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A Computational Theory of Robust Localization Verifiability in the

Presence of Pure Outlier Measurements

Mahroo Bahreinian, Roberto Tron

Abstract— The problem of localizing a set of nodes from
relative pairwise measurements is at the core of many applica-
tions such as Structure from Motion (SfM), sensor networks,
and Simultaneous Localization And Mapping (SLAM). In
practical situations, the accuracy of the relative measurements
is marred by noise and outliers; hence, we have the problem
of quantifying how much we should trust the solution returned
by some given localization solver. In this work, we focus
on the question of whether an ℓ1-norm robust optimization
formulation can recover a solution that is identical to the ground
truth, under the scenario of translation-only measurements
corrupted exclusively by outliers and no noise; we call this
concept verifiability. On the theoretical side, we prove that the
verifiability of a problem depends only on the topology of the
graph of measurements, the edge support of the outliers, and
their signs, while it is independent of ground truth locations
of the nodes, and of any positive scaling of the outliers. On
the computational side, we present a novel approach based
on the dual simplex algorithm that can check the verifiability
of a problem, completely characterize the space of equivalent
solutions if they exist, and identify subgraphs that are verifiable.
As an application of our theory, we provide a procedure to
compute a priori probability of recovering a solution congruent
or equivalent to the ground truth given a measurement graph
and the probabilities of each edge containing an outlier.

I. INTRODUCTION

The problem of localizing a set of agents or nodes with

pairwise relative measurements can be modeled as a pose

graph [18], where the nodes are associated to vertices

and pairwise relative measurements are associated to edges.

Typical solutions are cast as maximizing the likelihood of

the relative pairwise measurements given the estimated agent

poses, possibly after choosing different statistical models

that lead to different cost functions to be optimized; this

approach has been referred to as Pose Graph Optimization

(PGO) [10] Different versions of this problem have been

of interest in a number of fields. In computer vision, the

Structure from Motion (SfM) problem [16] aims to recover

the location and orientation of cameras, and the location of

3-D points in the scene, given an unordered collection of 2D

images. In sensor networks, the nodes need to be localized

from relative translation or distance measurements [6], [9],

[11]. In robotics, the Simultaneous Localization And Map-

ping (SLAM) [14], [24] problem aims to recover the pose

trajectories of one or more mobile agents, while building

a map of the environment, using multimodal measurements
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(extracted from images or inertial measurement units). In

all these applications, pairwise measurements are generally

corrupted by a combination of small-magnitude noise and

large-magnitude outliers, due to hardware, environmental,

and algorithmic factors [31].

The simplest and most common objective employed in

PGO is the least square error [3], [13], which corresponds to

the assumption that measurements are affected by Gaussian

noise (typically having low variance). However, the solution

of least square optimization can be greatly impacted by the

presence of outliers (one or two isolated outliers can bias the

solution for all the nodes). In [22], [23], the authors estimate

the location of the nodes (with relative direction measure-

ments) by minimizing a least square objective function with

global scale constraints through a semi-definite relaxation

(SDR), while [27], [28] solve a similar problem through

constrained gradient descent; in both cases, although some

theoretical analysis of the robustness of the method to noise

is given, the resulting methods are not robust to outliers (due

to the use of the least squares cost). To obtain robustness, a

possible approach is to use a pre-processing stage (e.g., using

Bayesian inference or other mechanisms) to pre-process

the measurements and remove outliers, followed by PGO

[19], [21], [30], [31], [33]. An alternative or complementary

method is to optimize robust (ideally convex) cost functions,

such as the Least Unsquared Deviation (LUD) [15], [34] or

others [32]; in this case, the optimization can be carried out

using re-weighting techniques (such as Iterative Reweighted

Least Squares, IRLS [17] or others [1], [25]), or Alternate

Direction Method of Multipliers (ADMM, [7], [12]). In all

these robust approaches, it has been shown empirically that

the results are close to the ground truth even in the presence

of outliers; however, there have been no published attempts

to characterize, in a precise way, what kind of situations can

be tolerated by the solvers. The reader should contrast this,

for example, to the simple case of the median in statistics,

where it is well known that such estimator is robust up to

50 percent of outliers [8], [20], [29].

