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On robust stability of sine-Gordon equation
Denis Efimov, Emilia Fridman, Jean-Pierre Richard

Abstract—A perturbed sine-Gordon equation is considered
under the restrictions on the model parameters corresponding
to the single equilibrium in the noise-free case. First, a strict
Lyapunov function is proposed for this dynamics and the condi-
tions of strict passivity with a corresponding output are given.
Second, the input-to-state stability property is investigated. The
obtained theoretical results are illustrated by some simulations.

I. INTRODUCTION

There are many physical, biological and social systems,
whose dynamics can be described by partial differential
equations [3], [9], [14], [17]. The problems of stability anal-
ysis, estimator and controller design have been considered
by many authors (see e.g. [12], [18], [16], [2]). Despite a
significant advance in the analysis and synthesis of linear
infinite-dimensional systems achieved the last decades, each
nonlinear (partial) differential equation requires a particular
attention and a separate theoretical development. Indeed,
as for the conventional ordinary differential equations, in
order to investigate and quantify a stability property for a
nonlinear system, it is necessary to find a Lyapunov function,
whose choice in the nonlinear case is always complicated and
depends on the system dynamics.

This work is devoted to stability analysis of a damped
sine-Gordon equation [6], [20], [17], [11], [15], [7], [8],
which belongs to the class of hyperbolic distributed parameter
systems with a globally Lipschitz nonlinearity, and which
is one of the simplest models having soliton solutions.
We will consider a particular case with one input applied
on a boundary and another in the right-hand side of the
partial differential equation. Under imposed restrictions, this
nonlinear distributed parameter system in the absence of the
inputs admits the only steady state at the origin. First, a
kind of strict passivity conditions are established with the
corresponding storage function, whose derivative along the
system is strictly negative with zero input, and which can be
considered as a Lyapunov function for the scenario without
the input. This Lyapunov function recovers global asymptotic
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stability conditions that were proved in [20] by using LaSalle
invariance principle. Second, the conditions of global input-
to-state stability are derived. To the best of the authors
knowledge, it is the first time when such results are obtained,
and a probable reason consists in non-quadratic terms of the
suggested Lyapunov functions.

The paper is organized as follows. Preliminaries are given
in Section II. The problem statement is presented in Section
III with the main results in Section IV. Robustness with
respect to external inputs is investigated in Section V. The
results of simulation are given in Section VI. The final
remarks and discussion are presented in Section VII.

II. PRELIMINARIES

The real numbers are denoted by R, R+ = {τ ∈ R : τ ≥
0}. Euclidean norm for a vector x ∈ Rn will be denoted as
|x|.

If X is a normed space with norm || · ||X , Ω ⊂ Rn for
some n ≥ 1 and φ : Ω→ X , define

||φ||2L2(Ω,X) =

∫
Ω

||φ(s)||2Xds,

||φ||L∞(Ω,X) = ess sup
s∈Ω
||φ(s)||X .

By L∞(Ω, X) and L2(Ω, X) denote the spaces of functions
Ω → X with the properties || · ||L∞(Ω,X) < +∞ and
|| · ||L2(Ω,X) < +∞, respectively. Let Ck(Ω, X) be the
set of functions having continuous derivatives at least up to
order k ≥ 0 on Ω. Denote by Hq(Ω,R) with q ≥ 0 the
Sobolev space of functions with derivatives through order q
in L2(Ω,R).

A. Input-to-state stability

The theory of input-to-state stability (ISS) for infinite
dimensional systems is presented in this subsection following
[4], [13].

