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Safe Reachability Verification of Nonlinear Switched Systems via a
Barrier Density

Ayşegül Kıvılcım1, Özkan Karabacak1 and Rafael Wisniewski1

Abstract— We study temporal properties of dynamical sys-
tems; specifically, we strive to determine a set of initial states
that leads the solutions to reach desired states avoiding a
predetermined unsafe set. This property, which we call safe
reachability, has been studied in literature for autonomous
systems using barrier function and barrier densities [1]. In this
paper, we generalize a sufficient condition for safe reachability
of autonomous system to switched systems under arbitrary
switching signals. The condition relies upon the existence of
a common barrier density function for each subsystem. We
apply the condition using the sum of squares method together
with Putinar Positivstellensatz.

I. INTRODUCTION

In many control applications, one needs to ensure that
a system with an initial state reaches to a desired state
(reachability) avoiding some undesired states (safety). One of
the widely used method for the verification of the safety and
the reachability is the application of barrier functions which
allows to analyze a system without knowing explicitly the
solutions as done in the analysis with Lyapunov functions. To
mention a few applications, barrier functions have been used
for safety verification of unmanned aerial system to perform
high speed in an environment with multiple obstacles [2], for
model invalidation, i.e., checking the inconsistency of the
measured data with the model [3], for detecting the faults
in a system [4], for verification of safety and reachability
of nonlinear autonomous systems and systems with distur-
bances [1], and for the computation of the reachable sets [5]
(for more applications see [1], [4], [6], [7], [8], [9], [10], [11]
and the references therein). As mentioned in the paper [1],
one may not be able to find a barrier function to certify safety
and reachability due to the fact that the solution trajectory
for some initial state, which is in a negligible set - a set
with measure zero, may enter an undesired set or may not
reach a desired set. In [1], notions of “weak safety” and
“weak reachability” are defined to indicate that the safety
and reachability properties are satisfied except the set of
(Lebesgue) measure zero. In the light of this, weak safe
reachibility can be defined as follows: There exists a time
such that for almost every initial state the solution enters a
desired region without entering an undesired region. In [1],
to certify the weak safety of nonlinear autonomous system
barrier density is utilized. Density functions are also used
for stability analysis [12], [13], [14], [15], [16], [17], [18],
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[19], [20], [21]. Leaning upon the results of [1], our main
goal in this paper is to obtain a sufficient condition for the
weak safe reachibility of nonlinear switched system under
arbitrary switching.

Nonlinear switched systems appear in various applications
(for instance [22] and the references therein). In particular,
nonlinear switched systems with time dependent switching
can be used to model switched control systems where
switching is generated by an external system [23] (for more
applications, see the references in [22], [23], [24]). Recently,
using common and multiple Lyapunov densities, we have
obtained sufficient conditions for the almost global stability
of switched systems [25]. In [26], safety verification of
nonlinear switched systems is studied by utilizing barrier
functions and barrier densities. In contrast to [26], here, we
have considered the safe reachability problem of nonlinear
switched system via a common barrier density which can be
seen as a generalization of the result of the paper [26].

Inspired by the common Lyapunov density approach in
[25] and the dual Lyapunov analysis of weak safety and
reachability in [1], we analyze the safe reachability of a
nonlinear switched system. Leaning upon the existence of
a common Barrier density, we present a sufficient condition
for weak safe reachability under arbitrary switching.

The paper is structured as follows: In Section II, we
present preliminaries about nonlinear switched systems under
arbitrary switching. In Section III, we define safe reachability
and weak safe reachability of a system and present a suffi-
cient condition for the weak safe reachability of nonlinear
switched systems with time-varying switching. In Section IV,
we present an example by using the sum of squares algorithm
to illustrate theoretical part of our paper and we present a
brief summary about the usage of Sum of Squares (SoS)
technique together with Putinar Positivstellensatz.

Notation. The following notations will be used in the
remaining part of the paper.
• m denotes the Lebesgue measure on Rn, and µρ(A) =∫

A
·µ(x) denotes Lebesgue integral with respect to

measure µ, here we will define Lebesgue integral with
respect to Lebesgue measure m as

∫
· dx.

