
Nonlinear Model Predictive Control for Distributed Motion Planning in
Road Intersections Using PANOC

Alexander Katriniok, Pantelis Sopasakis, Mathijs Schuurmans, Panagiotis Patrinos

Abstract— The coordination of highly automated vehicles
(or agents) in road intersections is an inherently nonconvex
and challenging problem. In this paper, we propose a dis-
tributed motion planning scheme under reasonable vehicle-
to-vehicle communication requirements. Each agent solves a
nonlinear model predictive control problem in real time and
transmits its planned trajectory to other agents, which may have
conflicting objectives. The problem formulation is augmented
with conditional constraints that enable the agents to decide
whether to wait at a stopping line, if safe crossing is not
possible. The involved nonconvex problems are solved very
efficiently using the proximal averaged Newton method for
optimal control (PANOC). We demonstrate the efficiency of the
proposed approach in a realistic intersection crossing scenario.

I. INTRODUCTION

Automated vehicles (AV) today either operate in a reactive
way by solely basing their actions on sensor readings or
exploit an uncertain estimate of future motion trajectories
of other road users to be more proactive. With vehicle-
to-vehicle (V2V) communication, more reliable information
about future trajectories of the surrounding traffic can be
adopted to operate the AV more efficiently [1]. Especially
in intersections, throughput could significantly be improved
when, instead of using traffic lights or signs, vehicles would
negotiate intersection crossing using V2V communication.

In this paper, we address the control problem of co-
ordinating vehicles (referred to as agents) in intersections
by means of distributed nonlinear model predictive control
(MPC), assuming that V2V communication is available
for information exchange. To this end, optimization-based
strategies such as MPC appear to be appropriate to deal
with constrained motion planning problems incorporating
anticipated trajectories of conflicting agents.

In recent years, MPC has been widely used for this
purpose. The authors in [2] introduce a decentralized control
scheme which relies on the solution of two convex quadratic
programs (QP) to determine the order in which the agents
cross the intersection. An MPC-based scheme is proposed
in [3], which utilizes a central coordination unit to solve
a high-level time slot allocation optimal control problem

A. Katriniok is with Ford Research & Innovation Center, 52072 Aachen,
Germany, de.alexander.katriniok@ieee.org.

P. Sopasakis is with Queen’s University Belfast, School of Electronics,
Electrical Engineering and Computer Science, Centre For Intelligent Au-
tonomous Manufacturing Systems (i-AMS), Belfast, Northern Ireland, UK,
p.sopasakis@qub.ac.uk.

M. Schuurmans and P. Patrinos are with the Department
of Electrical Engineering (ESAT-STADIUS), KU Leuven, 3001
Leuven, Belgium, mathijs.schuurmans@kuleuven.be,
panos.patrinos@esat.kuleuven.be.

(OCP), while agent controls are determined as part of a
nested low-level OCP. Essentially, every agent solves a QP
and two linear programs (LP) and transmits the optimization
results to the central coordinator which solves the high-level
nonlinear program (NLP). This is extended in [4] with rear-
end collision avoidance. A similar scheme is proposed in [5]
where a centralized coordination unit is in charge of time
slot allocation, while agents are controlled in a decentralized
fashion and all involved OCPs are convex QPs. Moreover,
[6] presents a decentralized consensus-based control strategy
which determines the intersection crossing order as part
of a high-level consensus algorithm and solves a convex
optimization problem to determine vehicle controls on the
lower level. Instead of using time slots, collision avoidance is
ensured by bounding distances between agents from below.
In [7], the authors have outlined a fully distributed MPC
scheme where every agent solves a nonconvex quadratically
constrained QP (QCQP). Instead of utilizing time slots,
agents must keep a minimum distance to each other —
defined with respect to their joint collision point.

A. Main Contribution and Outline

To orchestrate AVs in intersections, we rely on a dis-
tributed MPC scheme in which every agent solves its noncon-
vex optimal control problem simultaneously and broadcasts
the optimized trajectories to the other agents via V2V com-
munication. We believe that a distributed scheme is more
flexible, resilient and scalable than a centralized one when it
eventually comes to in-vehicle implementation.

In the literature, most control concepts rely on a formu-
lation in which collision avoidance is tightly related to the
intersection scenario, that is, through time slots or collision
points [2], [3], [7]. For AV motion control, it is desirable to
utilize a single controller for multiple scenarios. Therefore,
we take a first step to generalize our problem formulation
in [7] to be able to cover a wider range of use cases.
Instead of using joint collision points along the agents’ path
coordinate, we propose to formulate collision avoidance in a
Cartesian frame by mapping the agents’ path coordinate to
their respective global Cartesian coordinates. The authors in
[6] are pursuing this direction using a linear mapping. By
using B-spline functions, we allow for nonlinear mapping
functions which are necessary to describe arbitrary realistic
driving maneuvers. Eventually, we utilize the area overlap
of the agents’ bounding boxes (plus some safety margin) to
define collision avoidance (CA) constraints. This formulation
can easily be applied independent from intersections, e.g.,
for rear-end collision avoidance or lane change maneuvers.

ar
X

iv
:1

90
3.

