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Abstract— We study the infinite-horizon optimal control
problem for nonlinear, multi-input, input-quadratic systems.
It is shown that optimality of the input-quadratic closed-loop
system is intimately related to the property that an auxiliary
input-affine system possesses a L2-gain smaller than one. Such
equivalence is established, or approximated, by relying on (a
combination of) three alternative sets of technical conditions
based (i) on the inclusion of the gradient of the underlying
storage function in a certain co-distribution, (ii) on verifying
specific algebraic inequalities, (iii) or achieved dynamically by
considering the immersion of the original nonlinear plant into
a system defined on an augmented state-space.

I. INTRODUCTION

While the class of input-affine nonlinear systems has been
thoroughly studied in the past decades (see, e.g., [3], [4],
[13]), the literature concerning more general systems is
instead mainly focused on plants that exhibit simultaneously
a generic nonlinear dependence both on the state and on
the control input, hence typically losing the particularly
interesting structural and constructive insight acquired for
input-affine systems. It is then not surprising that results
dealing with input-quadratic nonlinear systems are rather
limited and mostly hinging upon the notion of Control
Lyapunov Function [5], [14], [6], despite the fact that the
study of such a class of systems is significantly motivated
by practical applications, including for instance magnetic
systems [6] and micro-electromechanical systems (MEMS),
based on electromagnetic or electrostatic actuation forces [9].
Moreover, quadratic inputs may appear in intermediate steps
of the popular back-stepping stabilizing procedure, see e.g.
[1] for the ball and beam example or [2] for the transient
stabilization problem in multimachine power systems.

The main contribution of this paper consists in formulating
and addressing the infinite-horizon optimal control problem
for nonlinear, multi-input, input-quadratic systems. In partic-
ular, the property of optimality of the closed-loop system is
shown to be intimately related to the property that an auxil-
iary input-affine system possesses a L2-gain smaller or equal
to one and provided that the gradient of the corresponding
storage function belongs to a certain co-distribution. Alter-
natively, the explicit solution of the underlying Hamilton-
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Jacobi partial differential equation and the requirement of
the following inclusion may be relaxed to a pair of algebraic
inequalities by relying on the use of a dynamic extension,
thus obtaining an approximate solution to the optimal control
problem. Note that the case of single-input models, which is
dealt with in [10], does not require any additional technical
condition to establish the above equivalence. Therefore, with
respect to [10], herein the analysis of the inclusion of the
gradient of the storage function to the annihilator of a specific
distribution is expanded and the constructive scheme based
on algebraic solutions and dynamic extension is introduced.

The rest of the paper is organized as follows. A few
preliminary results are briefly reviewed in Section II, while
the considered problem is formulated in Section III. The
main results concerning optimality of the underlying input-
quadratic system and its approximation via immersion and
dynamic extension are the topic of Sections IV and V,
respectively. Finally, a simple numerical example illustrates
the theory in Section VI.

II. NOTATION AND PRELIMINARIES

The aim of this section consists in briefly reviewing a
few basic definitions and results that are instrumental for the
following derivations. Towards this end, consider a nonlinear,
input-affine system described by equations of the form

ẋ = f(x) + g(x)v + p(x)w , (1)

where x(t) ∈ X ⊆ Rn denotes the state of the system,

v(t) ∈ V ⊆ Rm is a control input and w(t) ∈ W ⊆ Rd
is an exogenous signal. Assume that f , gi, i = 1, ...,m and
pj , j = 1, ..., d are smooth vector fields mapping x 7→ TxX ,
where TxX denotes the tangent space to X at x. Moreover,
let y(t) ∈ Y ⊆ Rq denote the output of system (1).

Assumption 1: The origin of Rn, contained in X , is an
equilibrium point of the system (1) with v(t) = 0 and w(t) =
0, for all t > 0, namely f(0) = 0. ◦
Given a continuous function V : Rn → R, the following
definitions are employed in the rest of the paper. The notation
V : Rn → R>0 is used to denote a function that is
positive definite around the origin, namely a function such
that V (0) = 0, while V (x) is locally strictly positive.
Moreover, the notation V : Rn → R>0 denotes a locally
positive semi-definite function, namely such that V (x) > 0.