The triple Σ = (X,U, φ), consisting of the state space X ,
the space of admissible inputs U (a normed function space)
and the transition map φ : R+ × X × U → X is called a
dynamical system if the following properties are satisfied:
• φ(0, x0, u) = x0 for all x0 ∈ X and all u ∈ U , and

there is Tx0,u > 0 such that φ(t, x0, u) exists for all
t ∈ [0, Tx0,u);

• φ(t, x0, u1) = φ(t, x0, u2) for any t ∈ R+, any x0 ∈ X
and all u1, u2 ∈ U such that u1(s) = u2(s) for all
s ∈ [0, t];

• for each x0 ∈ X and each u ∈ U the map t →
φ(t, x0, u) is continuous;



• for all x0 ∈ X , all u ∈ U and any 0 ≤ t1 ≤ t2 < Tx0,u

it holds φ(t2, x0, u) = φ(t2 − t1, φ(t1, x0, u), u).
Thus, φ(T, x0, u) denotes the state of a system Σ at the time
instant 0 ≤ T < Tx0,u if its initial state (at the instant 0) was
x0 ∈ X and the input u ∈ U was applied for all t ∈ [0, T ).
It is assumed that if Tx0,u < +∞, then for any ε > 0 there
exists t ∈ [0, Tx0,u) such that ‖φ(t, x0, u)‖X > ε (the so-
called “boundedness-implies-continuation” property). Next, it
is assumed that for any u ∈ U and s ≥ 0, a function ũ
defined by ũ(t) = u(t + s) for all t ≥ 0 also belongs to U
and ‖ũ‖U ≤ ‖u‖U ; if u1, u2 ∈ U , then for any s > 0 the

input u ∈ U with u(t) =

{
u1(t) t ∈ [0, s]

u2(t) t > s
; and 0 ∈ U .

An element of the state space xe ∈ X is called an
equilibrium point of Σ if φ(t, xe, 0) = xe for all t ≥ 0,
and for further analysis we will assume that xe = 0 (0 ∈ X).

A continuous function σ : R+ → R+ belongs to class K
if it is strictly increasing and σ(0) = 0; it belongs to class
K∞ if it is also radially unbounded. A continuous function
β : R+ ×R+ → R+ belongs to class KL if β(·, r) ∈ K and
β(r, ·) is a strictly decreasing to zero for any fixed r ∈ R+.

Definition 1. A dynamical system Σ is called locally ISS, if
there exist ρX > 0, ρU > 0, $ ∈ KL and γ ∈ K such that
the inequality

‖φ(t, x0, u)‖X ≤ $(‖x0‖X , t) + γ(‖u‖U )

is satisfied for all t ≥ 0 and for all x0 ∈ X , u ∈ U provided
that ‖x0‖X ≤ ρX and ‖u‖U ≤ ρU .

This system Σ is called ISS if ρX = ρU = +∞.

The most common choices are X = L2(R+,Rn) and U =
L∞(R+,Rm) or U = L2(R+,Rm) for some natural numbers
n and m [5].

Definition 2. A function V ∈ C0(X,R+) is called a local
ISS-Lyapunov function for Σ, if there exist ρX > 0, ρU > 0,
α1, α2 ∈ K∞, χ ∈ K and a positive definite function ς ∈
C0(R+,R+) such that

α1(‖x‖X) ≤ V (x) ≤ α2(‖x‖X),

‖x‖X ≥ χ(‖u‖U )⇒ V̇ (x, u) ≤ −ς(‖x‖X)

for all x ∈ X , u ∈ U provided that ‖x0‖X ≤ ρX and
‖u‖U ≤ ρU , where

V̇ (x, u) = limh→0
V (φ(h, x, u))− V (x)

h
.

A function V ∈ C0(X,R+) is called an ISS-Lyapunov
function for Σ, if the above properties hold for ρX = ρU =
+∞.

Theorem 1. [4] If a dynamical system Σ possesses a (local)
ISS-Lyapunov function, then it is (locally) ISS.

In [13] it has been additionally shown that for a Lipschitz
dynamical system Σ, the existence of a local ISS-Lyapunov
function is necessary and sufficient for the ISS property.

B. Useful relations

Denote I = [0, `] for some ` > 0.

Lemma 1. [10] Wirtinger’s Inequality. Let z ∈ H1(I,R),
then ∫ `

0

z2(x)dx ≤ b`2

π2

∫ `

0

(
dz(x)

dx

)2

dx

with b = 1 provided that z(0) = z(`) = 0; if only z(0) = 0
or z(`) = 0, then b = 4.