• For a function f : Rn → Rn, and ∇ · f denotes the
divergence of f and for a function g : Rn → R, ∇g
denotes the gradient of g.

• Int(A), Ac and A denote the interior, the complement
and the closure of a set A, respectively. Also, ∂A =
A \ Int(A).

The notions “almost every” and “almost all” are used to
indicate that the given property is satisfied everywhere except



for a set with Lebesgue measure zero.

II. PRELIMINARIES

We have extended Corollary 3.11 [1] (rewritten as Propo-
sition 1 below) to the nonlinear switched systems under
arbitrary switching signals. In the next section, the conditions
of the proposition will be generalized to nonlinear switched
systems and reformulated. In [1], they have analyzed safety
and reachability of the given sets by applying a bisection
algorithm on the set of initial states, X0 and SoS program-
ming which is not computationally efficient since it requires
to verify safety and reachability by solving SoS algorithm for
each partition of X0. In this paper, we will propose another
method to verify the safely reachability which leans upon
searching common barrier density via the sum of squares
(SoS) programming together with Putinar positivstellensatz
[27]. Specifically, SoS programming is used for determining
whether a polynomial can be represented as a combination
of sum of squares of polynomials. SoS programming to-
gether with Putinar positivstellensatz is applied to determine
whether a polynomial is non-negative on a compact set
which is defined semi-algebraically, i.e, the set is defined
via polynomial inequalities.

For the sake of the completeness, let us restate Corollary
3.11 given in [1].

Proposition 1: [1, Corollary 3.11] Consider a system ẋ =
f(x), where f is a continuously differentiable function on
Rn. Let X be a bounded subset of Rn, and X0 ⊆ X be a set
with positive Lebesgue measure. Assume that a desired set
Xr ⊆ X and an unsafe set Xu ⊆ X are given. If there exists
a continuously differentiable function ρ(x) ∈ Rn satisfying

ρ(x) > 0, ∀x ∈ X0, (1a)

∇ · (ρf)(x) > 0, ∀x ∈ (X \Xr), (1b)

ρ(x) ≤ 0, ∀x ∈ (∂X \ ∂Xr) ∪Xu, (1c)

then the weak safe reachability property holds; i.e. for almost
every initial states x0 ∈ X0, the solution x(t) starting at
x(0) = x0 satisfies, for some T ≥ 0, x(T ) ∈ Xr, x(t) /∈ Xu,
and x(t) ∈ X, for all t ∈ [0, T ].

Consider a continuous-time nonlinear switched system of
the following form

ẋ(t) = fσ(x(t)), σ ∈ Snonchat (2)

where σ is the switching signal. The switching signal, σ(t) :
[0,∞)→ {1, 2, . . . , N}, is assumed to be a right continuous
piece-wise constant function. The largest set for admissible
switching signal is a set of switching signals which have
finite number of discontinuities in a finite time interval and
denoted by Snonchatt. Each system given by ẋ(t) = fp(x(t)),
p = 1, 2, . . . , N is called the subsystem of the system (2).
Assume that each subsystem fp : Rn → Rn, i = 1, 2, . . . , N,
is continuously differentiable on Rn. Denote the constant
value of the switching signal σ(t) for t ∈ [ti−1, ti) as
pi. By using these values switching signal can be defined
as σ(t) = {(∆t1, p1), (∆t2, p2), . . .}, where ∆ti is the
operation time of the subsystem fpi . Assume that solutions

of (2) with Snonchatt exist for all t ∈ R. Denote a solution of
system (2) for the switching signal σ ∈ Snonchatt and for the
initial state x as φσt (x).