The goal of this paper is to obtain results for PGO that

are similar in spirit to those available for the median in

classical robust estimation theory. In order to obtain strong

theoretical results on the effect of outliers alone, in this

paper we focus on the case where we are interested in

recovering only translations (not rotations), and there is no

Gaussian noise (i.e., each measurement is either perfect, or

corrupted by an outlier of arbitrarily high, but bounded,

magnitude); we plan to extend our results to more realistic

situations in our future work. As the objective function in the
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optimization, we use the least absolute value deviation (ℓ1-

norm), which is convex and allows us to bring the extensive

tools from linear optimization to our disposal. Under these

conditions, it can be empirically noticed that the robustness

of the ℓ1 cost function leads to three possible outcomes: the

solution found by the solver and the ground truth are either

congruent; different, but with the same value for the cost; or

drastically different. Moreover, this categorization appear to

depend on where the outliers are situated, but not on their

absolute magnitude. We formalize this observation in the

notion of verifiability for a graph. Given an hypothesis for

the edge support of the outliers and their sign, we can use

convex optimization theory to predict whether solving the ℓ1
optimization problem can recover the ground truth solution,

whether this can be done uniquely, and, if not, completely

characterize the set of solutions, while identify which subsets

of the graph can be exactly recovered. From this, and by

knowing the probability of each edge to be an outlier with

a given sign, we can then compute the probability that the

recovered solution is completely or partially congruent to the

ground truth embedding (without knowing the actual support

of the outliers). Moreover, the procedure can be extended to

identify subgraphs that can be uniquely localized with high

probability.

II. NOTATION AND PRELIMINARIES

In this section we formally define our measurement model,

the optimization problem for localizing nodes from relative

measurements, and we define the notion of verifiability.

A. Graph Model

Definition 1: A sensor network is modeled as an oriented

graph G = (V,E), where V = {1, . . . , N} represents the set

of sensors, and E ⊂ V × V represents the pairwise relative

measurements; we have (i, j) ∈ E if and only if there is

a measurement between node i ∈ V and node j ∈ V . We

assume that G is connected. We use |V |, |E| to indicate the

cardinality of the sets V and E, respectively.

Definition 2: An embedding of the graph associates each

node i to a position xi ∈ R
d. Mathematically, we identify an

embedding with a matrix XV =
[

x1 . . . x|V |

]

∈ R
|V |×d,

with d being the ambient space dimension; we denote the

ground truth embedding as X
∗
V .

Definition 3: A measurement between node i and j,

(i, j) ∈ E, is modeled as

tij = x
∗
j − x

∗
i + ǫij , (1)

where x
∗
j −x

∗
i is the true translation between nodes i and j,

and ǫij is a random variable for outliers with distribution

ǫij =











0, w.p. 1− p+ij − p−ij
U−, w.p. p−ij
U+, w.p. p+ij

, (2)

where p−ij , p
+
ij ∈ (0, 1) are a priori probabilities of having an

outlier for the edge (i, j) with, respectively, negative or posi-

tive support, and U−,U+ are stochastic functions that returns

a samples from a uniform distribution with arbitrary, but

finite, non-zero support contained in, respectively, R<0,R>0.

If d > 1, we assume that the entries of the vector ǫij are

i.i.d. with the same distribution (2).

We assume that the probabilities pE = {pij}(i,j)∈E are

known; as shown below in Theorem 3.3, our results are valid

independently of the support for U± (as long as it is finite).

From this point on, subscripts with V or E refer to the

vector obtained by stacking the specified quantity considered

for all nodes or edges (e.g., pE = stack({pij}(i,j)∈E)).
Definition 4: We define the outlier support Eǫ ⊂ E such

that Eǫ = {(i, j) ∈ E : ǫij 6= 0}.

B. Localization Through Robust Optimization

Given the relative pairwise measurements tE in the graph

G, we aim to find and characterize all the embeddings that

minimize the sum of all absolute residuals, i.e.,

min
XV ,x1=0

∑

(i,j)∈E

‖xj − xi − tij‖1

.

(3)

C. Global Translation Ambiguity

If we translate all the points in the embedding by a

common translation, the cost (3) does not change, since the

relative measurements also remain constant. Without loss of

generality, we fix this translation ambiguity by choosing a

global reference frame such that x
∗
1 = x1 = 0d. Since

we assumed that the graph is connected (Definition 1),

fixing x1 alone is sufficient to fix the global translation.