For a differentiable function z : I → R define the short-
hand notation:

zx(x) =
∂z

∂x
(x), zxx(x) =

∂2z

∂x2
(x),

and if the origin of the argument x is clear from the context
or unimportant we will write zx and zxx (similarly for a
function of two arguments z(t, x) with zt or zxt).

Proposition 1. The following equalities are satisfied for any
z ∈ H1(R+ × I,R) for all t ∈ R+ and x ∈ I (i.e. z(t, x)):∫ `

0

ztzxxdx = zt(t, `)zx(t, `)− zt(t, 0)zx(t, 0)−
∫ `

0

ztxzxdx,∫ `

0

zxx sin zdx = sin z(t, `)zx(t, `)− sin z(t, 0)zx(t, 0)

−
∫ `

0

z2
x cos zdx,∫ `

0

zzxxdx = z(t, `)zx(t, `)− z(t, 0)zx(t, 0)−
∫ `

0

z2
xdx.

Proof. All these relations are obtained using the integration
by parts.

III. PROBLEM STATEMENT

Consider a damped one-dimensional sine-Gordon partial
differential equation:

ztt(t, x) = −αzt(t, x) + kzxx(t, x) + β sin z(t, x)

+u1(t), t ∈ R+, x ∈ I;

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ I; (1)
z(t, 0) = 0, zx(t, `) = u2(t), t ∈ R+,

where z(t, x) ∈ R and ζ(t, ·) =

[
z(t, ·)
zt(t, ·)

]
∈ Z(I,R) =

H1
0 (I,R)× L2(I,R) is the state function, where

H1
0 (I,R) = {z ∈ H1(I,R) : z(0) = 0}

and denote

‖ζ‖Z(I,R) = ‖zx‖L2(I,R) + ‖zt‖L2(I,R);

u(t) ∈ R2 is the input signal, u ∈ L∞(R+,R2); α > 0,
k > 0 and β ∈ R are constant parameters; z0 ∈ H1

0 (I,R) and
z1 ∈ L2(I,R) are given initial condition functions satisfying
the boundary constraints; I = [0, `] for some ` > 0. The
dynamics of (1) is globally well posed [17], [20], and for

u(t) = 0 ∀t ∈ R+ (2)



the system (1) is globally asymptotically stable at the origin
for |β| < k

4

(
π
`

)2
[20] (the case of boundary conditions

z(t, 0) = z(t, `) = 0 for all t ≥ 0 was studied in
that monograph). The conclusion about global asymptotic
stability in [20] is obtained using the LaSalle invariance
principle and a Lyapunov function with a semi-definite time
derivative calculated with respect to (1), which is the energy
or the Hamiltonian of the undamped (i.e. α = 0) system:

H(ζ) =

∫ `

0

z2
t

2
+ k

z2
x

2
+ β(signβ + cos z)dx,

then for H(t) = H(ζ(t, x)) we have:

Ḣ(t) =
dH(t)

dt
= kzt(t, `)u2(t) +

∫ `

0

ztu1(t)dx

−α
∫ `

0

z2
t (t, x)dx,

that for (2) by the invariance principle implies convergence
of the trajectories to the set where zt(t, x) = 0 for all t ≥ 0,
hence, to the equilibria.

For the system (1) under the restriction (2), the steady-state
solutions ξ ∈ H1

0 (I,R) have to satisfy the following partial
differential equation:

ξxx(x) = −β
k

sin ξ(x), x ∈ I

together with the chosen boundary conditions. Actually, this
system is well-investigated (e.g. as a nonlinear pendulum) and
for β > 0 the solutions are closed orbits for sufficiently small
initial conditions, and for β < 0 the unbounded curves are
generated out the origin. Taking into account the boundary
constraint in (1), (2):

ξx(`) = 0,

implies that for ` < π
2

√
k
β the only possible solution of this

equation (the only equilibrium) in our case is

ξ(x) = 0, x ∈ I,

whose stability we are going to investigate (for β ∈ R).
Our goal in this work is to propose a Lyapunov function

for (1), which has a negative definite derivative under (2) and
calculate a corresponding passive output signal (for the theory
of passive and dissipative partial differential equations see
[19], [1]). Next, we are going to develop some ISS conditions
for (1) with respect to the input u in the sense of [4], [13].