Remark 1: Since fp, p = 1, 2 . . . , N are continuously
differentiable and σ ∈ Snonchatt, the existence of solutions of
(2) can be guaranteed under some specific conditions [25].
However, the verification of the existence and uniqueness of
solutions is not the concern of this paper for this reason, we
skip the discussion on existence of solutions. For more details
on the existence and uniqueness of solutions of autonomous
differential equations, see [28] and references therein, since
once the existence and uniqueness of each subsystem of (2)
are guaranteed, the existence and uniqueness of solutions of
(2) are guaranteed by verifying the existence and unique-
ness exponential barrier function between each consecutive
switching instants of the switching signal.

III. MAIN RESULT

The idea of the paper [1] about the safety and reachability
verification by means of a barrier density is extended to
the nonlinear switched systems under arbitrary switching
signals and Proposition 1 is reformulated. Moreover, in the
sequel, we have also mentioned that under which conditions
weak safe reachibility results can be used to certify safe
reachability of nonlinear switched system. Now, let us define
safe reachability and weak safe reachability.

Definition 1: ((Weak) safe reachability) We say that the
system (2) is (weakly) safely reachable on a domain X from
an initial set X0 to a desired set Xr avoiding an unsafe set
Xu if, for each switching signal σ ∈ Snonchatt, there exists a
T (x) > 0 for (almost) every initial state x ∈ X0 such that

φσT (x)(x) ∈ Xr, (3a)

φσt (x) /∈ Xu, for all t ∈ [0, T (x)], (3b)
φσt (x) ∈ X for all t ∈ [0, T (x)], (3c)

where φσt (x) denotes the solution of (2) for the switching
signal σ ∈ Snonchatt and for the initial state x.

(Weak) safe reachability from X0 to Xr avoiding Xu is

denoted as X0 Xu Xr.

(a.e.)

The following lemma is needed for the proof of Lemma
2, which is used to certify the change of volume with the
change of density along the solutions of a system.

Lemma 1: [14] Assume that a set D ⊆ Rn is open, φt(x)
is a solution of the system ẋ = f(x) with an initial state x,
f(x), ρ(x) are continuously differentiable in D, and for a
measurable set A, define φs(A) = {φs(x)|x ∈ A}. Assume
that φs(A) ⊆ D, for all s ∈ [0, t]. Then,∫
φt(A)

ρ(x)dx−
∫
A

ρ(x)dx =

t∫
0

∫
φτ (A)

[∇ · (fρ)(x)]dxdτ.

(4)
One can see that ∂u

∂t = −∇ · (fu) is the continuity equation
which is widely used for explaining the conservation of mass
and it gives the evolution of density [29], [30] along the



solution φt(x) of ẋ = f(x) with initial state x by considering
u(x, t) := ρ((φt(x))−1) | ∂φt((φt(x))−1))

∂x |. From (4), one
can conclude that if ∂u

∂t = −∇ · (fρ) = 0, then the vector
field is volume preserving. Moreover, if ∇ · (fρ) > 0, we
can say that the volume along the flow of the vector field
increases [31].

Lemma 2: [32] Assume that a set D ⊆ Rn is open, φt(x)
is a solution of the system ẋ = f(x) with an initial state
x, and f(x), ρ(x) are continuously differentiable in D, and
for a measurable set A, define φs(A) = {φs(x)|x ∈ A}.
Let ρ is integrable in D and ∇ · (fρ) > 0. Assume that
φs(A) ⊆ D, for all s ∈ [0, t]. Then, for a fixed t > 0,
µρ(φt(A)) > µρ(A).

Next, we will give a way for verification of safe reacha-
bility properties of nonlinear switched systems with the aid
of a Barrier density which is common for each subsystem (a
common barrier density).