Definition 1: A nonlinear system ẋ = f(x) + g(x)v with
output y is said to be zero-state detectable from the output
y if for any trajectory such that v(t) ≡ 0, the condition
y(t) ≡ 0 implies lim

t→∞
x(t) = 0. ◦



Assuming initially that v(t) = 0 for all t > 0, consider, on
the space Rd×Rq of the external variables of (1), a function
s : Rd × Rq → R, referred to as supply rate.

Definition 2: [13] The system (1), with v(t) ≡ 0, is said
to be dissipative with respect to the supply rate s if there
exists a function V : Rn → R>0, called storage function,
such that for all x0 = x(0) ∈ X , T > 0 and inputs w

V (x(T )) 6 V (x0) +
1

2

∫ T

0

s(w(τ), y(τ))dτ . (2)

Moreover, if (2) holds with the equality sign, then system (1)
is lossless with respect to s. ◦

Definition 3: [13] Let γ > 0. The system (1), with
v(t) ≡ 0, has L2-gain less than or equal to γ if it
is dissipative with respect to the supply rate s(w, y) =
γ2‖w‖2 − ‖y‖2. ◦
The following classical result relates the possibility of im-
posing, via feedback, a desired L2-gain to the existence of a
solution to a certain first-order quadratic partial differential
equation, the so-called Hamilton-Jacobi (HJ) equation.

Proposition 1: [12] Consider the nonlinear system (1) and
let γ > 0. Suppose that there exists a smooth solution V :
Rn → R>0 of the Hamilton-Jacobi equation

0 =Vxf(x) +
1

2
c(x)>c(x)

+
1

2
Vx

(
1

γ2
p(x)p(x)> − g(x)g(x)>

)
V >x ,

(3)

with V (0) = 0. Then system (1) in closed loop with v =
−g(x)>V >x (x) has L2-gain less than or equal to γ from the
input from w to the output [y, v]>, with V as a storage
function. �

III. PROBLEM DEFINITION

Consider a nonlinear, multi-input system, quadratic in the
control input, described by equations of the form

ẋ = f(x) + g(x)u+
1

2

 u>h1(x)u
...

u>hn(x)u

 , (4)

where x(t) ∈ Rn denotes the state of the system and
u(t) ∈ Rm is the control input. The mappings f : Rn → Rn,
g : Rn → Rn×m and hi : Rn → Rm×m, i = 1, ..., n are
assumed to be sufficiently smooth and such that hi(x) =
hi(x)> for all x. Throughout the paper we assume that
f(0) = 0, namely the nonlinear system (4) possesses an
equilibrium at the origin with u = 0. The optimal control
problem of interest can be formulated as follows.

Problem 1: Consider the nonlinear, input-quadratic, sys-
tem (4) together with the cost functional

Jx0
(u) ,

∫ ∞
0

(
q(x(τ)) + ‖u(τ)‖2

)
dτ

=

∫ ∞
0

(
k(x(τ))>k(x(τ)) + ‖u(τ)‖2

)
dτ

(5)

where q : Rn → R>0 is a smooth positive semi-definite
function, q(0) = 0, and k : Rn → Rn is such that q(x) =
k(x)>k(x), ∀x ∈ Rn. The infinite-horizon optimal control
problem consists in determining a state-feedback control law
u? = α(x), α : Rn → Rm, α(0) = 0, smooth mapping, such
that Jx0(u?) 6 Jx0(u) for any u and all x0. ◦

In the following, we refer to the function V : Rn →
R>0, defined as V (x0) = Jx0

(u?), ∀x0 ∈ Rn, as the value
function of the optimal control problem. Consider now the
following standing assumption, which is supposed to hold
throughout the entire paper.

Assumption 2: The system (4) with output y = k(x) is
zero-state detectable. ◦

Since the presence of the input nonlinearity in (4) may
render the solution to Problem 1 a daunting task, a relaxed
formulation is provided. In particular, the simplification is
twofold: on one hand we allow for the presence of an
additional running cost while, on the other hand, the design
of a dynamic control law, instead of a static state feedback,
is permitted, as summarized in the following statement.

