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Abstract—The theory of mean field games is a tool to
understand noncooperative dynamic stochastic games with
a large number of players. Much of the theory has
evolved under conditions ensuring uniqueness of the mean
field game Nash equilibrium. However, in some situations,
typically involving symmetry breaking, non-uniqueness of
solutions is an essential feature. To investigate the nature of
non-unique solutions, this paper focuses on the technically
simple setting where players have one of two states, with
continuous time dynamics, and the game is symmetric in
the players, and players are restricted to using Markov
strategies. All the mean field game Nash equilibria are
identified for a symmetric follow the crowd game. Such
equilibria correspond to symmetric ε-Nash Markov equi-
libria for N players with ε converging to zero as N goes
to infinity.

In contrast to the mean field game, there is a unique Nash
equilibrium for finite N. It is shown that fluid limits arising
from the Nash equilibria for finite N as N goes to infinity
are mean field game Nash equilibria, and evidence is given
supporting the conjecture that such limits, among all mean
field game Nash equilibria, are the ones that are stable fixed
points of the mean field best response mapping.

I. INTRODUCTION AND RELATED WORK

The theory of mean field games was initiated indepen-
dently by Huang, Caines, and Malhamé [4] and Lasry
and Lions [5]. The setting of Huang et al. is linear
quadratic Gaussian (LQG) control and the setting of
Lasry and Lions is continuous state Markov diffusion
processes. The work of Gomes, Mohr, and Souza [3]
translates much of the theory of [5] into the context of
continuous time finite state Markov processes. The LQG
and finite state settings are technically simpler than the
setting of continuous state Markov processes. All three
of these works impose assumptions implying uniqueness
of solutions to the mean field game equations.

The notion of Markov perfect equilibrium was intro-
duced in [6]. It is basically a Nash equilibrium in a
controlled Markovian dynamics framework, such that
each player can use a strategy that selects control actions
based on the current states of all players. In particular,
the constraint on strategies for Markov perfect equilibria
rules out trigger strategies such that some player can be
punished for past actions. Given a game and ε > 0, a
strategy profile is defined to be an ε-equilibrium (or ε

Nash equilibrium) if it is not possible for any player
to gain more than ε in expected payoff by unilaterally
deviating from his/her strategy.

The paper [4] establishes ε-Nash equilibrium proper-
ties for strategy profiles consisting of the decentralized
individual control laws that result as responses to the
collective mass trajectory. Condition H1 of [4] is a key
to guaranteeing uniqueness of the mean field equations,
In particular, for the other parameters fixed, the value
of r in the term for control cost, ru2, should not be
too small. In essence, condition H1 restricts the level
of coupling among the players. The mean field game
(MFG) equations are expressed as a fixed point of an
operator T in [4]. Proposition 4.5 of [4] states that the
fixed point for T is globally attracting under condition
H1 in the paper. Section VI of [4] illustrates a cost gap
between individual and global based controls. This is an
example of the fact that the social welfare at a Nash
equilibrium in game theory does not need to equal the
maximum social welfare achievable if the players were
to cooperate.

The paper [3] studies the continuous-time, finite state
version of mean field game theory. Assumption 3, p. 110,
gives a monotonicity condition that ensures uniqueness
of solutions to the mean field game equations. Propo-
sition 4 of [3], on the existence of a mean field game
Nash equilibrium is proved by using Brouwer’s fixed
point theorem applied to the map θ 7→ ξ(θ), which is
analogous to the map T of [4]. The domain of ξ is the
set F of uniformly Lipschitz continuous functions on the
interval [0, T ].

In contrast, multiple solutions of the mean field equations
naturally arise in [10], where synchronization of coupled
oscillators requires solutions that depart from the inco-
herence solution. The setup is similar to the discrete-
state setting we consider in that it is in continuous time,
the players are coupled through their running costs, and
players can take actions depending on their own states
and on the states of the other players. But the setup
in [10] is different in that the state space is continuous
– specifically it is the unit circle, and the focus is on
infinite horizon average cost. The running cost for player
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i, c(θi, θ−i) = 1
n

∑
j(1/2) sin2((θi − θj)/2), is join the

crowd type; it is smaller if the states are closer together.
It is similar to flocking of birds or synchronization of
fireflies. The separate Brownian motions of different
players tend to make them drift apart, and it requires
cost for them to try to stick together. If the coefficient
R for the cost is large enough it is not worth the players
trying to stick close together, and for the MFG limit
they will stay uniformly distributed over the circle (i.e.
the incoherence solution). As R crosses below some
critical value Rc, the incoherence solution still exists but
it becomes unstable and additional solutions appear. We
find an equivalent phenomena for the simpler discrete
state model in this paper. In addition, our setting is
considerably simpler than that of [10], allowing us to
examine the stability of the mean field map T for a
finite time horizon.