For simplicity’s sake, we keep x1 as a variable in the

optimization problem (3) even though it is used to fix the

global translational ambiguity.

D. Set of Global Optimizers X opt

We define as X opt the set of local minimizers of (3). Since

the objective function is convex (being the sum of convex

functions), we have that X opt is convex, and is exactly given

by the set of global minimizers (see [4, Theorems 8.1, 8.3]).

Moreover, using the fact that the value of x1 is fixed and

that the graph is connected, it is possible to show that the

objective function in (3) is radially unbounded, and therefore

the set X opt is compact. In fact, since (3) can be rewritten

as a Linear Program (LP, see below), X opt either reduces to

a single point, or is a polyhedron with a finite number of

corners (we use this term instead of vertex as a distinction

from the individual elements of V ).

E. Verifiability

If Eǫ = ∅, then tE is identical to the true measurements,

and the solution of (3) would be equal to the ground truth

embedding X
∗
V . However, since (3) is a robust optimization

problem, the optimum value could still correspond to X
∗
V

even in the presence of outliers (Eǫ 6= ∅). In the latter case,

however, there could be multiple minimizers all giving the

same value of the ℓ1 objective. We start formalizing the

situation with the following.



Definition 5: A (localization) problem is defined by a

pair of a graph G = (V,E) and a signed outlier support

E±
ǫ ⊂ E×{+,−} (i.e., a subset of edges paired with signs).

A problem is said to be uniquely verifiable if X opt = X
∗
V

(unique solution), verifiable if X∗
V ∈ X opt (possible multiple

equivalent solutions), and non-verifiable otherwise.

Note that, according to the definitions, uniquely verifiable

problems are also verifiable.

In [31, Theorem 2], the authors also introduce the concept

of verifiable edge and verifiable graph; however, that work

considers only the case of a single outlier (|E±
ǫ | = 1). In this

work, we generalize the same notion to more general cases.

III. CANONICAL LP FORM AND VERIFIABILITY

In this section we perform a series of transformations to

the optimization problem (3) to reduce it to a canonical,

one-dimensional LP (and its dual), allowing us to deduce

that particular ground-truth embeddings X∗
V and outlier

magnitudes ǫE do not affect the verifiability of a problem,

thus ensuring that Definition 5, which depends only on the

graph topology and the signed outlier support, is well posed.

A. Canonical Form

We first perform a change of variable so that the true

embedding corresponds to the point at the origin. More in

detail, we define a set of new variables X
′
V such that

X
′
V = XV −X

∗
V , (4)

i.e., for each i ∈ V we replace xi by x
′
i + x

∗
i . If X

∗ is an

optimal point for (3), then X
′ = 0|V | is a minimizer for the

following transformed problem:

min
x′
V
,x′

1
=0

∑

(i,j)∈E

‖(x′
j + x

∗
j )− (x′

i + x
∗
i )− (x∗

j − x
∗
i + ǫij)‖1,

(5)

which reduces to

min
x′
V
,x′

1
=0

∑

(i,j)∈E

‖x′
j − x

′
i − ǫij‖1. (6)

By inspecting (6), we can deduce the following:

Lemma 3.1: The canonical form of the optimization prob-

lem, and the definition of verifiability, do not depend on the

specific value of X∗
V .

Proof: Assume we have two problems with different

true embeddings X∗
V1

, X∗
V2

, but same graph topology G, and

the same outlier realization εE . The corresponding optimiza-

tion problem in canonical form (6) are the same, hence, also

their set of solutions (after the change of variable) is the

same. The rest of the claim then follows from Definition 5.

The practical implication of Lemma 3.1 is that we can reason

about the verifiability of a problem independently from the

specific true positions of nodes. To simplify our discussion,

for the remainder of the paper and without loss of generality

we use x instead of x′.