12
09

1v
2

 [
cs

.S
Y

]
 2

9
O

ct
 2

01
9

Moreover, we introduce a methodology to embed condi-
tional constraints into the motion planning problem, such
as waiting at the stopping line if safe intersection crossing
is impossible. Finally, we propose to exploit the proximal
averaged Newton-type method for optimal control (PANOC)
[8], [9] to solve the resulting nonconvex NLP in real-time.

The remainder of the paper is organized as follows: Sec-
tion II introduces the vehicle kinematics model along with
the underlying assumptions and the relationship between
local and global coordinate frames. The distributed motion
planning problem is then formulated in section III, while
section IV outlines how an efficient numerical solution is ob-
tained. Simulation results are finally discussed in section V.

B. Notation

Hereafter, xk+j|k will stand for the prediction of variable
x at the future time step k+j given information up to time k.
For x ∈ Rn and i ∈ {1, . . . , n}, [x]i is the i-th entry of x. In
addition, N+ is the set of positive integers, [x]+ , max{x, 0}
and A> denotes the transpose of a matrix A ∈ Rm×n.

II. MODELING

We rely on the following fundamental assumptions:
Assumption 1. A1. Only single intersection scenarios are
considered; A2. A single lane is available per direction;
A3. The desired route of every agent is determined by a high-
level route planning algorithm (Sec. II-B); A4. Agents are
equipped with V2V communication; A5. No communication
failures or package dropouts occur; A6. The MPC solutions
at time k are available to all agents at time k+1; A7. Vehicle
states are measurable and not subject to uncertainty.

Assumptions A1, A2, A5 and A7 are common in the
literature and are used to reduce complexity [2], [3]. The use
of a high-level planning algorithm which is postulated in A3
is quite common in AV architectures too [10]. Lastly, A4 is
necessary for a distributed control scheme and A6 can be
satisfied by choosing the MPC sampling time appropriately.

A. Vehicle Kinematics

Let A , {1, . . . , NA} be the set of agents where NA is
a positive integer. It is a common approach in the literature
to use Assumption A3 to define the kinematics of Agent
i ∈ A along paths which are parametrized by a scalar s[i]

as shown in Fig. 1 [3], [6]. That said, the time evolution
of velocity v[i] and path coordinate s[i] are described by a
double integrator, while the drivetrain dynamics is modeled
as a first-order system, yielding the following linear time-
invariant state space representation

d

dt

a[i]xv[i]
s[i]

 =

−
1

T
[i]
ax

0 0

1 0 0
0 1 0

︸ ︷︷ ︸

A[i]

a[i]xv[i]
s[i]

︸ ︷︷ ︸
x[i]

+

1

T
[i]
ax

0
0

︸ ︷︷ ︸
B[i]

a
[i]
x,ref

︸︷︷︸
u[i]

, (1)

where T
[i]
ax denotes the dynamic drivetrain time constant

and u[i] = a
[i]
x,ref is the requested acceleration (acceleration

set-point). We may derive the exact discretization of (1)

p
[1]
g =

[
x
[1]
g (s[1])

y
[1]
g (s[1])

]

s[2]

s[3]

s[1]

W [3]

xg

yg

brake
safe

region
(B

SR
)

critical
region

(C
R

)

intersection control region
(ICR)

ψ[1]

L[3]

s
[1]
bsr,ins

[1]
icr,in s

[1]
cr,in

s
[1]
cr,out

s
[1]
icr,out

(0, 0)

Fig. 1: Schematic of the intersection in the global frame, (xg, yg), with its origin
(0, 0) at the center of the intersection. For Agent 1, the respective intersection regions
are illustrated: inside ICR (beige), BSR (green), CR (red) and outside ICR (white).
The reference trajectory of Agent 1 is described by a B-spline.

using zero-order hold, that is, A[i]
d = eA

[i]Ts and B
[i]
d =∫ Ts

0
eA

[i]τB[i]dτ where Ts is the sampling time.

B. Local and Global Coordinate Frames

Equation (1) describes the motion of every agent with
respect to their local coordinate frame along the path co-
ordinate s[i]. In [7], collision avoidance is encoded in this
local frame with respect to a joint collision point with
another agent. This approach may not be suitable in multi-
lane scenarios when a certain lateral distance to surrounding
agents should be maintained. Then, a problem formulation
in a global Cartesian frame appears to be more general
and convenient. We, therefore, define a mapping function
F [i]
p : s[i] 7→ (x

[i]
g , y

[i]
g), which maps the path coordinate s[i]

of Agent i to its global Cartesian coordinates. Functions F [i]
p

can be chosen to be B-splines [11][
x
[i]
g (s[i])

y
[i]
g (s[i])

]
= F [i]

p (s[i]) ,

[∑np

l=0 α
[i]
x,lB

[i],n
x,l (s[i])∑np

l=0 α
[i]
y,lB

[i],n
y,l (s[i])

]
, (2)

where B
[i],n
x,l and B

[i],n
y,l are B-spline basis polynomials of

degree n while α[i]
x,l and α[i]

y,l are spline coefficients. We as-
sume that the initial condition s[i](t0) = 0 holds. For natural
driving maneuvers, we use a spline degree of n = 3. The
number of spline coefficients, np, depends on the number
of path points used for interpolating the agent’s path [11].
According to Assumption A3, F [i]

p is provided by a high-
level route planning algorithm. Similarly, we assume that
the heading angle ψ[i](s[i]) and the path curvature κ[i](s[i])
are provided as F [i]

ψ : s[i] 7→ ψ[i] and F [i]
κ : s[i] 7→ κ[i]

respectively, either as separate spline curves or derived from
the first and second derivative of F [i]

p respectively.

