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Penalized Push-Sum Algorithm for Constrained Distributed

Optimization with Application to Energy Management in Smart Grid

Tatiana Tatarenko, Jan Zimmermann, Volker Willert, Jürgen Adamy

Abstract— We study distributed convex constrained optimiza-
tion on a time-varying multi-agent network. Each agent has
access to its own local cost function, its local constraints, and
its instant number of out-neighbors. The collective goal is to
minimize the sum of the cost functions over the set of all
constraints. We utilize the push-sum protocol to be able to
solve this distributed optimization problem. We adapt the push-
sum optimization algorithm, which has been studied in context
of unconstrained optimization so far, to convex constrained
optimization by introducing an appropriate choice of penalty
functions and penalty parameters. Under some additional
technical assumptions on the gradients we prove convergence
of the distributed penalty-based push-sum algorithm to the
optimal value of the global objective function. We apply the
proposed penalty-based push-sum algorithm to the problem of
distributed energy management in smart grid and discuss the
advantages of this novel procedure in comparison with existing
ones.

I. INTRODUCTION

Due to emergence of large-scaled networked systems

with limited information, distributed multi-agent optimiza-

tion problems have gained a lot of attention recently. In such

systems a number of agents, represented by nodes over some

communication graph, aim to optimize a global objective

by taking only the local information into account. Beside

the various applications of distributed optimization such as

robust sensor network control [8], signal processing [14],

network routing [5], and machine learning [15], [16], an

important and promising area of applicability is energy

management of future smart grid [3], [9], [17]. Smart grid

is equipped with advanced communication technologies en-

abling efficient and distributed energy management between

the grid’s users [7], [17]. However, from technical point of

view, it is important to keep communication costs limited

and choose a communication protocol that would require

minimal coordination between the agents and stays robust

against changes in the network topology [11]. That is why, in

this paper, we develop a communication-based optimization

algorithm with the desired features mentioned above.

For this purpose we utilize the push-sum communication

protocol. This protocol was initially introduced in [2] and

used in [15] for distributed optimization. The push-sum

protocol is applicable to time-dependent network topology

and it can overcome the restrictive assumptions on the

The authors are with the Control Methods and Robotics Lab at TU
Darmstadt, Germany.

The work was gratefully supported by the German Research Foundation
(DFG) within the SPP 1984 “Hybrid and multimodal energy systems:
System theoretical methods for the transformation and operation of complex
networks”.

communication graph structure such as double stochastic

communication matrices [2], [15]. The work [4] studied

this algorithm over directed and time-varying communication

in the case of well-behaved convex functions. The authors

in [13] extended the results to a broader class of non-convex

functions. However, all works on the push-sum algorithm

presented in the literature so far dealt with unconstrained

optimization. As in many applications, including energy

management in smart grid, agents face a number of con-

straints. In this paper, we adapt the push-sum algorithm to

the case of convex constrained optimization by introducing

an appropriate choice of penalty functions and penalty pa-

rameters. Under some standard technical assumptions, we

prove convergence of the resulting procedure to the optimal

value of the system’s objective function.

Another contribution of this paper consists in the ap-

plication of the proposed procedure to the problem of

energy management in smart grid. In contrast to the re-

cent communication-based procedure proposed in [17], the

penalty-based push-sum algorithm presented in this work is

based on a time-dependent directed communication topology

with column-stochastic matrices, where each agent merely

needs to know the current number of its out-neighbors to

define the elements of the communication matrix at each

iteration. Moreover, it uses only one communication step

per iteration, whereas the procedure in [17] requires two

communication steps per iteration, with a row-stochastic and

a column-stochastic communication matrix at the consequent

communication iterations. Thus, the proposed penalty-based

push-sum algorithm keeps communication costs cheaper

and is able to adapt to the changes in the communication

topology.

The paper is organized as follows. In Section II we

introduce the penalty-based push-sum algorithm and prove

its convergence. Section III deals with formulation of the

general non-convex energy management problem in smart

grid, presents its convex reformulation for which the penalty-

based push-sum procedure can be applied, and demonstrates

some simulation results. Section IV concludes the paper.

Notations. We will use the following notations

throughout this paper: We denote the set of integers

by Z and the set of non-negative integers by Z
+.

For the metric ρ of a metric space (X, ρ(·)) and two

subsets B1 ⊂ X and B2 ⊂ X , we let ρ(B1, B2) =
max{supx∈B1

infy∈B2
ρ(x, y), supy∈B2

infx∈B1
ρ(x, y)}.

We denote the set {1, . . . , n} by [n]. We use boldface

to distinguish between the vectors in a multi-dimensional

space and scalars. We denote the dot product of two vectors
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a and b by 〈a,b〉. ‖·‖ denotes the standard Euclidean

norm, whereas ‖·‖l1 is used to denote l1-norm in the vector

space. Throughout this work, all time indices such as t

belong to Z
+. For vectors vi ∈ Xd, i ∈ [n], of elements

in some vector space X (over R), we let v̄ = 1
n

∑n
i=1 vi.

We say the function F : R
d → R be inf-compact, if the

set {x ∈ R
d : F (x) ≤ A} is compact for all A ∈ R.