B. Reduction to One-Dimensional Problems

The ℓ1-norm ‖·‖1 : R
d → R in the optimization objective

can be decomposed into sums of absolute values across

dimensions, i.e., (6) becomes

min
XV ,[x1]k=0

d
∑

k=1

∑

(i.j)∈E

∣

∣[xj ]k − [xi]k − [ǫij ]k
∣

∣, (7)

where [v]k denotes the k-th element of a vector v ∈ R
d. The

minimization problem (7) can then be decomposed into d
separate optimization problems, each one with a solution set

[X opt]k, k ∈ {1, . . . , d}, and each one corresponding to a

1-D localization problem of the form

min
xV ,x1=0

∑

(i.j)∈E

| xj − xi − ǫij | . (8)

We postpone to Section IV-D the discussion of how to com-

bine the results of our analysis from the different dimensions;

until that section, we exclusively focus on the 1-D version

of the problem.

C. Canonical Linear Program Form

In this section, we transform (8) into the equivalent stan-

dard Linear Program (LP) form, with a linear cost function

subject to linear inequality constraints, and compute its dual.

This will allow us to arrive to the conclusion that the

exact magnitude of the outliers is not important in terms

of verifiability, and only the signed outlier support matter.

We first introduce variables

Zij = |xj − xi − ǫij |, ∀(i, j) ∈ E, (9)

to push the cost function into the constraints.

min
ZE ,xV ,x1=0

∑

(i,j)∈E

Zij (10a)

subject to xj − xi − ǫij ≤ Zij , (10b)

− (xj − xi − ǫij) ≤ Zij , (10c)

Zij ≥ 0, (10d)

∀i ∈ V, (i, j) ∈ E.

Next, in order to obtain a standard LP form, all variables

must be non-negative. We therefore split each variable xi

into the summation of two non-negative variables,

xi = x+
i − x−

i , x
+
i , x

−
i ≥ 0. (11)

Finally, we change the inequality constraints into equality

constraints by introducing the slack variables S+
E , S

−
E :

min
Z,x,x1=0

∑

(i.j)∈E

Zij , (12a)

subject to x+
j − x−

j − (x+
i − x−

i )− ǫij + S+
ij = Zij ,

(12b)

− (x+
j − x−

j − (x+
i − x−

i )− ǫij) + S−
ij = Zij ,

(12c)

x+
i , x

−
i , S

+
ij , S

−
ij , Zij ≥ 0, (12d)

∀i ∈ V, (i, j) ∈ E.



Remark 1 (Value of SE): If we add constraints (12b) and

(12c), we obtain

S+
ij + S−

ij = 2Zij . (13)

Moreover, from (9) and (13),

(S+
ij , S

−
ij) =

{

(2Zij , 0), if Zij = −(xj − xi − ǫij)

(0, 2Zij), if Zij = xj − xi − ǫij .
(14)

We can also form the dual optimization problem of (12),

max
P

+

ij
,P

−

ij

∑

(i,j)∈E

ǫij(P
+
ij − P−

ij ), (15a)

subject to
∑

j,(j,i)∈E

(P+
ji − P−

ji )−
∑

j,(i,j)∈E

(P+
ij − P−

ij ) = 0,

(15b)

− P+
ij − P−

ij ≤ 1, (15c)

P+
ij , P

−
ij ≤ 0, (15d)

∀i ∈ V, (i, j) ∈ E,

where P+
ij is the dual variable associated to constraint (12b),

and P−
ij is the dual variable associated to constraint (12c).

Remark 2 (Strong duality and verifiability): Assume that

the localization problem (G,Eǫ) is verifiable or uniquely

verifiable. Then, the origin is primal optimal, i.e., 0|V | ∈
X opt, and from (9), we have that, at the primal optimal

solution (X∗ = 0, Z∗
E, S

+∗
E , S−∗

E ):
∑

(i,j)∈E

Z∗
ij =

∑

(i,j)∈E

|ǫij | =
∑

(i,j)∈E
±
ǫ

|ǫij |; (16)

note that, in the last equality, the sum is only over edges in

the outlier support.

If a linear programming problem has an optimal solution,

so does its dual, and the respective optimal costs are equal;

this is known as the strong duality property [5, Theorem

4.4]. Combining this observation with (16), we have that,

for a dual optimal solution (P+∗
E , P−∗

E ),
∑

(i,j)∈E

Z∗
ij =

∑

(i,j)∈E
±
ǫ

ǫij(P
+∗
ij − P−∗

ij ) =
∑

(i,j)∈E
±
ǫ

|ǫij |.