C. Intersection Regions

For agent coordination, we divide the area around the
intersection in regions as shown in Fig. 1. In the intersection

control region (ICR), that is, for s[i]icr,in ≤ s[i] < s
[i]
icr,out,

the aim is to avoid collisions with crossing agents and to
ensure rear-end collision avoidance at the same time. The
ICR can further be subdivided into the brake safe region
(BSR) and the critical region (CR). In the BSR, defined as
s
[i]
bs,in ≤ s[i] < s

[i]
cr,in, it is always safe to stop before entering

the CR. Only in the CR, that is, for s[i]cr,in ≤ s[i] < s
[i]
cr,out,

collisions with crossing agents may happen and these need to
be avoided by the control scheme. After leaving the CR and
outside the ICR, only rear-end collisions must be prevented.

III. DISTRIBUTED MOTION PLANNING PROBLEM

Following [7], the motion planning problem is separable
with respect to the agents’ individual objectives and con-
straints while only collision avoidance couples the agents
among each other. This way, we separate the subproblems
using a primal decomposition technique.

A. Local Agent Objectives and Constraints

As local objectives, the motion planning regime should 1)
maintain a desired speed (typically, close to the speed limit)
and 2) enable efficient and comfortable driving. The former
requirement translates into minimizing the deviation of the
agent’s speed, v[i], from a reference speed v

[i]
ref , while the

latter is equivalent to reducing the demanded acceleration
u[i] = a

[i]
x,ref. Along a horizon of N steps, we can encode

these requirements in the following stage cost at time k + j
for j = 0, . . . , N − 1

`
[i]
j (x

[i]
k+j|k, u

[i]
k+j|k) , q[i]

(
v
[i]
k+j|k − v

[i]
ref,k+j|k

)2
+ r[i] (u

[i]
k+j|k)2 (3)

and the terminal cost

`
[i]
N (x

[i]
k+N |k) , q

[i]
N

(
v
[i]
k+N |k − v

[i]
ref,k+N |k

)2
(4)

where q[i] > 0, q[i]N > 0 and r[i] > 0 are positive weights.
Besides local objectives, local agent constraints need to be
accommodated as well. First, to account for actuator limita-
tions, we constrain the demanded longitudinal acceleration
by the input constraint

u
[i]
k+j|k ∈ U

[i] ,
{
u ∈ R | a[i]x ≤ u ≤ a[i]x

}
(5)

with some appropriate upper and lower bound a[i]x and a[i]x ,
for j = 0, . . . , N − 1.

Moreover, every agent should account for the speed limit
on the current road section while driving backwards is
prohibited. We encode this requirement as a state constraint
of the form

x
[i]
k+j|k ∈ X

[i]
k+j|k ,

{
x ∈ R3 | 0 ≤ [x]2 ≤ v[i]k+j|k

}
(6)

with the upper bound v[i]k+j|k, for j = 1, . . . , N .

For turning agents, the lateral acceleration a[i]y , being equal
to the product of the curvature κ[i](s[i]) with the squared
velocity v[i], is bounded as follows

−a[i]y ≤ κ[i](s
[i]
k+j|k) · (v[i]k+j|k)2 ≤ a[i]y , (7)

for j = 1, . . . , N , where a[i]y is an appropriately chosen upper
bound. Additionally, it needs to be ensured that the total
acceleration does not exceed the friction circle [12], that is,

(a
[i]
x,k+j|k)2 +

(
κ[i](s

[i]
k+j|k) · (v[i]k+j|k)2

)2
≤ (a

[i]
tot)

2 (8)

for j = 1, . . . , N and an appropriate upper bound a[i]tot.

B. Collision Avoidance
1) Agent Conflict Sets: While the constraints in

section III-A refer to the individual agent, CA constraints
couple the agents among each other.

For crossing agents, we introduce time-invariant priorities
on the agents that are determined once and held constant dur-
ing the maneuver [7]. We define the bijective prioritization
function γ : A → A, which assigns a unique priority to every
agent — a lower value corresponds to a higher priority. This
way, we specify the set of agents l ∈ A which can collide
with Agent i, but have a higher priority γ(l) < γ(i), that is,

A[i]
c,γ ,

{
l ∈ A | γ(l) < γ(i)

}
. (9)

We refer to A[i]
c,γ as the time-invariant prioritized conflict

set. Moreover, we denote Ā[i]
c,γ,k ⊆ A

[i]
c,γ as the set of higher

priority agents that have not yet left the CR at time k.
In case of rear-end collision avoidance, we define A[i]

c,ahead
as the time-invariant set that contains the agents that are
always in the same lane and ahead of Agent i. Furthermore,
Ā[i]
c,ahead,k refers to the time-varying set of agents l ∈ A at

time k that have been crossing (i.e., l ∈ A[i]
c,γ or i ∈ A[l]

c,γ)
and are now in the same lane and ahead of Agent i.