The function 1{A}(x) denotes the indicator of the set A

(1{A}(x) = 1, if x ∈ A and 1{A}(x) = 0, otherwise). The

notation o(x) as x → x0 is for some function f(x) such

that limx→x0

f(x)
x

= 0.

II. PUSH-SUM ALGORITHM FOR DISTRIBUTED

CONSTRAINED OPTIMIZATION

In this section we adapt the push-sum algorithm to the case

of constrained convex optimization and prove convergence of

the resulting procedure.

A. Problem Formulation and Adapted Push Sum Algorithm

Let us consider the following general problem:

minF (z) =

n
∑

i=1

Fi(z), z ∈ R
d,

s.t. c1(z) ≤ 0, c2(z) ≤ 0, . . . , cn(z) ≤ 0, (1)

where Fi : R
d → R, ci : R

d → R, i = 1, . . . , n, are some

differentiable convex functions. Let fi denote the gradient

of the function Fi, i ∈ [n], f =
∑n

i=1 fi. This problem is

formulated in a multi-agent system consisting of n agents.

Each agent i has access to its local cost function Fi and its

local constraint described by the inequality ci(z) ≤ 01. By

the set S we denote the set of solutions for (1). By F ∗ we

denote the optimal value of the objective function F in the

problem (1).

At each time t, node i can only communicate to its out-

neighbors in some directed graph G(t), where the graph G(t)
has the vertex set [n] and the edge set E(t). We use N in

i (t)
and Nout

i (t) to denote the in- and out-neighborhoods of node

i at time t. Each node i is always considered to be an in-

and out-neighbor of itself. We use di(t) to denote the out-

degree of node i, and we assume that every node i knows its

out-degree at every time t. The goal of the agents is to solve

distributively the constrained minimization problem (1). We

introduce the following standard definition for the sequence

G(t).

Definition 1. We say that a sequence of graphs {G(t)} is

B-strongly connected, if, for any time t ≥ 0, the graph

G(t : t+B) = ([n], E(t) ∪E(t+ 1)∪ · · · ∪E(t+B − 1)),

is strongly connected. In other words, the union of the graphs

over every B time intervals is strongly connected.

In the following analysis we assume that the sequence

of the communication graphs {G(t)} under consideration is

1For the sake of notation simplicity, we assume that the local constraint
of each agent i is expressed by only one function ci. The analysis below
is applicable to problems, where agents have more than one constraint
function.

B-strongly connected, which guarantees enough information

“mixing” during communication between agents over time.

To deal with the problem described above, we aim to

develop a distributed optimization procedure based on the

push-sum protocol [2]. However, this protocol uses specific

ratios of local agents’ values to cancel out the effect of

information imbalances caused by limited agents’ knowl-

edge of their neighborhoods in time-dependent and directed

communication network [2], [4]. That is why optimization

methods based on projection onto the set of constraints

cannot be applied here, as they violate the balance properties

guaranteed by taking the corresponding ratio. To overcome

this limitation and to incorporate the constraints of the

problem (1) into the optimization algorithm, we leverage the

idea of penalty function methods [6]. We choose the convex

penalty functions {Ψi(z)}i such that2

Ψi(z) = g(ci(z))

g(u) =

{

log
(

eu+e−u

2

)

, if u > 0

0, if u ≤ 0.
(2)

Let Ψ =
∑n

i=1 Ψi, ψi(z) denote the gradient of the function

Ψi(z), ψ =
∑n

i=1 ψi. Note that for each i ∈ [n] the vector-

function ψi(z) is uniformly bounded over R
d, given that

∇ci(z) is uniformly bounded over Rd. By adding the penalty

function Ψ to the objective function F in (1), we obtain the

following unconstrained penalized optimization problem:

min
z∈Rd

Ft(z) = F (z) + rtΨ(z) = min
z∈Rd

n
∑

i=1

[Fi(z) + rtΨi(z)],

(3)

where rt is some positive penalty parameter. Note that as

the functions Fi and Ψi are convex for all i and rt > 0, the

unconstrained problem above is convex. Let St denote the set

of solutions for (3). The connection between the penalized

unconstrained problem (3) and the initial constrained one in

(1) is shown in the following proposition (see [6]):

Proposition 1. Let the function F be inf-compact and rt →
∞ as t → ∞. Then St and S are not empty and St converges

to S as t goes to infinity, namely limt→∞ ρ(S, St) = 0.

Moreover, limt→∞ F ∗
t = F ∗, where F ∗

t = min
z∈Rd Ft(z).

Next, we apply the push-sum algorithm from [4] to the

penalized problem (3). We proceed with the formal algorithm

formulation. At every moment of time t ∈ Z
+ each node i

maintains vector variables zi(t), xi(t), wi(t) ∈ R
d, as well

as a scalar variable yi(t) such that yi(0) = 1 for all i ∈ [n].

2Other candidates for penalty function can be found in [1], Chapter 5.



These quantities are updated as follows:

wi(t+ 1) =
∑

j∈Nin
i (t)

xj(t)

dj(t)
, (4a)

yi(t+ 1) =
∑

j∈Nin
i

(t)

yj(t)

dj(t)
, (4b)

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
, (4c)

xi(t+ 1) = wi(t)− at[fi(zi(t+ 1)) + rtψi(zi(t+ 1))],
(4d)

where at ≥ 0 is a time-dependent step size for all t.

