D, its largest element corresponds to
the set of attackers F̄ for which F̄ ∩ D = φ. In order
for this to happen, we must have n > 2f . In this case,
γ1 = 0 and the maximum element in the row corresponding
to set D is (according to the second term in (14)) M̄ =
maxF⊆V\D

1
2

∑
j∈F dj + f . Thus, the best action of the

defender, to minimize that maximum row element, is to
choose D̄ = arg maxD⊆V

∑
j∈D dj , i.e., f nodes with

largest degrees in the graph.

E. Proof of Proposition 3

Proof: As mentioned in Section V, the j-th diagonal
element of L̄−1 is the effective resistance from node vj and
the virtual node ` which is connected to the single defense
node vi with an edge of weight (conductance) k [20]. Thus,
we have [L̄−1]jj = R`j . Hence, the value of each diagonal
element of the game matrix M is Mii = 1

2 + 1
2k and

each off-diagonal element is Mij = 1
2 + 1

2k + 1
2Rij . Thus,

each diagonal element is strictly less than the elements of
its corresponding row and column. Now, assume that a NE
exists and let (i∗, j∗) denote the equilibrium strategies of
the attacker and defender. Thus, we should have [M]i∗j 6
[M]i∗j∗ 6 [M]ij∗ for all i 6= i∗ and j 6= j∗. If element
[M]i∗j∗ is a diagonal element, then the left inequality will
be violated and if it is a non-diagonal element, the right
inequality will be violated.

F. Proof of Theorem 3

Proof: We know that for the game matrix M we have
Mij = 1

2 + 1
2R`j , where v` is the virtual agent connected

to the defense node vi with an edge with weight k and vj
is the attacked node. As the defender is the leader of the
Stackelberg game, it minimizes (over all rows) the maximum
element of each row of M. Thus, the optimal place for the
defender is v∗ = arg mini maxj R`j and this is the effective
center of the graph defined in Section II. Note that this
solution (strategies of the defender and attacker) may not
be unique since the effective center of the network may not
be a single node. However, the value of the game is unique.

II. CONCLUSION

A game-theoretic approach to the resilience of two canon-
ical forms of second-order network control systems was
discussed. For the case of a single attacked node and a single
defense node, it was shown that the optimal location of the
defense node for each of the two second-order systems intro-
duces a specific network centrality measure. The extension
of the game to the case of multiple attacked and defense
nodes was also discussed and graph-theoretic interpretations
of the equilibrium of the Stackelberg game for this case was
investigated. An avenue for the future work is to extend these
results to directed networks.
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