IV. STRICT PASSIVITY

Consider the following candidate of a Lyapunov function:

V (ζ) =

∫ `

0

[
z2
t

2
+ a

z2
x

2
+ b

(zt + αz)2

2
+ c

(zt − β
α sin z)2

2

+g(signβ + cos z) + e(1 + cos 2z)]dx− f,

where a > 0, b > 0, c > 0, e > 0 and g ∈ R are parameters
to select, f = (g(signβ + 1) + 2e) `. Let us check positive

definiteness of this function V (ζ) for ζ ∈ Z(I,R) (i.e. that
V (ζ) > 0 for all z 6= 0, z ∈ H1

0 (I,R) and zt 6= 0, zt ∈
L2(I,R). Obviously, if a constraint

βg > 0

is imposed, then V (0) = 0. It is worth stressing that for
ζ ∈ H1(I,R) × L2(I,R) it is not positive definite. But for
ζ ∈ Z(I,R) we obtain:

V (ζ) ≥
∫ `

0

[
z2
t

2
+
a

2
z2
x + g(signβ + cos z)

+e(1 + cos 2z)]dx− f,

and recalling the inequality derived from the first term of
Taylor expansion for cos z function:

cos z ≥ 1− z2

2
,

the last inequality can be rewritten in the following way:

V (ζ) ≥
∫ `

0

z2
t

2
+
a

2
z2
x + e(2− 2z2)

+g

{
2− z2

2 β > 0

0 β ≤ 0
dx− f

=
1

2

∫ `

0

z2
t + az2

x − %z2dx

where

% = 4e+

{
g β > 0

0 β ≤ 0
.

And, finally, using Lemma 1 we get

V (ζ) ≥ 1

2

∫ `

0

z2
t +

(
a− %4`2

π2

)
z2
xdx.

Therefore, a sufficient condition for the function V (ζ) to be
positive definite can be written as follows:

a
π2

4`2
> %. (3)

Let us calculate the time derivative of V (t) = V (ζ(t, x))
along the dynamics of (1):

V̇ =

∫ `

0

[ztztt + azxzxt + b(zt + αz)(ztt + αzt)

+c(zt −
β

α
sin z)(ztt −

β

α
cos zzt)− g sin zzt

−2e sin 2zzt]dx

=

∫ `

0

[zt(kzxx − αzt + β sin z + u1) + azxzxt

+b(zt + αz)(kzxx + β sin z + u1)

+c(zt −
β

α
sin z)(kzxx − αzt + β sin z + u1

−β
α

cos zzt)− g sin zzt − 2e sin 2zzt]dx.



Then arranging the same terms we obtain:

V̇ =

∫ `

0

[k(1 + c+ b)zxxzt − (α+
β

α
c cos z)z2

t + azxzxt

+αbkzxxz + αbβ sin zz

−αc(zt −
β

α
sin z)2 − ck β

α
sin zzxx

+(zt + b(zt + αz) + c(zt −
β

α
sin z))u1

+ (β(1 + b)− g) sin zzt

+

(
c

2

(
β

α

)2

− 2e

)
sin 2zzt]dx,

and substituting the expressions from Proposition 1 the
following estimate is derived:

V̇ = k[(1 + c+ b)zt(t, `) + αbz(t, `)

−cβ
α

sin z(t, `)]u2(t)

+

∫ `

0

[−(α(1 + c) +
β

α
c cos z)z2

t − c
β2

α
sin2 z

−k
(
αb− cβ

α
cos z

)
z2
x + αbβz sin z

+(a− k(1 + c+ b))zxzxt

+(zt + b(zt + αz) + c(zt −
β

α
sin z))u1

+ (β(1 + b+ 2c)− g) sin zzt

+

(
c

2

(
β

α

)2

− 2e

)
sin 2zzt]dx.