The version of the push-sum algorithm above corresponds

to the one proposed in [4], where the optimization step

(4d) is augmented by the penalty term rtψi(zi(t + 1)).
Note that the algorithm above is based on a time-dependent

communication topology, where each agent i merely needs

to know its current out-degree di(t) to follow the algorithm’s

steps.

B. Convergence of the Algorithm

In what follows, we analyze the convergence property of

the algorithm (4) under the following assumptions regarding

the gradient functions.

Assumption 1. The gradients fi and ∇ci are uniformly

bounded over Rd for all i ∈ [n].

Remark 1. Since fi is assumed to be bounded for any i ∈
[n], there exists a positive constant Li such that ‖fi(z)‖≤
Li for any z ∈ R

d. Let L = maxi∈[n] Li. Moreover, due

to the bounded gradients ∇ci, the gradient function ψi is

bounded for any i ∈ [n] (see (2)). Thus, there exists a positive

constant Mi such that ‖ψi(z)‖≤ Mi for any z ∈ R
d. Let

M = maxi∈[n] Mi.

Assumption 2. The gradients fi and ∇ci are Lipschitz

continuous over Rd for all i ∈ [n].

Remark 2. According to the choice of the penalty functions

in (2), Lipschitz continuity of ∇ci over R
d implies Lipschitz

continuity of ψi over R
d for all i ∈ [n]. Thus, given

Assumption 2, there exist positive constants li and mi such

that ‖fi(z1)−fi(z2)‖≤ li‖z1−z2‖ and ‖ψi(z1)−ψi(z2)‖≤
li‖z1 − z2‖ for any z1, z2 ∈ R

d and all i ∈ [n] respectively.

Let l = maxi∈[n] li and m = maxi∈[n] mi.

Moreover, we make the following assumption regarding

the parameters at, rt.

Assumption 3.

at ≤ as for all t ≥ s,

∞
∑

t=0

at = ∞, (5a)

rt ≥ 1, rt → ∞, (5b)
∞
∑

t=0

a2t r
3
t < ∞, rt+1 − rt = o(at) as at → 0. (5c)

Remark 3. Note that the conditions (5a), (5c) imply that

at → 0 as t → ∞. Appropriate sequences {at} and {rt} that

meet the assumption above can be, for example, at =
1

t0.5+b ,

rt = t0.25b, where 0 < b < 0.4.

According to the procedure (4), the running average of

{xi(t)}i∈[n], namely x̄(t) = 1
n

∑n

i=1 xi(t), fulfills the fol-

lowing iterations (see also [4]):

x̄(t+ 1) = x̄(t)−
at

n

n
∑

i=1

[fi(zi(t+ 1)) + rtψi(zi(t+ 1))]

= x̄(t)−at(f(x̄(t)) + rtψ(x̄(t)))

−at

[

1

n

n
∑

i=1

fi(zi(t+ 1))− f(x̄(t))

]

−atrt

[

1

n

n
∑

i=1

ψi(zi(t+ 1))−ψ(x̄(t))

]

.

(6)

Some helpful results that will be used in the convergence

analysis are presented in Appendix (see Theorems 2 and 3).

In particular, Theorem 2(a) implies that all xi(t+1), i ∈ [n],
converge with time to their running average x̄(t), given that

Assumptions 1 and 3 hold.

Further we utilize the following notations:

q(t, x̄(t)) =
1

n

n
∑

i=1

fi(zi(t+ 1))− f(x̄(t)),

p(t, x̄(t)) =
1

n

n
∑

i=1

ψi(zi(t+ 1))−ψ(x̄(t)).

We will use the following lemma which bounds the norms

of the vectors q(t, x̄(t)) and p(t, x̄(t)) introduced above.

Lemma 1. Let Assumptions 1-3 hold. Then, there exists q(t)
and p(t) such that the following holds for the process (4):

‖q(t, x̄(t))‖ ≤
l

n

n
∑

i=1

‖zi(t+ 1)− x̄(t)‖= q(t),

‖p(t, x̄(t))‖ ≤
m

n

n
∑

i=1

‖zi(t+ 1)− x̄(t)‖= p(t),

such that
∞
∑

t=0

atr
3
t q(t) < ∞,

∞
∑

t=0

atr
3
t p(t) < ∞.

Proof. Due to Assumption 2,

‖q(t, x̄(t))‖ = ‖
1

n
[

n
∑

i=1

fi(zi(t+ 1))−
n
∑

i=1

fi(x̄(t))]‖

≤
l

n

n
∑

i=1

‖zi(t+ 1)− x̄(t)‖.

Let q(t) = l
n

∑n

i=1‖zi(t+ 1)− x̄(t)‖. Next, let us consider

the series
∞
∑

t=1

btat‖fi(zi(t+ 1)) + rtψi(zi(t+ 1))‖1.



If bt = atr
3
t ,

∞
∑

t=1

btat‖fi(zi(t+ 1)) + rtψi(zi(t+ 1))‖1< ∞,

as fi(zi(t + 1)) and ψi(zi(t + 1)) are bounded, (5b) and

(5c) hold for at and rt. Thus, we can use Theorem 2 from

Appendix to conclude that

∞
∑

t=0

atr
3
t q(t) = l

∞
∑

t=0

atr
3
t

n

n
∑

i=1

‖zi(t+ 1)− x̄(t)‖ < ∞.