Problem 2: Consider the nonlinear, input-quadratic, sys-
tem (4) together with the cost functional (5) and Assump-
tion 2. The infinite-horizon dynamic optimal control problem
with stability consists in determining an integer ν > 0,
a positive semi-definite function % : Rn × Rν → R>0, a
dynamic control law described by the equations

ξ̇ = α(x, ξ) , (6a)

u = β(x, ξ) , (6b)

with ξ(t) ∈ Rν , α : Rn × Rν → Rν , β : Rn × Rν → Rm
smooth mappings, α(0, 0) = 0, β(0, 0) = 0, and an open set
U ⊂ Rn × Rν containing the origin such that:

(i) the zero equilibrium of the interconnected system (4),
(6) is asymptotically stable with region of attraction
containing U ;

(ii) for any ũ(x, ξ) and any (x0, ξ0) such that the trajectory
of system (4), (6a) interconnected by ũ remains in U
the inequality J̃x0,ξ0(u) 6 J̃x0,ξ0(ũ) holds, with the
augmented cost J̃ defined as

J̃x0,ξ0 ,
∫ ∞
0

(
q(x(τ)) + %(x(τ), ξ(τ)) + ‖u(τ)‖2

)
dτ .

(7)

◦

For convenience the following notation is introduced. Let
the function hijk : Rn → R, i = 1, ...,m, j = 1, ...,m,
k = 1, ..., n, denote the (i, j) entry of the matrix-valued
function hk, namely

hk(x) =


h11k (x) . . . h1mk (x)

...
. . .

...
hm1
k (x) . . . hmmk (x)

 , (8)



and define the mappings µi,j : Rn → Rn as

µi,j(x) =

 hi,j1 (x)
...

hi,jn (x)

 . (9)

Note that, by symmetry of the matrix-valued functions hi
in (4), it follows that µi,j = µj,i for all i = 1, ...,m and
j = 1, ...,m. The section is concluded by stating a property
of the vector field f , the matrix-valued functions g, and hi
and the positive semi-definite function q that is instrumental
for the derivations in the following sections.

Fact 1: There exist non-negative integers np, nd and nl
and smooth mappings p : Rn → Rn×np , d : Rn → Rn×nd

and l : Rn → Rn×nl such that

f(x)

m∑
i=1

µi,i(x)> +
m∑
i=1

µi,i(x)f(x)>

+
1

2
q(x)

m∑
i=1

m∑
j=i+1

(µi,i(x)µj,j(x)> + µj,j(x)µi,i(x)>

− 2µi,j(x)µi,j(x)>) = p(x)p(x)> − d(x)d(x)> ,
(10)

and

l(x)l(x)> = g(x)g(x)> + d(x)d(x)> , (11)

for all x ∈ Rn. ◦

Note that Fact 1 essentially summarizes, in (10), the property
of a symmetric matrix-valued function to be decomposed
in its positive and negative semi-definite parts, respectively,
and, in (11), the property of a positive semi-definite matrix-
valued function to be decomposable as the external product
of a certain vector field l(x) of suitable dimensions related
to the rank of the matrices on the right-hand side.

IV. OPTIMALITY OF MIMO INPUT-QUADRATIC SYSTEMS

In this section we explore the relation between the
properties of optimality for the underlying input-quadratic
system (4) and of dissipativity of an auxiliary input-affine
nonlinear system. To provide concise statements of the
following propositions, given the matrix-valued functions
hi, i = 1, ..., n and a continuously differentiable function
V : Rn → R, define the matrix-valued function M :
Rn × Rn → Rm×m as

M(x, Vx) , I + Vx1
h1(x) + ...+ Vxn

hn(x) . (12)

Then, by distinguishing between the set of diagonal vector-
valued functions µd , {µ1,1, ..., µm,m} and the off-diagonal
ones µo , {µ1,2, ..., µ1,m, µ2,3, ...µ2,m, ...µm−1,m}, without

repetitions, it can be shown that

det (M(x, Vx)) = 1 +

m∑
i=1

Lµi,i
V

+

m∑
i=1

m∑
j=i+1

(
Lµi,iV Lµj,jV − (Lµi,jV )2

)
+D1(Vx, µ

d) +D2(Vx, µ
d, µo),

(13)

with D1 ,
∑1
i1=0 ...