(17)

Remark 3 (Discrete optimal solution for dual variables):

Note that constraints (15c) and (15d), together with

(17) imply that the dual optimal solution is given by

(P+∗
ij , P−∗

ij ) ∈ {(−1, 0), (0,−1)}, for all (i, j) ∈ E±
ǫ

(i.e., there are two discrete cases for each edge with

outliers, and the selection depends on the sign of ǫij), and

−1 ≤ P+∗
ij , P−∗

ij ≤ 0 for the remaining edges.

These remarks allow us to prove the following.

Lemma 3.2: For a fixed outlier support Eǫ, if we change

the scale of the outliers by positive factor, the verifiability of

the graph does not change.

Proof: Assume that the localization problem (G,E±
ǫ ) is

verifiable or uniquely verifiable, and that (X∗
V = 0, Z∗

E , S
∗
E)

is a primal optimal solution, while (P ∗+
E , P ∗−

E ) is a dual

optimal solution. If we replace each outlier ǫij with a

positively scaled version uijǫij , uij > 0, (i, j) ∈ E (the

case uij = 0 is excluded, otherwise the outlier support

would change), the cost function in (15) changes, but not the

constraints, so (P ∗+
E , P ∗−

E ) is still a dual feasible solution.

Considering the second equality in (17) from Remark 2

together with Remark 3, we have that the new dual cost

after rescaling is
∑

(i,j)∈E

uijǫij(P
+∗
ij − P−∗

ij ) =
∑

(i,j)∈E±
ǫ

uij |ǫij |. (18)

At the same time, the solution (X∗
V =

0, {uijZ
∗
ij}(i,j)∈E , {uijS

∗
ij}(i,j)∈E) is primal feasible,

and the corresponding cost is

∑

(i,j)∈E

uijZ
∗
ij =

∑

(i,j)∈E

uij |ǫij |. (19)

From (18) and (19) together with strong

duality, we can therefore conclude that (X∗
V =

0, {uijZ
∗
ij}(i,j)∈E , {uijS

∗
ij}(i,j)∈E) (respectively,

(P ∗+
E , P ∗−

E )) is primal (respectively, dual) optimal. This

shows that X∗
V = 0 is an optimal solution, and the rescaled

problem is again verifiable; hence, one problem is verifiable

if and only if all the positive scaled versions are also

verifiable.

Combining lemmata 3.1 and 3.2 we have the following:

Theorem 3.3: The notion of verifiability depends only on

the graph topology G, the support of the outliers Eε , and

the sign of the outliers.

Technically speaking, the proof above does not cover the

case of unique verifiability, in the sense that the they do not

exclude the case where a verifiable problem might become

uniquely verifiable after rescaling (or viceversa). We are

investigating this issue in our current work.

IV. VERIFIABILITY COMPUTATION

A. Linear Programming

In this section, we discuss how the dual simplex algorithm

can be used to compute the verifiability of a given problem.

As a result of the previous section, for our analysis, the values

of ǫE can be choosen randomly, as long as they have the

correct edge support E±
ε . We start by rewriting the LP (12)

in matrix form:

min
q

cTq

subject to Aq = b

q ≥ 0.

(20)

The vector c = stack(02|V |,1|E|,02|E|) contains the

set coefficients in the cost function, while A ∈
{0, 1,−1}2|E|×(2|V |+3|E|), and b =

[

1
−1

]

⊗ ǫE defines

the constraints (where ⊗ denotes the Kronecker’s product).

Finally, the vector q = stack(x+
V , x

−
V , ZE , S

+
E , S

−
E ) ∈

R
2|V |+3|E| contains the decision variables.

Given the standard form of the optimization problem (20),

we can use the dual simplex algorithm [5] to find all the

corners of the set of minimizers X opt. The algorithm and its

application to our problem are summarized next.



0-th col. x+
V x−

V ZE S+
E S−

E

0-th rowx 0 0V 0V 1E 0E 0E

qB(1) b(1) | | | | |
qB(2) b(2) ax+

V
ax−

V
aZE

aS+

E
aS−

E

...
... | | | | |

qB(2|E|) b(2|E|)

Fig. 1: Initial simplex tableau, with labeled rows and columns

B. Localization Via the Dual Simplex Method

The dual simplex method is based on the following

concepts:

1) Basic variables (BVs): a subset of variables (qB), that,

together with the constraints, defines the current can-

didate solution in the algorithm. Non-basic variables

(NBV) are always zero.