Theorem 1: Let X ⊆ Rn be bounded and X0 be a set
with positive Lebesgue measure. Assume that for the system
(2), the sets X0 ⊆ X, Xu ⊆ X and Xr ⊆ X, are given and
there exists a differentiable function ρ in Rn satisfying the
following properties

ρ(x) > 0, ∀x ∈ X0, (5a)
∇ · (ρfp)(x) > 0, p = 1, 2, . . . , N, ∀x ∈ X \Xr, (5b)
ρ(x) ≤ 0, ∀x ∈ Xc ∪Xu. (5c)

Then, system (2) is weakly safely reachable,

X0 Xu Xr.

a.e

Proof: Take an arbitrary switching signal σ ∈ Snonchatt.
Let φσt (x) denotes the solution of (2) for the switching signal
σ ∈ Snonchatt. Let φσt (A) = {φσt (x)|x ∈ A} for t ≥ 0 be
the set of solutions starting from an arbitrary set A ⊆ X0

with positive measure. Assume that for some T (x) > 0
φσT (x)(A) ⊆ Xu and φσt (A) 6⊆ Xr and φσt (A) ⊆ X for all
t ∈ [0, T (x)]. Utilizing Lemma 2 between each consecutive
switching instants and considering condition (5a), we obtain
µρ(φ

σ
T (x)(A)) > µρ(A) > 0. Therefore, there exists no set

A ⊆ X0 with positive measure such that for some T (x) > 0,
φσT (x)(A) ⊆ Xu and φσt (A) ⊆ X for all t ∈ [0, T (x)].

Let us show reachability to the set Xr. Define Z =
∪x∈X0

{x ∈ X0|φσt (x) ⊆ X \ Xr, ∀t ≥ 0} and φσt (Z) ⊆
X \ Xr, for all t > 0. By considering Lemma 2 together
with Z ⊆ X0 from 0 to t, we get µρ(φσt (Z)) > µρ(Z),
for a fixed t > 0. The measure of all trajectories star-
ing from Z and lying in X \ Xr can be computed as

µρ(φ
σ
t (Z)) =

∞∑
i=1

µρ(φ
σ
ti(Z)). Applying the condition (5b)

together with Lemma 1 between each switching instants, we
get µρ(φσti(Z)) > µρ(φ

σ
ti−1

(Z)), i ∈ Z>0. Applying this
iteratively together with condition (5a), it is obtained that

µρ(φ
σ
ti(Z)) > µρ(Z), i ∈ Z>0. (6)

Combining the previous sum with (6), we get µρ(φσt (Z)) >
∞∑
i=1

µρ(Z). If µρ(Z) > 0 , we have µρ(φσt (Z)) =∞, which

contradicts to the assumption of the integrability of ρ on

X. Thus, the set Z is included in a set with measure zero.
Any solution which stays inside of the region X \Xr for all
t ≥ 0 is included in a set with measure zero. For almost every
initial state, the solution φσt (x) leaves the region X \Xr, i.e.,
either it leaves the domain X or it enters the region Xr. From
above discussion on safety, the set of solutions whose initial
states are included in a set with positive measure cannot
leave X since ρ is negative in Xc, so it reaches the set Xr

in a finite time. To conclude, there exists a time T (x) > 0,
for almost every initial state x in the set X0 solution satisfy
that φσT (x)(x) ∈ Xr, φ

σ
t (x) /∈ Xu and φσt (x) ∈ X for all

t ∈ [0, T (x)].
If there exists a continuously differentiable function ρ(x) on
Rn satisfying the conditions (5a)-(5c) of Theorem 1, then we
will call it a common barrier density.

When the set of initial states and the set of undesired
states satisfy a certain topological properties, weak safe
reachability implies safe reachability as shown in the next
corollary.

Corollary 1: Let X ⊆ Rn be bounded and X0 be a set
with positive Lebesgue measure. Assume that the sets X0

and Xu satisfy the following property Int(X0) = X0 and
Int(Xu) = Xu. If there exists a differentiable function ρ in
Rn satisfying the conditions (5a)-(5c) for a system (2) with
the given sets X0 ⊆ X, Xu ⊆ X, and Xr ⊆ X, then system

(2) is safely reachable, X0 Xu Xr.