Some related papers with discrete state models The paper
[9] introduces the notion of oblivious equilibrium and
compares it to the stronger equilibrium notion of Markov
perfect equilibrium. In a Markov perfect equilibrium, the
actions of any player can depend on the current states
of all players. In contrast, for an oblivious equilibrium,
the actions of any player can depend only on the state
of the player itself. This limits the abilities of players
to react to fluctuations in population dynamics for a
finite number of players. However, in the mean field
limit, the population dynamics becomes deterministic, in
which case the difference between the two equilibrium
concepts diminishes in the large number of players limit.
That is the notion explored in [9]. An approximation
theory of [9] shows that an oblivious equilibrium under
certain technical conditions can be approximated by a
Markov perfect equilibrium, while the converse direction
is not necessarily true. The setting of [9] is discrete time
throughout.

Papers [1] and [8] discuss MFG for discrete state Markov
processes. Paper [8] considers a so-called Markov de-
cision evolutionary game. It is similar to the classical
evolutionary dynamics setting, but in contrast to the
classical setting, players have both a type (that doesn’t
change) and an internal state (that evolves in a Markov
fashion). The number of players involved in an event at
a discrete time point is stochastically bounded, so as the
number of players converges to infinity, time is sped up
and a continuous time limit results. A mean field limit
for fixed Markov policies exists by a Kurtz type theorem.
The setting of [1] is also a discrete state Markov process
for each player, The models of both [1] and [8] assume
the players use so-called stationary policies, such that
the action of a player depends on the type of the player
and internal state of the player, but not on the states of
other players. Thus, the equilibrium concept is oblivious

equilibrium.

II. PROBLEM FORMULATION

The model we adopt is almost a special case of the model
of [4]. We consider N + 1 players with each having
state space {0, 1}. The state (i(t) : 0 ≤ t ≤ T ) of a
given player evolves as a controlled Markov process with
predictable control αt, such that the jump probabilities
of the state process are given by

P (i(t+ h) = 1− i|i(t) = i) = (αt + η)h+ o(h)

for h > 0. The parameter η ≥ 0 represents a background
jump rate, so if η > 0 then the process has minimum
jump rate η. The background jumping is similar in spirit
to the Brownian motions that work against coherence of
the coupled oscillators in [10]. The objective function of
the reference player is to select (αt) to solve

min
α
E

[∫ T

0

c(i(t), θt, αt)dt+ ψ(i(T ), θT )

]
,

where θt is the fraction of other players in state 0
at time t. The running costs are assumed to have the
form c(i, θ, α) = f(i, θ) + α2

2 , such that the residence
costs per unit time, f(0, θ) and f(1, θ), and terminal
costs, ψ(0, θ), ψ(1, θ), are all bounded, and uniformly
Lipschitz continuous in θ.

a) Hamilton Jacobi Bellman (HJB) equation for N + 1
player system: A state feedback control for a given
player is a nonnegative function (α(i, n, t)) such that
i ∈ {0, 1} represents the current state of the player,
n ∈ {0, . . . , N} represents the number of other player
in state 0, and t ∈ [0, T ]. Suppose the reference player
uses a state feedback control (α(i, n, t)), and the other
N players use state feedback control (β(i, n, t)). Then
(i(t), n(t))0≤t≤T forms a controlled Markov process on
{0, 1} × {0, 1, . . . , N}, where i(t) represents the state
of the reference player and n(t) represents the number
of other players in state 0. The transition rates are as
follows:1

transition rate
(i, n)→ (1− i, n) α(i, n, t) + η
(i, n)→ (i, n+ 1) γ+(i, n, t)

= (N − n)(β(1, n+ 1− i, t) + η).
(i, n)→ (i, n− 1) γ−(i, n, t)

= n(β(0, n− i, t) + η).

1If j 6= i then i itself is one of the “other players” for player j.
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Denote the cost-to-go function for the reference player
by u(i, n, t). The HJB equations for it are:

− u̇(i, n, t) = f(i, n)− ((α∗(i, n, t))2

2
+ η(u(1− i, n, t)− u(i, n, t))

+ γ+(i, n, t)(u(i, n+ 1, t)− u(i, n, t))

+ γ−(i, n, t)(u(i, n− 1, t)− u(i, n, t)), (1)
u(i, n, T ) = ψ(i, n) (2)

where the corresponding control policy is

α∗(i, n, t) = (u(i, n, t)− u(1− i, n, t))+. (3)

The HJB equations (1)-(3) can be viewed in two different
ways.