2) Simplex tableau: a (2|E|+1)× (2|V |+3|E|− 1) array

where

• The zeroth column represents the value of the set of

basic variables (qB). It is initialized with the vector

b.
• The zeroth row contains the reduced costs, which are

defined as the penalty cost for introducing one unit of

the variable qi to the cost. These are initialized with

the vector c.
• Columns one to 2(|V | − 1) + 3|E| are each one

associated with one variable, where we excluded the

columns corresponding to x+
1 , x

−
1 , since x1 is fixed in

the optimization. These columns are initialized with

the matrix A.

For our initial estimated solution, we set all variables to

zero except the slack variables; as a result, our initial BVs

correspond to the set of slack variables, while the rest are

NBVs. See Fig. 1 for an illustration of the initial tableau.

A typical iteration starts with some basic variables con-

taining negative elements, and all reduced costs non-negative.

For instance, in Fig. 1, the initial BVs are selected to be slack

variables where S+
ij = ǫij and S−

ij = −ǫij , hence, there are

some negative initial BVs, while all reduced costs are non-

negative (as all elements of vector c are non-negative). These

two properties are always maintained by the algorithm from

one iteration to the next.

The iterations of the algorithm then follow these steps:

1) Check for termination due to optimality: Examine the

elements of zeroth column (which constitutes the basic

set). If all of them are non-negative, we have an optimal

basic solution and the algorithm terminates.

2) Choose pivot row: Find some ν such that [qB]ν < 0.

3) Check for termination due to unbounded solution: Con-

sidering the ν-th row of the tableau, with elements

r1, . . . , r2(|V |−1)+3|E|, if all the elements of the row

are non-negative, the optimal dual cost is +∞ and

algorithm terminates. Since the set of minimizers X opt

in our problem is bounded (see Section II-D), this

condition is never encountered in our application.

4) Choose pivot column: For each i such that ri < 0,

compute the ratio c̄i/|ri| where c̄i is the reduced cost

of variable qi and let j be the index of a column that

correspond to the smallest ratio.

5) Pivoting: Remove the variable [qB ]ν from the basis, and

have variable qj take its place. Add to each row of the

tableau a multiple of the ν-th row (pivot row) so that rj
(the pivot element) becomes 1 and all other entries of

the pivot column become 0. As a result, the total cost

is reduced by the reduced cost c̄j .

6) Repeat the algorithm from step 2 until all elements

of qB are non-negative or the algorithm otherwise

terminates.

After solving the simplex tableau, we get the basic optimal

solution, which contains non-negative elements, together

with non-negative reduced costs. The solution of the dual

simplex algorithm is an optimal solution for (20), and is a

corner point of the feasible region (Theorem 2.3, [5]). If we

have multiple optimal solutions (i.e., X opt is not a singleton),

there will be multiple other corners with the same cost.

Hence, it is of interest to computationally enumerate all

the corners of X opt, as discussed next.

C. Characterizing X opt And Verifiability

The LP problem 20 can have multiple optimal solutions

only when two conditions are met [2]:

1) There exists a non-basic variable with zero reduced cost.

Pivoting this variable into the basis would not change

the value for the cost function.

2) There exists a degenerate basic solution, i.e. some basic

variables are equal to zero.

If the two conditions above are met, the corners in X opt

can be enumerated using a depth first search [26]:

1) Prepare a queue Q of corners to visit, with the cor-

responding tableau, and initialize it with the current

solution found by the dual simplex algorithm,

2) For each corner in Q and its associated tableau,

a) Choose Ccol as the set of columns associated to non-

basic variables with zero reduced cost, for all j ∈
Ccol,

i) Choose Crow as the set of elements of the j-th

pivot column which are positive,

ii) For i ∈ Crow, we perform the pivoting, so that

the pivot element in i-th row and j-th column

becomes 1 and all other entries of the pivot

column become 0,

iii) Add the current corner to the queue Q, if is not

in it already,

3) Go to step 2 until the queue Q is empty.