Proof: Recall that if a non-empty set A satisfies
Int(A) = A, then for an arbitrary element a ∈ A, the
intersection of any neighbourhood of a with A contains a
non-empty open set. The conditions of (5a)-(5c) of Theorem
1 are satisfied with the given sets. Thus, (2) is weakly
safely reachable. Let us assume that the system is not safely
reachable, namely, for an arbitrary switching signal σ ∈
Snonchatt, (2) has a solution φσt (x) starting with an initial state
x from the set X0 that reaches a point x̄ := φσT1(x)(x) ∈ Xu.
Then, there exists a sufficiently small neighbourhood Ux̄ of
x̄ and a non-empty open set W such that W ⊂ Ux̄∩Xu. Due
to Int(X0) = X0 and continuity of the flow map φσt (x), we
can say that there exists a non-empty open set V such that
V ⊂

(
φσT1(x)

)−1
(W )∩X0 and µρ(V ) > 0, which contradicts

to the weak safety. Thus, for the given sets X0 and Xu the
system is safe. Due to the fact that system is weak reachable,
for almost every initial state x in X0 the solution of (2)
reaches the set Xr in a finite time. We can conclude that
all solutions starting from the set X0 reach the set Xr due
to continuous dependence of solutions with the initial state.
Thus, system is safely reachable.

Remark 2: If there is a stable fixed point of the system
in X, it should be removed from the domain. Otherwise,
∇ · (fpρ) > 0 on X implies that ρ is not integrable on X .

Remark 3: If the condition (5b) is given as ∇· (fpρ) ≥ 0,
for all p = 1, 2, . . . , N, the safety property will be still valid
since the solutions starting from X0 will not reach the set Xu

since positivity of ρ along the solutions starting in X0 is still
preserved. However, in this case, we cannot guarantee the
reachability since under this condition the measure of the set



either increases or stays constant. To ensure reachability, one
should show that the measure of a set is strictly increasing
along the solutions.

IV. APPLICATION OF THE SUM OF SQUARES
PROGRAMMING TO THE VERIFICATION OF SAFE

REACHIBILITY

In this section, we will illustrate the theoretical results
obtained in the previous section with the aid of an example,
and we will give a brief summary of SoS programming
with Putinar positivstellensatz. The Putinar positivstellensatz
can be interpreted as follows: On a compact semi alge-
braically defined set K = {x ∈ Rn|p1(x) ≥ 0, p2(x) ≥
0, . . . , pn(x) ≥ 0} to certify the non-negativity of a poly-
nomial q is same as finding a sum of representation of
q in the form q = s0 + s1p1 + s2p2 + . . . + snpn for
some sum of square polynomials s0, s1, . . . , sn. Then, we
can guarantee that the polynomial q is non-negative on the
given sets. For this reason, in the example, we will use SoS
together with Putinar Positivstellensatz [27] to search for a
common Barrier density satisfying some non-negativity and
non-positivity properties on the given sets since the given
sets are semi algebraically defined and the vector fields are
polynomials. The main advantage of using SoS with Putinar
positivstellensatz is that it provides an algebraic formulation
that is linear in unknown SOS polynomials. In other words,
to certify if a polynomial is nonnegtive boils down to finding
a solution of a certain semi-definite programming problem.

In the example, the search of a Barrier density is done
by means of SOSTOOLS, a sum of squares programming
solver and SDPT3, a semi-definite programming solver.

In the following, we use a periodic switching
signal as {(∆t1, p1), . . . , (∆tn, pn)}, that is
{(∆t1, p1), . . . , (∆tn, pn), (∆t1, p1), . . .}. Thus, the system
has a switching signal with a period ∆t1 + . . .+ ∆tN .

Example 1: (Example for a common Barrier density) Let
us consider a nonlinear switched system (2) with the follow-
ing subsystems:

f1(x) =

 x2

−x1 − x2 +
x3

2

27

 ,
f2(x) =

 x2

−3x1

2
− x2 +

x3
2

9

 .
A set of initial state, a set of undesired states (unsafe set),
a set of desired states (reachable set) and a domain can be
defined as

X0 := {x ∈ R2|p1(x) := −(x1 − 1.5)2 − x2
2 + 0.52 ≥ 0},

Xu := {x ∈ R2|p2(x) := −(x1 + 0.7)2 − (x2 + 1)2 + 0.52 ≥ 0},
Xr := {x ∈ R2|p3(x) := −x2