• For policy β of the other N players fixed, (1) - (3)
determine the best response policy for the reference
player. i.e. α∗ = BR(β).

• To find a symmetric Nash equilibrium, replace
α(·, ·, t) and β(·, ·, t) by α∗(·, ·, t) in the definition
of γ± and (1)- (3). This yields a 2(N + 1) dimen-
sional ode with terminal boundary condition and
Lipschitz continuous right hand side that uniquely
determines the functions (u(i, n, t)) and, hence
also, the feedback control law α∗. The strategy
profile such that all N + 1 players use α∗ is a
Markov perfect Nash equilibrium, because α∗ is
determined backwards from the terminal condition
yielding a best response for any interval of the form
[t, T ]. Moreover, the Markov perfect equilibrium is
the unique Nash equilibrium among all Markov type
(i.e. state feedback) strategy profiles, because the
similar HJB equations for a more detailed model
description with state space {0, 1}N+1 still has a
unique solution and it is necessarily invariant under
permutation of the players.

b) Mean field game equilibria and map: A mean field
game Nash equilibrium for the finite horizon problem
with initial value θ is any solution (θt, u(i, t)) to the
following equations.2

θ̇t = (1− θt)((u(1, t)− u(0, t))+ + η)

− θt((u(0, t)− u(1, t))+ + η) (4)
− u̇(i, t) = f(i, θt, t)− η(u(i, t)− u(1− i, t))

− ((u(i, t)− u(1− i, t))+)2

2
(5)

θ0 = θ, u(i, T ) = ψ(i, θT ). (6)

Note that the boundary conditions (6) include both initial
and terminal values. The mean field equations (4)-(6) can

2Note the double use of notation “u.” We write u(i, t) for u asso-
ciated with mean field game solutions and u(i, n, t) for u associated
with the N + 1 player Markov perfect equilibrium.

be written as a fixed point equation, θ = T (θ), where
T maps a collective mass trajectory (θt : 0 ≤ t ≤ T )
to another trajectory. It is determined by first computing
the decentralized individual control laws for the play-
ers. Then by the uniform law of large numbers (see
Appendix B), if each of the players follows the same
decentralized individual control law, their state processes
will be independent and the empirical average of such
processes will converge to an expected θ̃ that is the
output collective mass trajectory. More concretely, T (θ)
is defined as follows. First, cost-to-go functions (u(i, t))
are determined by the HJB terminal value problem
for a single player, in response to the collective mass
trajectory θ.

−u̇(i, t) = f(i, θt)−
((u(i, t)− u(1− i, t))+)2

2
−η(u(i, t)− u(1− i, t)) (7)

u(i, T ) = ψ(i, θT ). boundary condition at T (8)

Then θ̃t, the probability a single player using the decen-
tralized state-feedback control αt(i, t) = (u(i, t)−u(1−
i, t))+ is in state 0 at time t, is determined by the initial
value problem (Kolmogorov forward equation):

˙̃
θt = (1− θ̃t)((u(1, t)− u(0, t))+ + η)

− θ̃t((u(0, t)− u(1, t))+ + η)

θ̃0 = θ boundary condition at 0

Motivated by the law of large numbers, θ̃ is defined to
be the new collective mass trajectory, i.e. θ̃ = T (θ).

The mean field game equations (4) and (5), with the
addition of an average cost per unit time term κ on the
right-hand side of (5) correspond to an infinite horizon
game for average cost per unit time. (See [3], Section
2.12, p. 117.) In that case the value functions u(i, t)
represent realative cost to go. The boundary conditions
(6) are replaced by the condition that θ be constant in
time or be periodic.

c) Fluid limits of Markov perfect equilibrium: As noted
in the introduction, there can be multiple mean field
game Nash equilibria, even for a finite horizon problem
with given boundary conditions. A mean field game Nash
equilibrium (θt, u(i, t)) yields a decentralized player
strategy αt(i, t) = (u(i, t)− u(1− i, t))+. For finite N ,
the strategy profile such that every player uses (αt(i, t))
is easily seen to be an ε-Nash equilibria such that ε→ 0
as N →∞. (See Appendix B.)