Remark 4: In terms of our localization problems, the

pivoting variables and the motion from one corner of X opt

to another can be given a physical interpretation. We defined

as Zij the cost of edge (i, j). Assuming we have a verifiable

graph, from (16), the cost of edge (i, j) is equal to |ǫij |.
When we move (pivot) to another corner with the same cost,



the set of basic variables changes, but the value of all the

other variables remains the same. So, if a non-basic variable

takes the place of basic variables from the set x+
V or x−

V , it

does not produce a new optimal embedding (because such

variables where already equal to zero). If a pivoting variable

takes the place of non-zero basic variable Zij , then Zij

becomes zero, which means the cost of edge (i, j) changes to

zero, and if ǫij 6= 0 then from (16), xi and xj are not equal

to zero anymore. As the value of cost function remains the

same, the loss of cost of edge (i, j) must be compensated

with the costs of the rest of the edges. If we pivot a non-basic

variable to the non-zero basic variable S+
ij or S−

ij , from (13),

it implies the value of Zij becomes zero which means the

cost of edge (i, j) changes to zero. So, pivoting non-basic

variable in order to find alternative solutions means shifting

the cost of outliers from one edge to the others.

There are three cases for the set of optimal solutions, X opt:

1) Uniquely verifiable solution: Pivoting new variables

to the basis does not result in new corner point; we

therefore have a unique optimal solution X opt = {0V },

and from (4) we conclude that the resulting embedding

is congruent to the ground truth.

2) Verifiable (non-unique) solution: We have multiple opti-

mal solutions, including the origin (0V ∈ X opt); hence,

there are multiple optimal embeddings, with one of

them being congruent to the ground truth.

3) Non-verifiable: In this case, 0V /∈ X opt, and the ground

truth embedding is not an optimal solution.

D. Combining Solutions From Multiple Dimensions

In Section III-B, we reduced one d-dimensional optimiza-

tion problem of the form (6) to d 1-D optimization problems

of the form (8). Now, we need to combine the optimal

solutions of all dimensions to characterize the d-dimensional

optimal solution. Let [X opt]k represents the set of optimal

solutions for the LP (10) of dimension k. The value of the

cost function (10) is the same for all corner points in [X opt]k.

Due to this fact, we can pick a 1-D corner point from each

set [X opt]k, k ∈ {1, . . . , d}, and combine them to build a

d-dimensional corner point:

xopt = stack(Xopt
1 , . . . , Xopt

d ), Xopt
k ∈ [X opt]k. (21)

Let |[X opt]k| represents the cardinality of the set [X opt]k; then,

we have N =
∏d

k=1

∣

∣[X opt]k
∣

∣ d-dimensional corner points.

To have a unique verifiable graph, we therefore need all

the individual 1-D problems to be also unique verifiable, i.e.

|[X opt]k| = 1 for all k ∈ {1, . . . , d}.

E. Maximal verifiable components

If for all corners a subset of components V ′ in the solution

are always zero (i.e., [Xopt
k ]′V = 0 for all k), then the position

of those particular nodes, and all their relative positions, are

congruent to the true embedding. As a consequence, also

all their relative costs are the same. Hence, while the entire

problem G,E±
ǫ is not verifiable, the sub-problem G′, E′±

ǫ ,

where G′ = (V ′, E′), E′ = {(i, j) ∈ E : i, j ∈ V ′} is

verifiable. We call the maximal connected components of G′

defined in this way the maximal verifiable components of G.

V. VERIFIABILITY PROBABILITY

Given a tuple (G,E±
ǫ ) of a graph and a signed outlier sup-

port, we can define a function that indicate if the associated

localization problem is verifiable,

Ver(G,E±
ǫ ) =

{

1 if 0 ∈ Xopt

0 otherwise
(22)

This function can be implemented by using the dual simplex

algorithm discussed above.

Given the edge outlier probabilities p±E defined in (2), we

can take the expectation of Ver(G, ·) over different outlier

realizations, and hence characterize the a priori probability

of recovering a localization that is cost-equivalent to the

true one, without knowing the exact value or support of the

outliers.

Definition 6: We define the verifiability probability pVer

as the probability of recovering a solution whose cost is the

same as the ground truth, i.e., pVer = Eǫ[Ver(G,E±
ǫ )], where

Eǫ[·] is the expectation over all the realizations of outliers.

The interpretation of this number is the a priori probability

that the ground truth embedding X∗
V belongs to X opt, the

set of minimizers of (3). For instance, if we assume the

edge positive outlier probability is p+, and the edge negative

outlier probability is p−, then we can define p(ǫE) =

(p+)|E
+
ǫ |(p−)|E

−
ǫ |(1− p+ − p−)(|E|−|E−

ǫ |−|E+
ǫ |) and pVer =

Eǫ[Ver(E,E±
ǫ )].