To fully decouple the agents, we impose CA constraints
only on one of two conflicting agents. Therefore, we consider
the following cases at time k: a) If Agent i is inside the ICR
and has not yet passed the CR, it imposes CA constraints
on crossings agents and those that are driving ahead, i.e., on
agents l ∈ A[i]

c,k = A[i]
c,γ ∪ A[i]

c,ahead; b) If Agent i is inside
the ICR and has passed the CR, it needs to avoid collisions
with agents l ∈ A[i]

c,k = A[i]
c,ahead ∪ Ā

[i]
c,ahead,k ∪ Ā

[i]
c,γ,k, that is,

with those driving ahead and with higher priority agents that
may be in the same lane and behind Agent i after leaving the
CR; c) If Agent i is outside the ICR, we only impose rear-
end CA constraints on agents l ∈ A[i]

c,k = A[i]
c,ahead∪Ā

[i]
c,ahead,k

that drive in the same lane and ahead of Agent i.
2) Safety Regions and CA Constraint Formulation: For

each agent i ∈ A, we define a safety region around the
vehicle for every l ∈ A[i]

c,k, which must not be intersected by
the bounding box of the conflicting Agent l. We denote by

n
[l]
ψ = R

[i],>
ψ R

[l]
ψ

[
1 0

]>
(10)

the unit vector pointing in the direction of motion of Agent l
in the Cartesian body frame of Agent i where R[i]

ψ and R[l]
ψ

are the respective rotation matrices — see Fig. 2. We then
define the safety region in the longitudinal direction in front
of (xf) and behind (xr) Agent i as

d
[i]
safe,xf , d̃

[i]
safe,xf + v[i]t[i]gap,x, (11a)

d
[i]
safe,xr , d̃

[i]
safe,xr + v[i]t[i]gap,x · max

{
0, [1 0]n

[l]
ψ

}
, (11b)

where d̃[i]safe,xf and d̃[i]safe,xr are basic safety distances which are
independent of the agents’ motion. In addition, we want the
agents to keep a velocity-dependent safety distance where
tgap,x is the respective time gap. The rear safety distance
d
[i]
safe,xr should only be increased if Agent l is driving in the

same direction as Agent i, and not if it is crossing. That
said, in (11b), [1 0]n

[l]
ψ is the projection of Agent l’s heading

vector onto Agent i’s body frame x-axis.
In the lateral direction, i.e., left (yl) and right (yr) from

Agent i, we consider the basic safety distances d̃[i]safe,yl and
d̃
[i]
safe,yr which are independent of the agents’ motion. If Agent
l is moving from the side towards Agent i, the safety distance
increases depending on the speed and heading of Agent l,
that is,

d
[i]
safe,yl/yr , d̃

[i]
safe,yl/yr + v[l]t[i]gap,y · max

{
0,∓[0 1]n

[l]
ψ

}
, (12)

where tgap,y is an appropriate time gap, and [0 1]n
[l]
ψ is the

projection of Agent l’s heading vector onto Agent i’s body
frame y-axis. Applying this formulation, the safety distance
to Agent l increases, even as it moves away from Agent i.
In this case, though, the problem solution is not affected.

We now define the lower-left and upper-right corner
points, p[i] and p[i] of Agent i’s safety region (see Fig. 2)
in its Cartesian body frame as

p[i] ,

[
−L

[i]

2 − d
[i]
safe,xr

−W
[i]

2 − d
[i]
safe,yr

]
, p[i] ,

[
L[i]

2 + d
[i]
safe,xf

W [i]

2 + d
[i]
safe,yl

]
, (13)

where L[i] and W [i] are the length and width of Agent
i, respectively. To determine collisions between agents, we
examine the area overlap of Agent i’s safety region and
Agent l’s bounding box. If there is no overlap, both agents
are safe. If the edges of both rectangles are not perpendicular
to each other, a closed-form expression is hard to determine.
For that reason, we resort to over-approximating Agent l
with a bounding box whenever the rectangle edges are
not perpendicular to each other as shown in Fig. 2. We
denote the lower right and upper left corner point of the
over-approximated rectangle in Agent i’s reference frame as
p[l] and p[l]. Then, the length Li,l and width W i,l of the

−6 −4 −2 0 2 4 6 8 10 12
-8

-6

-4

-2

0

2

4

p[i]

p[i]

p[l]

p[l]

n
[l]
ψ

Ai,l

y[i]

x[i]

motion dep. safety region

basic safety region Li,l

W i,l

Fig. 2: Agent i’s safety region (basic and motion dependent) along with Agent l’s
bounding box in Agent i’s Cartesian body frame. Ai,l represents their overlap.

overlapping area can easily be obtained as follows

Li,l , min
{

[p[i]]1, [p
[l]]1
}
− max

{
[p[i]]1, [p

[l]]1
}
, (14a)

W i,l , min
{

[p[i]]2, [p
[l]]2
}
− max

{
[p[i]]2, [p

[l]]2
}
. (14b)

If there is no overlap, Li,l and/or W i,l are less than zero.
Therefore, the overlap of Agent i’s safety region and Agent
l’s bounding box is

Ai,l , max
{

0, Li,l
}
· max

{
0,W i,l

}
. (15)

Finally, the following equality constraint needs to be satisfied
to guarantee collision avoidance for every agent in the
conflict set A[i]

c,k (see section III-B) and for every time step
k + j, j = 1, . . . , N over the prediction horizon:

Ai,lk+j|k = 0, ∀l ∈ A[i]
c,k. (16)

Remark 1. Over-approximating Agent l’s bounding box
does not entail any undesired conservatism. A tighter ap-
proximation, though, might be preferable for future use cases
such as multi-lane scenarios.