Denote

y1(t) =

∫ `

0

[(1 + b+ c)zt + αbz − cβ
α

sin z]dx

y2(t) = k[(1 + c+ b)zt(t, `) + αbz(t, `) (4)

−cβ
α

sin z(t, `)]

as an auxiliary output y ∈ C0(R+,R2) of the system (1),
select

a = k(1 + c+ b), (5)

g = β(1 + b+ 2c), e =
c

4

(
β

α

)2

and assume that

α+

(
α− |β|

α

)
c = ν, αb = c

|β|
α

+ µ (6)

for some ν > 0 and µ > 0. The latter inequalities can be
always ensured by a choice of c > 0 and b > 0 for some
positive ν and µ. In addition, note that the condition βg > 0
is always satisfied for the proposed choice of the value of g,
and (3) can be guaranteed for a sufficiently small values of

b > 0 and c > 0 (which implies the positive definiteness of
V ). Finally, we obtain:

V̇ ≤
∫ `

0

[−νz2
t − c

β2

α
sin2 z − kµz2

x + αbβz sin z]dx

+y>(t)u(t)

and using Wirtinger’s inequality from Lemma 1 we get:

V̇ ≤
∫ `

0

[−νz2
t −

1

2

[
z

sin z

]>
Q

[
z

sin z

]
]dx+ y>(t)u(t),

(7)
where

Q =

[
µkπ

2

2`2 −αbβ
−αbβ 2cβ

2

α

]
.

The matrix Q is positive definite if

c

α
µ
kπ2

`2
> (αb)

2
,

then substituting the expression for αb we get

c

α
µ
kπ2

`2
>

(
c
|β|
α

+ µ

)2

,

or equivalently (by performing straightforward computations)

0 > c2
β2

α2
+
c

α

(
2|β| − kπ2

`2

)
µ+ µ2.

Let us check that the latter inequality has a solution with
respect to µ > 0. The roots of this quadratic equation are

µ1,2 =
c

2α

√
kπ

`

(√
kπ

`
− 2|β| ±

√
kπ2

`2
− 4|β|

)
and a real solution exists if

|β| < k

4

(π
`

)2

(8)

that corresponds to the conditions of global asymptotic stabil-
ity of the equilibrium at the origin from [20] (

√
kπ
` −2|β| > 0

under this restriction, then µ2 is always positive and the sign
of µ1 ≤ µ2 is unimportant).

It is worth noting that the function V (ζ)+f is nonnegative
by construction for all ζ ∈ Z(I,R) under the imposed
condition βg > 0. Since for the restriction (8) the system (1)
is globally asymptotically stable [20], V (0) = 0 and V̇ < 0
for all ζ(t) 6= 0, then V (ζ) has to be positive definite and
the condition (3) can be skipped from analysis (we cannot
say that it is always satisfied since it is only sufficient for
positive definiteness of V (ζ)), but anyway as we explained
above, (3) can be ensured by the choice of parameters b and
c.

Therefore, the following result has been proven:

Theorem 2. Let for the system (1) the restriction (8) be
satisfied, then there exist µ > 0 and ν > 0 such that
for parameters a, b, c, g, e validating the conditions (5) and
(6), V (ζ) is a positive definite storage function for all
ζ ∈ Z(I,R), u ∈ L∞(R+,R2) with the passive output



y ∈ C0(R+,R2) given in (4), and it has a negative definite
derivative in the case (2).

The same conclusion can be obtained using another Lya-
punov function:

V (ζ) =

∫ `

0

z2
t

2
+ a

z2
x

2
+ b

(zt + αz)2

2
+ c sin zzt

+g(signβ + cos z)dx

for suitably defined parameters a > 0, b > 0, c > 0 and
gβ > 0, with a passive output having the same terms, but
investigation of this variant of V (ζ) requires a more involved
analysis (e.g. for positive definiteness) and it is omitted here
for brevity.