Note that an analogous quantity could be computed for

unique verifiability, although we would need to expand our

results to make this rigorous (see comments immediately

after Theorem 3.3). Moreover, a similar concept could be

extended to each individual edge, or any arbitrary subset

of edges, by asking whether they are part of a maximal

verifiable component (Section IV-E). Nonetheless, a formal

exploration of these concepts is out of the scope of the

present paper.

VI. NUMERICAL EXAMPLES

In this section we apply our theory and algorithm1 to a

simple graph with 5 nodes and 10 edges, XV ∈ R
5×2 (Fig.

2). We start with the case where three relative measurements

in first coordinate are outliers and all other measurements

(Fig. 2a) are accurate. In this example, positive and negative

outlier have the same probability p+ = p− = 1
2p. After

solving the optimization problem associated to this graph,

we find three different embeddings that represent the corners

of X opt; these are shown in Fig. 2b, 2a and 2b.

In Fig. 2b, the resulted embedding is identical to the ground

truth embedding, which means that xV ∈ X opt, and the graph

is verifiable. However, since we have multiple solution, the

graph is not uniquely verifiable. In the figures, the cost of

associated to each edge is shown; it can be seen that different

corners shift the cost to different edges, although their sum

remains the same. The locations of nodes V ′ = {1, 2, 4}
are identical to their ground truth locations, and the costs

1The algorithm is implemented in MATLAB at
thttps://github.com/Mahrooo/Robust-Localization-Verifiability.git
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Fig. 2: Verifiable graph with 5 nodes and 10 edges, 3 edges

are outliers are shown by red color in Fig. 2a, the cost of

each edge is shown on each and the cost of optimal solution

for all embeddings are equal to the cost of the ground truth

embedding which is 63

of edges E′ = {(4, 1), (2, 1), (2, 4)} remain the same in all

embeddings, so the subgraph G = (V ′, E′) is a maximal

verifiable component.

Assuming that the edge outlier probability pij is 1
2p for

all edges (i, j) ∈ E, then for our graph in this example the

verifiability probability for this graph can be evaluated as

pVer = (1− p)10 + 20(
p

2
)(1− p)9 + 180(

p

2
)2(1− p)8

+ 920(
p

2
)3(1 − p)7 + 2680(

p

2
)4(1− p)6 + 4524(

p

2
)5(1− p)5

+ 4560(
p

2
)6(1− p)4 + 2820(

p

2
)7(1 − p)3

+ 1080(
p

2
)8(1− p)2 + 240(

p

2
)9(1− p) + 24(

p

2
)10,

(23)

where the coefficients come from Table I. As shown in Fig.
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Fig. 3: Verifiability probability for the graph in Fig 2

TABLE I: Verifiability analysis for all possible cases of

outlier supports E±
ε

#outliers, |E±
ǫ | #possible

combinations,
( |E|

|E±
ǫ |

)

#verifiable

combinations

0 1 1

1 20 20

2 180 180

3 960 920

4 3360 2680

5 8064 4524

6 13440 4560

7 15360 2820

8 11520 1080

9 5120 240

10 1024 24

3, if p = 0 we have a verifiable graph with probability

pVer = 1; as we increase the probability of more edges to

be outliers, the probability of having access to the verifiable

graph decreases.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we consider the estimation of an embedding

for nodes with relative translation measurements affected by

outliers (but no noise) through the minimization of an ℓ1-

norm cost function. We introduce the notion of verifiability,

which characterizes when we can expect to recover a solution

with cost equal to the true one; we show that the concept of

verifiability depends only on the topology of the network and

where the outliers are placed, and we also provide a way to

compute it using the dual simplex method. From a more prac-

tical standpoint, we define the verifiability probability, which

characterizes the a priori reliability that can be expected from

a given measurement graph (given a priori probabilities of

outliers for each edge). There are many possible directions

for our future work. First, we plan to include the effects

of amplitude-limited noise to our measurement models, and

study its effect of noise on our results; concurrently, we

will study different cost functions, such as the Huber-loss

function and piece-wise linear loss functions.
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