C. Minimum Spatial Preview
To guarantee collision avoidance in the distributed setting,

the spatial preview of every agent i has to be of sufficient
length while crossing the intersection, see [7]. Particularly,
if Agent i has approached its BSR, i.e., s[i]bsr,in ≤ s

[i]
k < s

[i]
cr,in,

it is safe to stop before entering the CR where collision
can happen. If there are still crossing agents with higher
priority that have not yet left the CR, that is, if Ā[i]

c,γ,k 6= ∅,
the preview of Agent i has at least to cover the agent’s
CR to avoid unforeseen conflicts with other agents. This
requirement is equivalent to the constraint that Agent i leaves
the CR at the latest at the final time step k + N of the
prediction horizon, i.e., s[i]k+N |k ≥ s

[i]
cr,out. If this constraint

cannot be satisfied, Agent i should stop before entering the
CR. In essence, we need to encode the conditional constraint

IF NOT s
[i]
k+N |k ≥ s

[i]
cr,out THEN s

[i]
k+N |k ≤ s

[i]
stop, (17)

where s
[i]
stop < s

[i]
cr,in refers to the stop line in the BSR. If

all agents with higher priority have already left the critical
region, we set s[i]cr,out to zero, thus allowing Agent i to finally
pass the critical region, referred to as liveness of the control
scheme [13]. To encode conditional constraints of the form

IF NOT g(x) ≥ 0 THEN h(x) ≤ 0, (18)

with the constraint functions g : Rn → R and
h : Rn → R, we can write (18) equivalently as
¬(g(x) ≥ 0)⇒ (h(x) ≤ 0), or, what is the same

(−g(x) ≤ 0) ∨ (h(x) ≤ 0) (19)

where ¬ denotes the logical NOT operator. By using the
plus operator [·]+, condition (19) can be cast as an equality
constraint of the form

[−g(x)]+ · [h(x)]+ = 0. (20)

By virtue of (20), condition (17) can then be rewritten as[
−s[i]k+N |k + s

[i]
cr,out

]
+
·
[
s
[i]
k+N |k − s

[i]
stop
]
+

= 0. (21)

D. Optimal Control Problem

Based on the optimized position, velocity and heading
trajectories (x

[l]
g,·|k−1, y

[l]
g,·|k−1, ψ

[l]
·|k−1, v

[l]
·|k−1) of conflicting

agents l ∈ A[i]
c,k that have been transmitted at time k − 1

(Assumption A6), every agent i ∈ A solves the following
OCP at time k

minimize
{uk+j|k}N−1

j=0

`
[i]
N (x

[i]
k+N |k) +

N−1∑
j=0

`
[i]
j (x

[i]
k+j|k, u

[i]
k+j|k) (22a)

s.t. x
[i]
k+j+1|k = A

[i]
d x

[i]
k+j|k +B

[i]
d u

[i]
k+j|k (22b)

u
[i]
k+j|k ∈ U

[i], j = 0, . . . , N − 1 (22c)

x
[i]
k+j|k ∈ X

[i]
k+j|k, j = 1, . . . , N (22d)

− a[i]y ≤ a
[i]
y,k+j|k ≤ a

[i]
y , j = 1, . . . , N (22e)

(a
[i]
tot,k+j|k)2 ≤ (a

[i]
tot)

2, j = 1, . . . , N (22f)

Ai,lk+j|k = 0, ∀l ∈ A[i]
c,k, j = 1, . . . , N (22g)[

−s[i]k+N |k + s
[i]
cr,out

]
+
·
[
s
[i]
k+N |k − s

[i]
stop
]
+

= 0, (22h)

x
[i]
k|k = x

[i]
k , (22i)

where a
[i]
tot,k+j|k = [(a

[i]
x,k+j|k)2 + (a

[i]
y,k+j|k)2]1/2

refers to the total acceleration in (8) and
a
[i]
y,k+j|k = κ[i](s

[i]
k+j|k) · (v[i]k+j|k)2 to the lateral acceleration

in (7). At every time instant k, Agent i solves the above
optimization problem and obtains an optimal sequence
(u

[i],?
k|k , . . . , u

[i],?
k+N−1|k), the first element of which, u[i],?k|k ,

is applied to the plant. Moreover, the agents’ optimized
trajectories (x

[i]?
g,·|k, y

[i]?
g,·|k, ψ

[i]?
·|k , v

[i]?
·|k) are transmitted to the

other agents via V2V communication.
Due to (22f), (22g) and (22h), Problem (22) is nonconvex.

It can, however, be reformulated in a form so that it can be
solved efficiently in real time using PANOC.