Analogously, one can show that
∑∞

t=0 atr
3
t p(t) < ∞.

Remark 4. Note that due to the choice of the parameters

in Assumption 3 and the fact that under Assumptions 1-3

both p(t) and q(t) tend to 0 as t → ∞ (see Theorem 2

in Appendix),
∑∞

t=0 a
q1
t r

q2
t q2(t) < ∞,

∑∞
t=0 a

p1

t r
p2

t p2(t) <
∞, and

∑∞
t=0 a

2
t r

2
t p(t)q(t) < ∞ for all integers q1, p1 ≥ 1,

q2, p2 ∈ {0, 1, 2, 3}.

Now we state the main result for the penalty-based push-

sum algorithm (4).

Theorem 1. Let the function F in the problem (1) be inf-

compact. Let Assumptions 1-3 hold. Then all local variables

zi(t+1), i ∈ [n], in the procedure (4) reach a consensus as

t → ∞ and each limit point of this consensus corresponds

to a solution to the problem (1), given that the sequence

of the communication graphs {G(t)} under consideration is

B-strongly connected.

Proof. First, we will show that limt→∞ Ψ(x̄(t)) = 0. In

particular, it will mean that all limit points of {x̄(t)} belong

to the feasible set C = {z ∈ R
d | ci(z) ≤ 0, i ∈ [n]}. Taking

the Mean-value Theorem and relation (6) into account, and

using the notation

f̃(t, x̄(t)) = f(x̄(t)) + rtψ(x̄(t)) + q(t, x̄(t)) + rtp(t, x̄(t)),
(7)

we get that for some θ ∈ [0, 1] and x̃(t) = x̄(t) −
θatf̃ (t, x̄(t))

Ψ(x̄(t+ 1)) = Ψ(x̄(t)) − at〈ψ(x̄(t)), f̃ (t, x̄(t))〉

+ at[〈ψ(x̄(t)), f̃ (t, x̄(t))〉 − 〈ψ(x̃(t)), f̃ (t, x̄(t))〉]. (8)

According to Remark 2 and the Cauchy-Schwarz inequality,

we obtain

〈ψ(x̄(t)),f̃ (t, x̄(t))〉 − 〈ψ(x̃(t)), f̃ (t, x̄(t))〉

≤ ‖f̃(t, x̄(t))‖‖ψ(x̄(t))−ψ(x̃(t))‖

≤ ‖f̃(t, x̄(t))‖mn‖x̄(t)− x̃(t)‖

≤ θmnat‖f̃(t, x̄(t))‖
2, (9)

where m is the constant defined in Remark 2.

Next, using Remark 2, Lemma 1, and due to the Cauchy-

Schwarz inequality, we get

‖f̃(t, x̄(t))‖2≤ ‖f(x̄(t))‖2

+ r2t ‖ψ(x̄(t))‖
2+‖q(t, x̄(t))‖2+r2t ‖p(t, x̄(t))‖

2

+ 2‖f(x̄(t))‖rt‖ψ(x̄(t))‖+2‖f(x̄(t))‖‖q(t, x̄(t))‖

+ 2rt‖q(t, x̄(t))‖‖p(t, x̄(t))‖+2rt‖ψ(x̄(t))‖‖q(t, x̄(t))‖

+ 2r2t ‖ψ(x̄(t))‖‖p(t, x̄(t))‖+2‖f(x̄(t))‖‖p(t, x̄(t))‖

≤ k1(
1

2
+ q(t) + rtp(t)) + k2(

1

2
r2t + rtq(t) + r2t p(t))

+ k3rt + q2(t) + r2t p
2(t) + 2rtp(t)q(t) = g0(t) (10)

for some positive constants k1, k2, and k3. Finally, using

the definition of f̃(t, x̄(t)) in (7) and the Cauchy-Schwarz

inequality again, we obtain for some positive constants k4
and k5 that

〈ψ(x̄(t)),f̃(t, x̄(t))〉 ≥ 〈ψ(x̄(t)), f(x̄(t))〉 + rt‖ψ(x̄(t))‖
2

− k4‖q(t, x̄(t))‖−k5rt‖p(t, x̄(t))‖

≥ ‖ψ(x̄(t))‖(−‖f(x̄(t))‖+rt‖ψ(x̄(t))‖)

− k4q(t)− k5rtp(t)

≥ ‖ψ(x̄(t))‖1{‖ψ(x̄(t))‖6=0} − k4q(t)− k5rtp(t),
(11)

where the first inequality is due to the bounded ‖ψ‖ and the

last inequality is due to the fact that 0 < rt → ∞ as t → ∞
and ‖f‖ are bounded.