∑1
im=0 IE (

∑m
k=1 ik)

(
(Lµ1,1V )i1

...(Lµm,mV )im
)

, where IE : N → {0, 1} denotes the

indicator function of the set E , {r ∈ N : r > 3}, and
with D2 such that D2(Vx, µ

d(x), 0) = 0, for any x ∈ Rn.
Note that the terms D1 and D2 are identically equal to zero
if m 6 2. Moreover

Mad(x, Vx) = I + Ψ(Vx, µ
d, µo) , (14)

whereMad denotes the adjoint matrix ofM and the matrix-
valued function Ψ is such that

Ψ(Vx, µ
d(x), 0) = blkdiag

{
Pi(Vx, µd)

}
i=1,...,m

, (15)

with Pj ,
∑1
i1=0 ...

∑1
ij−1=0

∑1
ij+1=0 ...

∑1
im=0((Lµ1,1

V )i1

...(Lµ1,1V )ij−1(Lµ1,1V )ij+1 ...(Lµm,mV )im).

The following result provides the characterization of the
optimal solution to Problem 1 in a somewhat trivial case.
Nonetheless, its proof permits the illustration of the main
ideas on which also the proofs of the following results are
based, hence it is explicitly reported.

Proposition 2: Consider the nonlinear, input-quadratic,
system (4) together with the cost functional (5) and Assump-
tion 2. Consider the input-affine system

ẋ = f(x) + g(x)v , (16)

where v(t) ∈ Rm is a control input, and suppose that there
exists a smooth solution V : Rn → R>0 to the HJ equation

Vxf(x) +
1

2
q(x)− 1

2
Vxg(x)g(x)>V >x = 0 . (17)

Suppose, in addition, that the value function V : Rn → R>0

is such that1 Lµi,j
V = 0, for all i = 1, ...,m, j = 1, ...,m.

Then there exists U ⊆ Rn, containing the origin, such that
the state-feedback

u?(x) = −g(x)>V >x (18)

solves Problem 1 for any x ∈ U . Moreover, V is the
corresponding value function. �

1Given a function λ : Rn → R and a vector field f : Rn → Rn, Lfλ
denotes the Lie derivative of λ along f , namely Lfλ(x) = ∂λ

∂x
f(x).



Proof: Consider the input-quadratic system (4) together
with the cost functional (5). The corresponding Hamilton-
Jacobi-Bellman (HJB) partial differential equation is

0 = min
u
{HJB(x, u)} , min

u

{1

2
q(x) +

1

2
u>u

+ Vxf(x) + Vxg(x)u+
1

2

n∑
i=1

Vxi
u>hi(x)u

}
= min

u

{
Vxf(x) + Vxg(x)u+

1

2
q(x) +

1

2
u>M(x, Vx)u

}
,

(19)

in the unknown V : Rn → R, V (0) = 0. Then, by
recalling (13) and by continuity of the involved functions,
there exists a non-empty neighborhood of the originW such
that det (M(x, Vx)) > 0 for any x ∈ W . Therefore, the
minimum with respect to the control input of HJB(x, u) is
continuously achieved at û(x) = −M(x, Vx)−1g(x)>V >x .
Replacing then û(x) into (19), the latter reduces to

0 = Vxf(x) +
1

2
q(x)− 1

2
Vxg(x)M−1(x, Vx)g(x)>V >x

= (Vxf(x) +
1

2
q(x)) det(M(x, Vx))

− 1

2
Vxg(x)Mad(x, Vx)g(x)>V >x .

(20)

Therefore, by relying on the equations (13) and (14) and by
recalling the decomposition in (10), the partial differential
equation (20) can be equivalently arranged as

0 = Vxf̄(x) +
1

2
Vx
(
p(x)p(x)> − l(x)l(x)>

)
V >x

+
1

2
k(x)>k(x) +R(Vx, µ

d, µo)

(21)

with f̄(x) = f(x) + (1/2)q(x)
∑m
i=1 µi,i(x) and

R(Vx, µ
d, µo) ,

(
Vxf(x) +

1

2
q(x)

)
(D1 +D2)

+ Vxf(x)

m∑
i=1

m∑
j=i+1

(
Lµi,i

V Lµj,j
V − (Lµi,j

V )2
)

− 1

2
Vxg(x)Ψg(x)>V >x .

(22)

It is evident that the equation (21) reduces to (17) provided
the solution to the latter satisfies Lµi,jV = 0, for all i =
1, ...,m and j = 1, ...,m, thus concluding the proof. �

Example 1. To illustrate the constructions of Proposition 2
consider a nonlinear, input-quadratic system described by

ẋ1 = x2 + u2 + 1
2x2σ1(x)u21 + x2σ2(x)u1u2

+ 1
2x2σ3(x)u22,

ẋ2 = u1 − 1
2x1σ1(x)u21 − x1σ2(x)u1u2 − 1

2x1σ3(x)u22 ,
(23)

which possesses the form (4), with f(x) = Ax, g(x) = B,
where

A =

[
0 1
0 0

]
, B =

[
0 1
1 0

]
, (24)

and with

h1 = x2

[
σ1(x) σ2(x)
σ2(x) σ3(x)

]
, h2 = −x1

[
σ1(x) σ2(x)
σ2(x) σ3(x)

]
,

(25)
for some continuous functions σi : R2 → R, i = 1, 2, 3.
Consider the cost functional (5) with q(x) = x21+2x1x2+x22,
which is positive semi-definite. Then, recalling the auxiliary
input-affine (linear) system defined in (16), namely

ẋ = Ax+Bv , (26)

it can be easily shown that the equation (17) reduces to the
classic Algebraic Riccati Equation (ARE) 0 = PA+A>P +
Q − PBB>P , with Q ∈ R2×2 such that q(x) = x>Qx,
which admits the positive definite solution P = I . Therefore,
letting V (x) = (1/2)x>Px, since Vx = [x1, x2] and noting
that by definition

µ1,1 = σ1

[
x2
−x1

]
, µ1,2 = σ2

[
x2
−x1

]
, µ2,2 = σ3

[
x2
−x1

]
,

(27)
it follows that Lµi,j

V = 0, for any x ∈ R2 and for any
i = 1, 2, j = 1, 2. Thus, the optimal solution of the auxiliary
problem for the linear system, i.e. v?(x) = [−x2, −x1]>,
constitutes also the optimal solution for the family of input-
quadratic nonlinear systems defined in (23). ◦

The statement of the previous proposition entails that the
optimal solution to Problem 1 is derived by a value function
for the system (30) provided the latter function satisfies
additional conditions in terms of its Lie derivatives along
the vector fields µi,j . The latter technical condition can be
circumvented if a certain function of the state and of the
storage function is (locally) negative semi-definite.

Proposition 3: Consider the nonlinear, input-quadratic,
system (4) together with the cost functional (5) and Assump-
tion 2. Consider the input-affine system

ẋ = f̄(x) + l(x)v + p(x)w , (28)

with f̄(x) = f(x) + (1/2)q(x)
∑m
i=1 µi,i(x), where v(t) ∈

Rnl is a control input and w(t) ∈ Rnp is a disturbance input.
Suppose that there exists a smooth solution V : Rn → R>0

to the HJ equation

Vxf̄(x) +
1

2
q(x) +

1

2
Vx(p(x)p(x)> − l(x)l(x)>)V >x = 0 ,

(29)

with the property that there exists an open set U ⊂ Rn,
containing the origin, such that R(Vx, µ

d, µo) 6 0 for any
x ∈ U , with R defined in (22). Then there exists Û ⊆ U such
that the state-feedback u?(x) = −M(x, Vx)−1g(x)>V >x
solves Problem 2 for any x ∈ Û ⊆ U , with ν = 0 and
%(x) = −R(Vx, µ

d, µo) > 0. �
Proof: The claim is proved by following the same argu-

ments as those employed in the proof of Proposition 2. In



particular, it can be easily shown that a solution to the partial
differential equation (29) with the additional property that
R(Vx, µ

d, µo) 6 0 for all x in a neighborhood of the origin
is such that also (21), hence (19), holds with the inequality
sign. As a consequence, Problem 2 is solved by a static
feedback and with the additional running cost provided by
the positive semi-definite term −R, with the set U obtained
by considering the intersection of W , defined in the proof
of Proposition 2, U and a level-set of the function V . �

Remark 1: By inspecting the structure of the auxiliary
input-affine system (28) and of the partial differential equa-
tion (29) in the statement of Proposition 3, it is evident
that the optimality properties of the original nonlinear, input-
quadratic system (4) with respect to (7) are in fact related to
the property that the input-affine system (28) in closed loop
with v = −l(x)>V >x possesses an L2-gain from the (virtual)
disturbance input w to the output [y, v], with y = k(x),
less than or equal to one, provided the underlying storage
function satisfies an additional technical condition. N