IV. FAST NUMERICAL NMPC SOLUTION

The proximal averaged Newton-type method for optimal
control (PANOC) has been proposed by the authors in [9]
(see also [8], [14] for applications of PANOC to obsta-
cle avoidance MPC). PANOC is a first-order method that
combines projected gradient iterations with quasi-Newtonian
directions for fast convergence. The key to guaranteeing
global convergence of PANOC is the forward-backward
envelope (FBE) introduced in [15] for convex problems and
further extended to nonconvex problems in [16], [17].

To solve problem (22) for Agent i with PANOC, it is
reformulated and cast in the form

minimize
u
[i]

·|k∈U
[i]
k

φ
[i]
k (u

[i]
·|k; z

[i]
k), (23)

where u
[i]
·|k = [u

[i]
k|k, . . . , u

[i]
k+N−1|k]> is the vector

of predicted control actions of Agent i, and z
[i]
k =

[x
[i],>
k , (x

[l],>
g,·|k−1, y

[l],>
g,·|k−1, ψ

[l],>
·|k−1, v

[l],>
·|k−1)

l∈A[i]
c,k

]> is a param-
eter vector which provides to Agent i all necessary measured
information. PANOC requires that φ

[i]
k are continuously

differentiable functions in u
[i]
·|k with Lipschitz-continuous

gradient and that sets U [i]
k are closed and such that we can

easily compute projections thereon.
To that end, we first eliminate the state sequence using

(22b), that is, we substitute

x
[i]
k+j|k(u

[i]
·|k) = (A

[i]
d)jx

[i]
k|k +

j−1∑
ι=0

(A
[i]
d)j−1−ιB

[i]
d u

[i]
k+ι|k.

For the input constraints (22c) we define the set U [i]
k ,

{u[i]·|k | u
[i]
k+j|k ∈ U

[i], j = 0, . . . , N − 1}, which is a rectan-
gle, because of the definition of U [i] in (5). The remaining
equality and inequality constraints, namely (22d) to (22h),
are modeled as soft constraints and the quadratic penalty
method [18, Chap. 17] is used to ensure their satisfaction.

In particular, equality constraints (22g) and (22h) can be
concisely written as hs(u

[i]
·|k) = 0 for s = 1, . . . , neq. We

introduce the associated penalty functions

ψeq,s(u
[i]
·|k, βeq,s) , βeq,s · hs(u[i]·|k)2

with positive weights βeq,s > 0 for s = 1, . . . , neq. Inequal-
ity constraints can be concisely stated as gs(u

[i]
·|k) ≤ 0, for

s = 1, . . . , nineq. For each such constraint, we define the
penalty function

ψineq,s(u
[i]
·|k, βineq,s) , βineq,s · [gs(u[i]·|k)]2+,

with positive weights βineq,s > 0. This way, we define the
modified cost

φ
[i]
k (u

[i]
·|k; z

[i]
k , (βeq,s)s, (βineq,s)s)

, `
[i]
N (x

[i]
k+N |k(u

[i]
·|k)) +

N−1∑
j=0

`
[i]
j (x

[i]
k+j|k(u

[i]
·|k), u

[i]
k+j|k)

+

neq∑
s=1

ψeq,s(u
[i]
·|k, βeq,s) +

nineq∑
s=1

ψineq,s(u
[i]
·|k, βineq,s). (24)

Now, the problem is in the form (23) and can be solved using
PANOC. Note that the constraints are satisfied if and only if
ψeq,s(u

[i]
·|k, βeq,s) = 0 and ψineq,s(u

[i]
·|k, βineq,s) = 0 for some

weight parameters and for all s. In order for the constraints to
be satisfied, we select a tolerance εs > 0 for the constraints
and we require that ψeq,s/βeq,s < εs for all s (similarly,
ψineq,s/βineq,s < εs for the inequality constraints). If this
is not satisfied for some s, we multiply the corresponding
weight by 10 and solve the problem, warm-starting with the
previous approximate solution.

V. SIMULATION RESULTS

A. Simulation Setup

To demonstrate the efficiency of our approach, we present
a realistic intersection crossing scenario which involves four
agents as illustrated in Fig. 4. According to section III-B,
crossing priorities are time-invariant with γ(1) = 3,
γ(2) = 1, γ(3) = 4 and γ(4) = 2. In the considered
scenario, Agent 1 (red) crosses the intersection straight from
North to South, Agent 2 (blue) approaches the intersection
from the West and turns left while Agent 3 (green) and Agent

0

5

10

15 Agent 1
(Prio. 3)

lower bound

Agent Distance [m]

0

5

10

15

Actual
Ref.

Velocity [m/s]

−4

−2

0

2

4

Actual
Ref.

Acceleration [m/s2]

0

10

20

30 Agent 2
(Prio. 1)

lower bound
0

5

10

15

Actual
Ref. −4

−2

0

2

4

lat. accel.

max. lat. accel.

Actual
Ref.

0

5

10

15 Agent 3
(Prio. 4)

lower bound
0

5

10

15

Actual
Ref. −4

−2

0

2

4

Actual
Ref.

0 10 20 30

0

10

20

30 Agent 4
(Prio. 2)

lower bound

Time [s]
0 10 20 30

0

5

10

15

Actual
Ref.