1 − x2
2 + 0.52 ≥ 0, },

X := {x ∈ R2|p4(x) := −x2
1 − x2

2 + 32 ≥ 0},

respectively. To ensure that almost every solution starting
from X0 doesn’t leave X without entering Xr, the following

set

Xd = {x ∈ R2|p5(x) := −x2
1 − x2

2 + 3.52 ≥ 0}.

is needed. In the sequel, it will be discuss in details. More-
over, the set Xd \X can be implemented to the conditions
of Theorem 1 as a set of undesired states; i.e., by replacing
the set Xc in condition (5b) with Xd \X .

Considering the above given sets, the conditions (5a)-(5c)
of Theorem 1 can be converted to the following form:
• ρ(x) > 0, for all x ∈ X0,
• ∇ · (ρ(x)fi(x)) > 0, i = 1, 2, for all x ∈ X \Xr, and
• ρ(x) ≤ 0 for all x ∈ (Xd \X) ∪Xu.

The problem of finding such a function ρ as a polynomial can
be interpreted as looking for an SoS representation by using
Putinar positivstellensatz on the semi algebraically defined
given sets with the polynomial vector fields.

By searching ρ, as a polynomial and using SoS algorithm
together with Putinar Positivstellensatz, we will verify the
safely reachability of the system by using common Barrier
density. The conditions (5a)-(5c) of Theorem 1 can be
converted to SoS algorithm with the Putinar positivstellensatz
as:
• sos(ρ− s1p1 − ε),
• sos(−ρ− s2p2),
• sos(−ρ− s3p5 + p4s4),
• sos((∇ · (f1)ρ+∇ρ · f1 − ε)− s5p4 + s6p3) and
• sos((∇ · (f2)ρ+∇ρ · f2 − ε)− s7p4 + s8p3),

where si, i = 1, 2, . . . , 8 are sum of square polynomials and
ε is a sufficiently small positive number. We have obtained
a tenth degree polynomial ρ by applying the above SOS
algorithm with a tolerance ε = 0.005. We use such tolerance
to guarantee that the density is positive on X0 and∇·(fpρ) >
0 on X \Xr. Thus, the existence of barrier density proves
that the system is weak safely reachable from X0 to Xr

avoiding Xu. Additionally, given sets X0 and Xu satisfy the
condition Int (X0) = X0 and Int (Xu) = Xu of Corollary
1, then we can say that the system is safely reachable from
X0 to Xr avoiding Xu.

Figure 1 is obtained by using the given subsystems with
a switching signal {(0.4, 1), (0.3, 2)}. The dashed curve in
Figure 1 is drawn to indicate the places where ρ = 0. In the
inside of the dashed curve where the measure of the set of
solutions starting from X0 is positive and at the outside of
the curve where the undesired states present, the density ρ
takes negative values. The undesired set is taken as close as
possible to the barrier ρ(x) = 0 by checking feasibility of
the SoS algorithm given above.

V. CONCLUSION

We have extended the idea of verification of safe reach-
ability to switched nonlinear systems with time dependent
switching via a common barrier density. We have shown that
the safely reachability analysis can be carried out by means
of SoS programming together with Putinar positivstellensatz.

As a further work, the proposed method for the verification
of the safe reachability of nonlinear switched systems can
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Fig. 1. A set of solutions of the system (2) with a periodic switching signal
{(0.4, 1), (0.3, 2)} defined by subsystems given in Example 1 which start
from the boundary of the set of initial states X0 and reach Xr without
arriving the unsafe set Xu is depicted. The conditions of Theorem 1 are
satisfied. Thus, the system is safely reachable for each switching signal
σ ∈ Snonchat. In the region between purple circle and yellow circle, Xd\X,
ρ is taken to be negative to ensure that no solution starting from X0 leave
the region X.

be extended for switched systems with state dependent
switching. Furthermore, common barrier density approach
can be used for model invalidation and for detection of the
faults in a nonlinear switched system.
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