The following result, instead, combines (relaxed) versions
of the conditions introduced in the two previous statements.
To this end, consider a modified version of the decompo-
sitions in Fact 1, namely define p̂ and l̂ such that p̂(x) =
p(x)|µo=0 and l̂(x) = l(x)|µo=0. Note that the off-diagonal
functions µo are equal to zero if the matrix-valued functions
hi are diagonal, namely if (4) does not contain mixed terms
uiuj for all i and j.

Proposition 4: Consider the nonlinear, input-quadratic,
system (4) together with the cost functional (5) and Assump-
tion 2. Consider the input-affine system

ẋ = f̄(x) + l̂(x)v + p̂(x)w , (30)

with f̄(x) = f(x) + (1/2)q(x)
∑m
i=1 µi,i(x), where v(t) ∈

Rnl is a control input and w(t) ∈ Rnp is a disturbance input.
Suppose that there exists a smooth solution V : Rn → R>0

to the HJ inequality

Vxf̄(x) +
1

2
q(x)− 1

2
Vx(p̂(x)p̂(x)> − l̂(x)l̂(x)>)V >x 6 0 ,

(31)

namely system (30) in closed loop with v = −l̂(x)>V >x
has L2- gain less than or equal to one from w to [y, v]>.
Suppose, in addition, that the storage function V : Rn →
R>0 is such that

(i) Lµi,j
V = 0, for any mapping µi,j belonging to µo(x);

(ii) there exists an open set U ⊂ Rn, containing the origin,
such that Rr(Vx, µd) 6 0, with

Rr(Vx, µd) ,
(
Vxf(x) +

1

2
q(x)

)
D1

+ Vxf(x)

m∑
i=1

m∑
j=i+1

Lµi,i
V Lµj,j

V

− 1

2

m∑
i=1

Vxgi(x)Pi(Vx, µd)gi(x)>V >x ,

(32)

with gi : Rn → Rn denoting the i-th column of g, for
all x ∈ U .

Then there exists Û ⊆ U such that the state-feedback

u?(x) = −
(

1 +

m∑
i=1

Vxµi,i +

m∑
i=1

m∑
j=i+1

(Vxµi,iVxµj,j)

+D1(Vx, µ
d)
)−1

g(x)>V >x

(33)

solves Problem 2 for any x ∈ Û . �
Remark 2: By introducing the distribution

∆µo(x) , span{µ1,2, ..., µ1,m, µ2,3, ...µ2,m, ...µm−1,m} ,
(34)

spanned by the mappings in µo, the requirement entailed
by item (i) of Proposition 4 can be equivalently formulated
as the inclusion dV ∈ ∆⊥µo(x), for all x ∈ U , where ∆⊥µo

denotes the left annihilator of ∆µo . Moreover, the existence
of at least one exact co-vector in ∆⊥µo(x) is guaranteed pro-
vided the distribution ∆µo is nonsingular around the origin
and its involutive closure has dimension smaller than n. Note
that in general the distribution ∆µo contains m(m − 1)/2
vector fields in Rn, hence it is reasonable to expect that the
distribution is nonsingular whenever n > m(m− 1)/2. N

V. DYNAMIC SOLUTION VIA SYSTEM IMMERSION

While the discussion in Remark 2 deals with the re-
quirement in item (i), the following statement tackles the
inequality condition in item (ii). In particular, the rationale
behind the following result is that - instead of satisfying
the inequality Rr(Vx, µd) 6 0 by implementing the static
state feedback (33) - a similar inequality is dynamically
enforced via the selection of the time-evolution of a dynamic
extension ξ, as suggested in (6). More precisely, by relying
on constructions similar to those introduced in [11] and
then further extended in [7] and [8], the following statement
yields a characterization of the solution to Problem 2 based
only on algebraic conditions rather than partial differential
equations. To this end, consider first the partial differential
equation the solution of which - provided it satisfies item (i)
of Proposition 4 - should be approximated via an algebraic
solution and the immersion of the system into an auxiliary
one defined on an extended state-space, i.e.