Time [s]
0 10 20 30

−4

−2

0

2

4

Actual
Ref.

Time [s]
Fig. 3: From left to right in row i: (1) Distances between the safety region and bounding box of agents i and l, (2) velocity and (3) acceleration of Agent i. Agent 2 is turning
left, therefore, we additionally depict its lateral acceleration. Color patches refer to intersection regions: inside ICR (beige), BSR (green), CR (red) and outside ICR (white).

4 (cyan) cross the intersection straight from East to West and
South to North, respectively — as shown in Fig. 4a.

All agents have dimensions L[i] = 5 m and W [i] = 2 m

and the same dynamic time constant of T [i]
ax = 0.3 s. The

initial and reference velocity is 14 m/s for agents 1 to 3
and 8 m/s for Agent 4. The initial positions in the global
frame are: (−2, 82) for Agent 1, (−82,−2) for Agent 2,
(69, 2) for Agent 3 and (2,−39) for Agent 4. The agents’
MPC controllers have the same parameterization: a sampling
time of Ts = 0.1 s, a horizon length of N = 50 and
the weights q[i] = q

[i]
N = 1 and r[i] = 10. The sampling

time is chosen in accordance to the commonly applied V2V
communication frequency of 10 Hz. We parameterize the
safety region by d̃

[i]
safe,xf/xr = 2 m, d̃[i]safe,yl/yr = 1 m and

t
[i]
gap,x/y = 1 s. Moreover, the longitudinal acceleration is

constrained between−7 and 4 m/s2, the absolute lateral accel-
eration should not exceed 3.5 m/s2 and the total acceleration
is bounded from above by 7 m/s2. The maximum velocity
is set to 15 m/s. For equality and inequality constraints, a
tolerance of εs = 10−4 has been selected. Simulations
are run on an Intel i7 machine at 2.9 GHz with Matlab
R2018b, while the controllers run in C89 using the open
source code generation tool nmpc-codegen, available at
github.com/kul-forbes/nmpc-codegen.

B. Discussion of Results

For the given scenario in row i, Fig. 3 illustrates the
resulting trajectories and Fig. 4 shows three snapshots of the
scenario along with the agents’ optimized trajectories and

their safety regions. As we may observe in Fig. 3 and Fig. 4,
Agent 4 is able to cross the intersection before Agent 2
by increasing its velocity temporarily from 8 m/s to 9 m/s.
Indeed, the lower priority of Agent 4 allows the agent to
cross the intersection before Agent 2. After Agent 2 has left
the CR, the CA constraint on Agent 2 is dropped by Agent 4
and the distance in the first column is no longer determined.

While Agent 2 crosses the intersection, it has to decelerate
in order to satisfy the constraint on its lateral acceleration,
which is depicted in the third column (light blue solid) along
with its upper bound (light blue dashed). When passing
the CR, no CA constraints are imposed on other agents as
Agent 2 has the highest priority and A[i]

c,ahead = ∅. However,
after leaving the CR, Agent 2 needs to avoid rear-end
collisions with Agent 4 who is now driving in the same lane.
It can be seen that Agent 2 is closing up to Agent 4, however,
eventually, Agent 2 is driving at the same speed as Agent 4
to avoid a rear-end collision as shown in Fig. 4c.

Agent 1, who has lower priority than Agent 2, must wait
for Agent 2 to leave the intersection. Although Agent 1
needs to decelerate to 1.2 m/s, it stays as close as possible to
Agent 2 to maximize its own speed as shown in Fig. 4b.

Lastly, Agent 3 is able to cross. With the lowest priority,
it has to impose CA constraints on all other agents. Note
that Agent 3 has to wait at the stopping line as it does not
satisfy the minimum spatial preview constraint (17) — see
Fig. 4b. After Agent 1 has cleared the intersection, Agent 3 is
finally able to proceed. In essence, the distributed intersection
coordination scheme satisfies all our requirements by being

−20 0 20

0

20

40

(a) t = 4.4 s

−10 0 10

−10

0

10

(b) t = 9.5 s

−10 0 10

190

200

210
(c) t = 29.9 s

Fig. 4: Snapshots: (Left) Agent 4 (cyan) crosses first; Note that agents 2 (blue) and 3 (green) decide to wait; (Middle) Agent 1 (red) and Agent 3 (green) yield to Agent 2 (blue);
(Right) Agent 2 (blue) avoids rear-end collisions with Agent 4 (cyan). The middle and right figures show the safety region of each agent i in the color of the conflicting Agent l.

capable of avoiding collisions in a complex realistic driving
scenario and by ensuring smooth velocity and acceleration
trajectories. In its current formulation, the control scheme
avoids collisions with crossing agents in intersections and
acts as a conventional adaptive cruise control system (ACC)
outside intersection areas. Thus, we have proposed a gener-
alized formulation of the collision avoidance problem which
will serve as a basis for future extensions.

To evaluate the associated computational complexity, in
Fig. 5 we show the computation times for every agent.
Evidently, the entire scheme is real time capable having a
maximum computation time of 44.1 ms, while the sampling
time is 100 ms. An increased computational demand can
be recognized when constraints are active for almost the
entire horizon. This can be observed for Agent 2 during rear-
end collision avoidance (t ≥ 20 s) and for Agent 3 before
entering the intersection (5 s ≤ t ≤ 14 s).