V. INPUT-TO-STATE STABILITY

The main result of this work is as follows:

Theorem 3. Let for the system (1) the restriction (8) be
satisfied and

u(t) =

[
v1(t)

−θy2(t) + v2(t)

]
, (9)

where θ > 0 is a design parameter and v ∈ L∞(R+,R2) is
a new input. Then (1) is ISS with respect to the input v.

Proof. Following [4], Theorem 1 can be used to prove this
result. Let us show that the Lyapunov function V (ζ) given in
Theorem 2 is an ISS-Lyapunov function for the system (1),
(9). As it has been proven in Theorem 2, V is differentiable,
positive definite and there exist α1, α2 ∈ K∞ such that

α1(‖ζ‖Z(I,R)) ≤ V (ζ) ≤ α2(‖ζ‖Z(I,R))

for all ζ ∈ Z(I,R). Note that under (8) there is a tuning
constant ς ∈ (0, 1) such that

|β| < ς
k

4

(π
`

)2

.

Under the substitution of (9) in the equations (1) we obtain
the following estimate for the derivative of V :

V̇ ≤
∫ `

0

−νz2
t −

1

2

[
z

sin z

]>
Qς

[
z

sin z

]
−(1− ς)kµz2

xdx

+y1(t)v1(t)− θ|y2(t)|2 + y2(t)v2(t)

=

∫ `

0

−νz2
t −

1

2

[
z

sin z

]>
Qς

[
z

sin z

]
−(1− ς)kµz2

xdx

+

(
(1 + b+ c)zt + αbz − cβ

α
sin z

)
v1dx

−θy2
2(t) + y2(t)v2(t),

where

Qς =

[
ςµkπ

2

2`2 −αbβ
−αbβ 2cβ

2

α

]
.

Figure 1. The plot of z(t, x)

Since under (8) the matrix Qς is positive definite (this prop-
erty can be established similarly as in the proof of Theorem
2 for Q), then using Young’s inequality (i.e. ab ≤ |a|

p

p + |b|
q

q

for any a, b ∈ R and p, q ∈ R+ with 1
p + 1

q = 1) it is possible
to show that there exist ε1 > 0, ε2 > 0, σ1 > 0 and σ2 > 0
such that

V̇ ≤
∫ `

0

−ε1z2
t − ε2z2

xdx+ σ1v
2
1(t) + σ2v

2
2(t)

≤ −min{ε1, ε2}‖ζ‖Z(I,R)

+ max{σ1, σ2}‖v‖L∞(R+,R2),

which is sufficient for the required ISS property by Theorem
1.

The main conclusions of Theorem 3 are that under (8),
the ISS property of (1) can be established with a feedback
transformation of the input (9) at the boundary.

VI. SIMULATIONS

Let

` = 10, k = 1, α = 0.7, β = ς
k

4

π2

`2
, ς = 0.9,

u1(t) = −0.2 cos(5t), u2(t) = 0.1 sin(t).

For discretization in space and in time, the explicit Euler
method is used with the space discretization step `

N−1 and
the time discretization step 0.0002, where N = 100 is
the number of points chosen on the interval I . The initial
conditions are selected as

z0(x) = sin(
π

2

x

`
), z1(x) = sin(3

x

`
)

satisfying the boundary constraints. Then the results of sim-
ulation, z(t, x) and zt(t, x), are shown in figures 1 and 2,
respectively. They illustrate the theoretical findings of our
work.



Figure 2. The plot of zt(t, x)

VII. CONCLUSIONS

The conditions of strict passivity and input-to-state stability
are investigated for a sine-Gordon equation with perturbations
introduced in the right-hand side of the model and in the
boundary conditions. The case of a single equilibrium at
the origin is considered and a strict Lyapunov function is
designed for the noise-free case. It is discovered that sine-
Gordon equation possesses robust stability with respect to the
disturbances in the dynamics, but an additional damping has
to be applied at the boundary to guarantee the same tolerance
to the input entering there. Further directions of research may
include analysis of other boundary conditions and the case
with multiple equilibria.
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