By substituting (9)-(11) to (8) we can write:

Ψ(x̄(t+ 1))

≤ Ψ(x̄(t)) − at‖ψ(x̄(t))‖1{‖ψ(x̄(t))‖6=0} + g(t),

where g(t) = a2t (g0(t) + k4q(t) + k5rtp(t)). According

to the choice of at and rt, Lemma 1, and Remark 4,

we obtain that
∑∞

t=0 g(t) < ∞. Thus, using the well-

known result on the sequences of non-negative variables

presented in Theorem 3 (see Appendix), we conclude that

limt→∞ Ψ(x̄(t)) exists, is finite, and
∑∞

t=0 at‖ψ(x̄(t))‖
2<

∞. Thus, lim inf t→∞‖ψ(x̄(t)‖= 0, since
∑∞

t=0 at = ∞
(see (5a)). It implies existence of a subsequence {tk} ⊆ {t}
such that limk→∞‖ψ(x̄(tk)‖= 0 and, as ‖ψ(z)‖= 0 if and

only if Ψ(z) = 0, we conclude that limk→∞ Ψ(x̄(tk)) = 0.

Thus,

lim
t→∞

Ψ(x̄(t)) = 0. (12)

Next, let us notice that F (x̄(t + 1)) = Ft(x̄(t + 1)) −
rtΨ(x̄(t+1)) = Ft+1(x̄(t+1))− rt+1Ψ(x̄(t+1)). Hence,

taking into account that Ψ(x̄(t)) = o(1) as t → ∞ (see

(12)), rt+1 − rt = o(at), at → 0 as t → ∞, and using

Mean-value Theorem, we get

Ft+1(x̄(t+ 1)) = Ft(x̄(t+ 1)) + (rt+1 − rt)Ψ(x̄(t+ 1))

= Ft(x̄(t)− atf̃(t, x̄(t))) + o(at)

= Ft(x̄(t)) − at〈∇Ft(x̄(t)), f̃ (t, x̄(t))〉 + o(at)

+ at〈∇Ft(x̄(t))−∇Ft(x
′(t)), f̃ (t, x̄(t))〉,

(13)



where x′(t) = x̄(t)− βat f̃(t, x̄(t)) for some β ∈ [0, 1].
According to Assumption 2, there exists some l1 > 0 such

that

〈∇Ft(x̄(t))−∇Ft(x
′(t)), f̃ (t, x̄(t))〉

≤ l1atrt‖f̃(t, x̄(t)))‖
2≤ l1atrtg0(t),

where for the first inequality we used the Cauchy-Schwarz

inequality and the last inequality is due to (10). Hence,

due to the Cauchy-Schwarz inequality and the definition of

f̃(t, x̄(t)) in (7), we obtain from (13) that

Ft+1(x̄(t+ 1)) ≤ Ft(x̄(t))

− at‖∇Ft(x̄(t))‖
2−at〈f(x̄(t)),q(t, x̄(t))〉

− atrt〈ψ(x̄(t)),q(t, x̄(t))〉 − atrt〈f(x̄(t)),p(t, x̄(t))〉

− atr
2
t 〈ψ(x̄(t)),p(t, x̄(t))〉+ l1a

2
t rtg0(t) + o(at)

≤ Ft(x̄(t))− at(‖∇Ft(x̄(t))‖
2+o(1))

+ atq(t)‖f(x̄(t))‖+atrtq(t)‖ψ(x̄(t))‖

+ atrtp(t)‖f(x̄(t))‖+atr
2
t p(t)‖ψ(x̄(t))‖+l1a

2
t rtg0(t)

= Ft(x̄(t))− at(‖∇Ft(x̄(t))‖
2+o(1)) + g1(t),

where

g1(t) = atq(t)‖f(x̄(t))‖+atrtq(t)‖ψ(x̄(t))‖

+ atrtp(t)‖f(x̄(t))‖+atr
2
t p(t)‖ψ(x̄(t))‖+l1a

2
t rtg0(t).

Thus,
∑∞

t=0 g1(t) < ∞, due to Assumption 1, the choice of

at and rt, and Lemma 1 (see Remark 4). Hence, according

to Theorem 3 from Appendix, we can conclude that

Ft(x̄(t)) has a limit as t → ∞. (14)

Moreover,
∑∞

t=1 at‖∇Ft(x̄(t))‖
2< ∞, which, due to (5a),

implies lim inft→∞‖∇Ft(x̄(t))‖= 0. Let us choose a subse-

quence {tk} ⊆ {t} such that limk→∞‖∇Ftk(x̄(tk))‖= 0.

Due to convexity of Ft over R
d for all t, the last limit

implies that limk→∞[Ftk(x̄(tk)) − F ∗
tk
] = 0, where F ∗

tk
=

minx∈Rd Ftk(x). Next, due to Proposition 1 and as rt → ∞,

we conclude that limk→∞ Ftk(x̄(tk)) − F ∗ = 0, which

together with (14) implies that limt→∞ Ft(x̄(t)) = F ∗ and,

hence, every limit point of x̄(t) is a solution to the problem

(1). Finally, by invoking Theorem 2(a), we conclude the

result.

Remark 5. Note that if, additionally to the conditions in

Theorem 1, the function F is assumed to be strictly convex,

then there exists a unique solution z∗ to the problem (1).

In this case, Theorem 1 implies convergence of all zi(t)
evolving according to the algorithm (4) to this optimum z∗.