0 =Vxf̄(x) +
1

2
Vx
(
p(x)p(x)> − l(x)l(x)>

)
V >x

+
1

2
q(x) +Rr(Vx, µd) .

(35)

Following [7], the matrix-valued function P : Rn → Rn×n,
P (x) = P (x)> > 0 for any x ∈ Rn, is an approximate
algebraic solution of (35) if there exists a matrix-valued
function Σ : Rn → Rn×n, with Σ(0) > 0 and Σ(x) > 0
for any x ∈ Rn \ {0}, such that

0 >P (x)F̄ (x) + F̄ (x)>P (x) +Q(x)

+ P (x)(p(x)p(x)> − l(x)l(x)>)P (x) + Σ(x) ,
(36)



where F̄ : Rn → Rn×n is any matrix-valued function such
that f̄(x) = F̄ (x)x, for all x. Moreover, to provide a concise
statement of the following result, define the function V :
Rn × Rn → R

V (x, ξ) =
1

2
x>P (ξ)x+ ‖x− ξ‖2R , (37)

with R = R> > 0 such that V is locally positive definite,
with the property that its partial derivatives satisfy

Vx = x>P (ξ) + (x− ξ)>R , x>P (x) + δ(x, ξ)> , (38a)

Vξ =
1

2
x>∇ξ(P (ξ)x)− (x− ξ)>R . (38b)

Finally, let the function π : Rn → Rn be such that
Vξ|ξ=π(x) = 0 for any x ∈ Rn.

Proposition 5: Consider the nonlinear, input-quadratic,
system (4) together with the cost functional (5) and As-
sumption 2. Consider the input-affine system (30), where
v(t) ∈ Rnl is a control input and w(t) ∈ Rnp is a disturbance
input, and suppose that there exists a continuous algebraic
solution P to the algebraic inequality (36) such that

(i) (x>P (x) + δ(x, ξ)>)µi,j(x) = 0, for any mapping µi,j
belonging to µo;

(ii) there exists an open set U ⊂ Rn, containing the origin,
in which

0 >
(
δ(x, ξ)>f̄(x)− x>Σ(x)x

+Rr(P (x)x+ δ(x, ξ), µd)

+
1

2
δ(x, ξ)>(p(x)p(x)> − l(x)l(x)>)(2P (x)x

+ δ(x, ξ))
)
|ξ=π(x) .

Then, there exist Û ⊆ U and κ? > 0 such that the dynamic
state-feedback

ξ̇ = −κV >ξ ,

u = −g(x)>(P (ξ)x+R(x− ξ))
(39)

solves Problem 2 with ν = n for any x ∈ Û and κ ∈
(κ?,∞). �

VI. A SIMPLE EXAMPLE

The theory is corroborated in this section by discussing a
simple numerical example. To this end, consider the input-
quadratic system described by the equation

ẋ = u1 + u1u2 , (40)

which may be expressed as (4) with f(x) = 0, g(x) = [1, 0]
and

h(x) = h1(x) =

[
0 1

1 0

]
, (41)

for any x ∈ R. According to the notation introduced above,
µ1,1(x) = µ2,2(x) = 0 and µ1,2(x) = 1, for any x, and
hence, consequently det(M(x, Vx)) = 1− V 2

x and

Mad(x, Vx) =

[
1 −Vx
−Vx 1

]
.

Therefore, the partial differential equation associated to the
auxiliary disturbance attenuation problem is

0 =
1

2
x2 − 1

2
(1 + x2)V 2

x , (42)

hence with R(Vx, µ
d, µo) in (22) equal to zero for all x, the

solution of which is given by

V =
√
x2 + 1− 1 . (43)

The latter function then yields the optimal control input

u?(x) =

[
−(
√
x2 + 1)x
x2

]
. (44)

VII. CONCLUSIONS

In this paper we have studied the infinite-horizon optimal
control problem for multi-input input-quadratic nonlinear
systems. It has been shown that the property of optimality
of the closed-loop system is in fact strongly related to the
property that an auxiliary input-affine system possesses a
L2-gain smaller or equal to one and provided an additional
technical condition is verified. Such conditions have then
been relaxed to a pair of algebraic inequalities that are
combined with a dynamic extension to yield an approximate
solution to the optimal control problem.
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