0 5 10 15 20 25 30

100

101

102

Time [s]

C
om

pu
ta

tio
n

Ti
m

e
[m

s]

Agent 1 Agent 2 Agent 3 Agent 4

Fig. 5: Computation times for every agent for the entire simulation run.

VI. CONCLUSION AND FUTURE WORK

For the coordination of agents, we have proposed a dis-
tributed MPC scheme which relies on V2V communication.
Every agent determines its local control actions by efficiently
solving a nonconvex nonlinear MPC problem using PANOC.
To obtain a more general problem formulation, CA con-
straints are stated in a global Cartesian frame using B-spline
functions. The OCP is augmented with conditional con-
straints which allows us to encode rules. Simulation results
demonstrate the efficiency in terms of control performance
and computational complexity.

In the future, we envision to further extend the control
scheme to multi-lane/multi-intersection scenarios and to in-

vestigate how to deal with dynamic priority negotiation.
Finally, we intend to conduct experimental tests.

REFERENCES

[1] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and
A. Kovacs, “Enh. of V2X comm. in support of cooperative autonomous
driving,” IEEE Comm. Magazine, vol. 53, no. 12, pp. 64–70, 2015.

[2] G. R. Campos, P. Falcone, H. Wymeersch, R. Hult, and J. Sjöberg,
“Cooperative Receding Horizon Conflict Resolution at Traffic Intersec-
tions,” in IEEE Conf. on Decision and Control, 2014, pp. 2932–2937.

[3] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition
of the optimal coordination of vehicles at traffic intersections,” in
Conference on Decision and Control, 2016, pp. 2567–2573.

[4] J. Shi, Y. Zheng, Y. Jiang, M. Zanon, R. Hult, and B. Houska,
“Distributed control algorithm for vehicle coordination at traffic in-
tersections,” in European Control Conference, 2018, pp. 1166–1171.

[5] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A Feasible MPC-
Based Negotiation Algorithm for Automated Intersection Crossing,”
in European Control Conference, June 2018, pp. 1282–1288.

[6] F. Molinari and J. Raisch, “Automation Of Road Intersections Using
Consensus-based Auction Algorithms,” in American Control Confer-
ence, 2018, pp. 5994–6001.

[7] A. Katriniok, P. Kleibaum, and M. Joševski, “Distributed Model
Predictive Control for Intersection Automation Using a Parallelized
Optimization Approach,” in IFAC World Congress, vol. 50, no. 1, 2017,
pp. 5940 – 5946.

[8] A. Sathya, P. Sopasakis, R. V. Parys, A. Themelis, G. Pipeleers, and
P. Patrinos, “Embedded nonlinear model predictive control for obstacle
avoidance using PANOC,” in ECC, 2018, pp. 1523–1528.

[9] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos, “A simple
and efficient algorithm for nonlinear model predictive control,” in
Conference on Decision and Control, 2017, pp. 1939–1944.

[10] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hierarchical trajectory
planning of an autonomous car based on the integration of a sam-
pling and an optimization method,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 2, pp. 613–626, 2018.

[11] C. de Boor, A Practical Guide to Splines. Springer, 1978, vol. 1.
[12] R. Rajamani, Vehicle Dynamics and Control. Springer, 2012, vol. 2.
[13] K. D. Kim and P. R. Kumar, “An mpc-based approach to provable

system-wide safety and liveness of autonomous ground traffic,” IEEE
Trans. on Autom. Control, vol. 59, pp. 3341–3356, 2014.

[14] B. Hermans, P. Patrinos, and G. Pipeleers, “A penalty method based
approach for autonomous navigation using nonlinear model predictive
control,” in IFAC World Congress, no. 20, 2018, pp. 234–240.

[15] P. Patrinos and A. Bemporad, “Proximal Newton methods for convex
composite optimization,” in IEEE 52nd Annual Conference on Deci-
sion and Control, 2013, pp. 2358–2363.

[16] L. Stella, A. Themelis, and P. Patrinos, “Forward-backward quasi-
Newton methods for nonsmooth optimization problems,” Computa-
tional Optimization & Applications, vol. 67, no. 3, pp. 443–487, 2017.

[17] A. Themelis, L. Stella, and P. Patrinos, “Forward-backward envelope
for the sum of two nonconvex functions: Further properties and
nonmonotone line-search algorithms,” SIAM Journal on Optimization,
vol. 28, no. 3, pp. 2274–2303, 2018.

[18] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

	I Introduction
	I-A Main Contribution and Outline
	I-B Notation

	II Modeling
	II-A Vehicle Kinematics
	II-B Local and Global Coordinate Frames
	II-C Intersection Regions

	III Distributed Motion Planning Problem
	III-A Local Agent Objectives and Constraints
	III-B Collision Avoidance
	III-B.1 Agent Conflict Sets
	III-B.2 Safety Regions and CA Constraint Formulation

	III-C Minimum Spatial Preview
	III-D Optimal Control Problem

	IV Fast Numerical NMPC Solution
	V Simulation Results
	V-A Simulation Setup
	V-B Discussion of Results

	VI Conclusion and Future Work
	References