III. APPLICATIONS IN ENERGY MANAGEMENT

We consider a problem of energy management formulated

and analyzed in [17]. Let Ng and Nd be the sets of distributed

generators and responsive demands in a power grid with Ng

and Nd elements respectively. Let N = Ng+Nd. A directed

connected time-dependent graph G(t) = ([N ],E(t)) is used

to represent the communication topology of the network in

the grid, where [N ] = Ng ∪ Nd is the set of the nodes

containing generators and demands and E(t) ⊆ [N ] × [N ]

is the edge set. Note that (j, i) ∈ E(t) if and only if the

node i ∈ [N ] can receive information from node j ∈ [N ] at

time t. In contrast to the previous works [10], [17], in this

paper we focus on a broader class of the communication

topology containing time-dependent graphs and requiring

each user to know only its current out-degree to construct

an appropriate communication matrix. For this purpose, we

will apply the penalty-based push-sum algorithm introduced

and analyzed in Section II to the distributed optimization

formulated below.

We consider the following generation and demand capac-

ities in the system:

pi ∈ [pmi , PM
i ], i ∈ Ng, pj ∈ [pmj , PM

j ], j ∈ Nd.

The cost function Ci : R → R of each generator i ∈ Ng is:

Ci(pi) =











aip
2
i + bipi + ci, if pi ∈ [pmi , PM

i ],

(2aip
m
i + bi)pi, if pi ≤ pmi ,

(2aip
M
i + bi)pi, if pi ≥ pMi .

(15)

where ai, bi, ci are positive fitting parameters. Thus, the cost

functions are strongly convex functions.

The utility function Uj : R → R of each demand j ∈ Nd

has the following properties:

Uj(0) = 0,
dUj

dpj
> 0 (non-decreasing),

∃K1,K2 :
dUj

dpj
< K1,

K2 ≤
d2Uj

(dpj)2
≤ 0 (get saturated). (16)

Thus, the utility functions are concave functions.

Let p ∈ R
N be the vector with coordinates pi, i ∈ [N ].

The goal in the power grid is to solve distributively the

following energy management problem3:

min
p

∑

i∈Ng

Ci(pi)−
∑

j∈Nd

Uj(pj) (17)

s.t.
∑

i∈Ng

(pi − lip
2
i ) =

∑

j∈Nd

pj (17a)

pmi ≤ pi ≤ PM
i , i ∈ Ng (17b)

pmj ≤ pj ≤ PM
j , j ∈ Nd. (17c)

In the problem above the constraint (17a) corresponds to the

balance between the generated and the demanded power in

the network, where each parameter li, i ∈ Ng , corresponds

to the coefficient of the transmission losses induced by

the generator i and satisfies 0 ≤ li < ai. Note that the

problem (17) is non-convex due to the non-convex constraint

defined by (17a).

3For more details on the problem formulation see [17].



A. Problem reformulation with constraints based on local

information

To implement the distributed penalized push-sum algo-

rithm to the energy management problem (17), we need

to find its appropriate convex reformulation such that any

solution to this reformulation provides a solution for (17).

Moreover, as the constraint (17a) contains the information

on the “loss” parameter li of each i ∈ Ng , we aim to find a

reformulation, where no constraint requires knowledge about

the local properties of other nodes in the network. First of

all, let us notice that the problem (17) is equivalent to the

following one:

min
p,v

∑

i∈Ng

Ci(pi)−
∑

j∈Nd

Uj(pj) (18)

s.t.
∑

i∈Ng

(pi − vi) =
∑

j∈Nd

pj (18a)

pmi ≤ pi ≤ PM
i , i ∈ Ng (18b)

pmj ≤ pj ≤ PM
j , j ∈ Nd (18c)

vi = lip
2
i , i ∈ Ng, (18d)

where v ∈ R
Ng is the vector with coordinates vi, i ∈ Ng .

Thus, the strategy pi of each generator is augmented by

the auxiliary parameter vi. However, the problem (18) is

still non-convex due to the constraints in (18d). Following

the idea in [17], we present a new reformulation, where

each non-convex equality constraint is replaced by the corre-

sponding convex inequality one. Thus, we obtain the convex

optimization problem

min
p,v

∑

i∈Ng

Ci(pi)−
∑

j∈Nd

Uj(pj) (19)

s.t.
∑

i∈Ng

(pi − vi) =
∑

j∈Nd

pj (19a)

pmi ≤ pi ≤ PM
i , i ∈ Ng (19b)

pmj ≤ pj ≤ PM
j , j ∈ Nd (19c)

vi ≥ lip
2
i , i ∈ Ng. (19d)

Next, we establish the relation between the convex prob-

lem (19) and the initial one (17). This will be done under

the following two technical assumptions.

Assumption 4. The upper and low bounds for the feasible

power generation and demand (see (17b) and (17c)) satisfy
∑

j∈Nd

PM
j ≥

∑

i∈Ng

(pmi − li(p
m
i )2).

The assumption above repeats the sufficient condition for

an appropriate convex reformulation of the problem (17)

presented in [17] (see also Remark 1 in [17]). The next

assumption is the Slater constraint qualification for the

reformulated problem (19). It will enable the relation analysis

based on the Karush-Kuhn-Tacker conditions for the optimal

primal dual pair of the problem (19).

Assumption 5. There exists a feasible point (p̂, v̂) for the

problem (19) such that
∑

i∈Ng
(p̂i− v̂i) =

∑

j∈Nd
p̂j , pmi <

p̂i < PM
i , i ∈ Ng , pmj < p̂j < PM

j , j ∈ Nd, v̂i > lip̂
2
i ,

i ∈ Ng .

The next proposition states the desired relation between

the initial problem (17) and the convex one (19) above.

Proposition 2. Let Assumptions 4 and 5 hold. Then any

solution to the problem (19) is a solution to the problem (17).

Proof. See Appendix.

The optimization problem (19) can be considered a par-

ticular case of the general distributed optimization problem

(1). Indeed, let z = (p,v) be the vector of joint strategies

of the generators and responsive demands in the network,

Fi(z) = Ci(pi), if i ∈ Ng , Fj(z) = −Ui(pj), if j ∈ Ng, and

the constraints (19a)-(19d) be distributed over these agents

as follows:

LCi = {c1i (z) = pi − PM
i ≤ 0, c2i (z) = pmi − pi ≤ 0,

c3i (z) =
∑

i∈Ng

(pi − vi)−
∑

j∈Nd

pj ≤ 0,

c4i (z) = −
∑

i∈Ng

(pi − vi) +
∑

j∈Nd

pj ≤ 0,

c5i (z) = (lip
2
i − vi)1{pi∈[pm

i
,PM

i
]}

+ (2lip
m
i − vi)1{pi<pm

i
}

+ (2lip
M
i − vi)1{pi>pM

i
} ≤ 0},

if i ∈ Ng,

LCj = {c1j(z) = pj − PM
j ≤ 0, c2j(z) = pmj − pj ≤ 0},

if j ∈ Nd.

Note that the condition c5i (z) ≤ 0 for i ∈ Ng above corre-

sponds to the constraint (19d). We modified this constraint

without changing the problem (due to existence of the hard

constraints (19b)) to be able to use the result from Theorem 1

requiring bounded gradients of the constraint functions.

Given the properties of the cost and utility functions (see (15)

and (16)), the objective function F (z) =
∑

i∈Ng
Fi(z) +

∑

j∈Nd
Fj(z) is strongly convex and, hence, inf-compact.

Moreover, Assumptions 1 and 2 hold for the gradients of

the functions Fi, Fj and local constraint functions c1i , c2i , c3i ,

c4i , c5i , c1j , c2j , i ∈ Ng , j ∈ Nd. Thus, the problem (19) is

equivalent to

min
z

F (z) =
∑

i∈Ng

Fi(z) +
∑

j∈Nd

Fj(z),

s.t. z ∈
(

∩i∈Ng
LCi

)

⋂

(∩j∈Nd
LCj) . (20)

and the following result can be formulated

Corollary 1. Let Assumptions 4 and 5 hold for the problem

(17). Then under an appropriate choice of the parameters

at, rt (see Assumption 5), the penalty-based push-sum algo-

rithm (4) applied to the reformulated problem (20) converges

to the optimal solution to (17) as time tends to infinity.



B. Simulation Results

In this section we will substantiate our theoretic result

stated in Corollary 1 for the energy management problem

(17) with simulations. For this purpose, we verify Theorem 1

by comparing the optimum p∗ of the problem (17) with the

iterations of the penalty-based push-sum algorithm presented

in Section II.

For our simulation we use a small setup of two generator

and two consumer nodes. The cost functions of the gen-

erators are as in (15), whereas the utility functions of the

demand nodes are

Uj(pj) =







ωjpj − αjp
2
j , pj ≤

ωj

2Kjαj

(ωj −
ωj

Kj
)pj −

ω2
j

4K2
j
αj

, pj >
ωj

2Kjαj

,

(21)

where Kj < 1 is a positive constant for each j ∈ Nd.

Thus, the properties (16) are met. For the parameters for

the cost functions, the lower and upper bounds on pi and pj ,

as well as for the transmission loss coefficients li, i ∈ Ng ,

we rely on settings in [17]. We model our time-varying

communication architecture with a changing signal st that

chooses the current graph G(s(t)) sequentially from the

set G = {G1, G2}, where G1 and G2 are not strongly

connected but their union is. The communication architecture

is depicted in Figure 1.

1 2

34

1 2

34

G1 G2

s(ti)

s(tj)

Fig. 1. Time-dependent directed communication architecture.

The results of our simulations are shown in Table I and

Figure 2. The table states the optimal values p∗ of the

generators and consumers together with the result of the

push-sum algorithm after 3×104 iterations. The figure shows

the convergence of the relative error errork =
|pk−p∗

k|
p∗

k

,

k ∈ [4], to zero as time runs. We can notice that the

relative error at the demand nodes (k = 3, 4) approaches

0 already after 500 iterations, whereas the generator’s errors

need significantly more time to get close to 0. This effect is

due to a more complex structure of generators’ constraints,

for which an optimal choice of penalty parameters needs to

be studied in the future work.

IV. CONCLUSION

In this paper we extended the distributed push-sum al-

gorithm to the case of constrained convex optimization.

The penalty-based push-sum algorithm was presented and

its convergence to a system’s optimum was proven. We

demonstrated applicability of the proposed procedure to

distributed energy management in smart grid. The future

work will focus on such questions as the convergence rate

p
∗

p

pG
1

81.98 81.69

pG
2

124.80 122.75

pD
1

100.34 99.61

pD
2

100.00 99.64

TABLE I

OPTIMAL p
∗ VS ALGORITHM OUTPUT AFTER 3× 104 ITERATIONS.
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Fig. 2. Convergence of the relative error errork , k ∈ [4], between optimum
p∗
k

and algorithm output pk.

of the penalty-based push-sum algorithm and its dependence

on the communication topology as well as an optimal choice

of penalty functions and penalty parameters.
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APPENDIX

Proof of Proposition 2

Proof. Let us consider the Lagrangian function defined for

the convex problem (19), namely

L(p,v, λ,µ,γ, θ) =
∑

i∈Ng

Ci(pi)−
∑

j∈Nd

Uj(pj)

+ λ(
∑

i∈Ng

(pi − vi)−
∑

j∈Nd

pj) +
∑

i∈Ng

µi(lip
2
i − vi)

+
∑

k∈[N ]

γk(p
m
k − pk) +

∑

k∈[N ]

θk(pk − PM
k ),

where µ, γ, θ are the vectors of the Lagrangian multipli-

ers with corresponding dimensions. As the problem (19)

is convex and Assumption 5 holds, we can use nec-

essary and sufficient Karush-Kuhn-Tacker conditions for

[(p∗,v∗), (λ∗,µ∗,γ∗, θ∗)] being an optimal primal dual

pair4. Thus,

∂L

∂pi
=

dCi(p
∗
i )

dpi
+ λ∗ + 2µ∗

i lip
∗
i − γ∗

i + θ∗i = 0, i ∈ Ng,

(22a)

∂L

∂pj
= −

dUj(p
∗
j )

dpj
− λ∗ − γ∗

j + θ∗j = 0, j ∈ Nd, (22b)

∂L

∂vi
= −λ∗ + µ∗

i = 0, i ∈ Ng, (22c)

γ∗
k(p

m
k − p∗k) = 0, γ∗

k ≥ 0, k ∈ [N ], (22d)

θ∗k(p
∗
k − PM

k ) = 0, θ∗k ≥ 0, k ∈ [N ], (22e)

µ∗
i (li(p

∗
i )

2 − v∗i ) = 0, µ∗
i ≥ 0, i ∈ Ng. (22f)

Suppose that

v∗i′ > li′(p
∗
i′)

2 for some i′ ∈ Ng. (23)

Then, due to (22f), µ∗
i′ = 0. Hence, according to (22c), λ∗ =

0 and µ∗
i = 0 for all i ∈ Ng. Next, since Assumption 5

4Note that existence of an optimal primal dual is guaranteed in this case
as well (see, for example, Proposition 5.3.1 in [1]).

guarantees that pmk 6= PM
k for all k ∈ [N ], γ∗

k = 0 or θ∗k = 0
for all k ∈ [N ] (see (22d) and (22e)). Let us consider any

j ∈ Nd. Due to the fact that
dUj(p

∗

j )

dpj
> 0 (see (16)), γ∗

j ≥ 0
(see (22d)), and condition (22b), we conclude that γ∗

j = 0
and θ∗j > 0. Thus, p∗j = PM

j (see (22e)) for all j ∈ Nd.

Analogously, for any i ∈ Ng , due to the property of the cost

functions, namely
dCi(p

∗

i )
dpi

> 0 (see (15)), we obtain that

γ∗
i > 0 and θ∗i = 0 (see (22a)). Thus, p∗i = pmi (see (22d))

for all i ∈ Ng .

Next, taking into account (23) and the feasibility condi-

tions (19a) and (19d), we get
∑

j∈Nd

PM
j =

∑

j∈Nd

p∗j =
∑

i∈Ng

(p∗i − v∗i )

<
∑

i∈Ng

(pmi − li(p
m
i )2), (24)

which contradicts Assumption 4. Thus, (23) cannot hold,

which implies that v∗i = li(p
∗
i )

2 for all i ∈ Ng. Hence,

the optimal solution (p∗,v∗) to the problem (19) necessarily

satisfies the feasibility conditions of the problem (18), which

is equivalent to the initial problem (17). By noticing that the

objective function in the optimization problems is the same,

we conclude the proof.

Supporting Theorems

Theorem 2. [4] Consider the sequences {zi(t)}t, i ∈ [n],
generated by the algorithm (4). Assume that the graph

sequence {G(t)} is B-strongly connected and Assumptions 1

and 3 hold.

(a) Then limt→∞‖zi(t+ 1)− x̄(t)‖= 0 for all i ∈ [n].
Moreover,

(b) If {bt} is a non-increasing positive scalar sequence

with
∑∞

t=1 btat‖fi(zi(t + 1)) + rtψi(zi(t + 1))‖1< ∞ for

all i ∈ [n], then
∑∞

t=0 bt ‖zi(t+ 1)− x̄(t)‖ < ∞ for all i,

where ‖·‖1 is the l1-norm in R
d.

The next theorem is the well-known result on non-negative

variables [12].

Theorem 3. Let zn, βn, ξn, and ζn be non-negative variables

such that

zn+1 ≤ zn(1 + βn)− ζn + ξn.

Then limn→∞ zn exists and is finite and
∑∞

n=1 ζn < ∞ on

{
∑∞

n=1 βn < ∞,
∑∞

n=1 ξn < ∞}.
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