However, for finite N there is a unique Markov perfect
Nash equilibrium strategy profile, so for a given initial
condition, the distribution of the finite N system is
uniquely determined. It is natural, therefore, to single
out collective mass trajectories that arise as limits of the
mass trajectories for Markov perfect equilibria.
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Definition II.1. Let nN (t) denote the number of players
in state 0 at time t under the unique symmetric Markov
perfect equilibrium for the N + 1 player game, and for
some initial condition depending on N. Then θ = (θt :
0 ≤ t ≤ T ) is a fluid limit Markov perfect trajectory
(FLMP trajectory) if for some sequence of initial states
with limN→∞

nN (0)
N → θ0, the following holds for any

ε > 0,

lim
N→∞

P
[∣∣∣∣ nN (t)

N + 1
− θt

∣∣∣∣ < ε for 0 ≤ t ≤ T
]

= 1. (9)

Proposition 1. Suppose η > 0. An FLMP trajectory is
a mean field game Nash equilibrium.

See Appendix A for a proof. We conjecture the propo-
sition is also true for η = 0, but a change of probability
measure argument in the proof breaks down if η = 0.
Proposition 1 raises the question of how to identify
which mean field Nash equilibria are FLMP trajectories.

d) Contributions of the paper: Proposition 1 is new
and its proof extends to the general setting of [3]. It
shows that the search for FLMP trajectories can be
limited to the mean field game Nash equilibria. The
next contribution of this paper is to identify all of the
MFG equilibria for a natural special case of the two state
model called follow the crowd. This model is analogous
to the model of synchronization of oscillators game [10],
but considerably simpler, so we can identify the finite
horizon solutions as well as the infinite horizon ones. The
third contribution is to offer the following conjecture,
and give evidence for it:
Conjecture 1. The FLMP trajectories are the stable
fixed points of the MFG mapping T .

A similar type of conjecture is implicit in [10] based
on a notion of stability for constant, long-term average
cost infinite horizon solutions, called linear asymptotic
stability. The paper [10] identifies the critical cost thresh-
old at which the incoherence solution becomes unstable.
In addition to giving evidence for Conjecture 1 in the
setting of finite horizon games, we also show that the
results of [10] for constant, long-term average cost
infinite horizon solutions, carry over to the setting of
two state Markov processes. For the infinite horizon
framework, we show asymptotic stability of certain fixed
points for the nonlinear dynamics in Section III-C, and
Appendix D gives an analysis based on the notion of
linear asymptotic stability introduced in [10]. Additional
results are given in the appendix of this paper, including,
for contrast, a similar analysis for an avoid the crowd
model with unique mean field game solutions, and a
description of a partial differential equation (PDE) (given
for more general model in [3]) that can be considered to
be an extension of the notion of mean field game.

III. MFG EQUILIBRIA FOR FOLLOW THE CROWD

The follow the crowd model corresponds to the following
cost per time spent in state i:

f(i, θ) = |1− θ − i| =
{

1− θ i = 0
θ i = 1

In particular, if θ > 1/2 (more than half of the other
players in state 0), then state 0 has smaller cost per unit
time than state 1.

Letting y = u1−u0, x = 2θ−1, the mean field equations
(4)- (6) can be written as:

ẋ = y − x|y| − 2ηx
−ẏ = x− 1

2y|y| − 2ηy
(10)

with the boundary conditions x0 = 2θ − 1 and yT =
ψ
(
1, 1+xT

2

)
− ψ

(
0, 1+xT

2

)
. Once a solution (x, y) to

(10) is found for the finite horizon problem over [0, T ],
a corresponding solution (u0, u1, θ) to the mean field
game equations can be found by simply integrating (4)-
(5) because the righthand sides of (4)- (5) are determined
by (xt, yt).

A useful fact is that the equations (10) form a Hamilto-
nian system, for the Hamiltonian function H:

H(x, y) =
x2 − 4ηxy + y2 − xy|y|

2
. (11)

In other words, (10) has the form ẋ = Hy and ẏ =
−Hx, where Hx and Hy represent partial derivatives of
H. Consequently, the value of H is constant along the
solutions of (10), because dH(xt,yt)

dt = 〈∇H,
(
Hy
−Hx

)
〉 ≡

0, so the trajectories trace out level contours of H. This
model is a special case of potential mean field games
defined in [3], Section 5, for which Hamiltonians exist.

Contour maps of H are shown in Fig. 1 for various
values of η. For small values of x, y the quadratic terms
in H dominate the cubic term, and for η < 1/2, constant
x2 − 4ηxy + y2 gives elliptical orbits of x, y, in the
clockwise direction.

A. Finite time horizon mean MFG solutions

For the finite horizon mean field game with zero terminal
cost (i.e. terminal boundary condition yT = 0), and
initial state x0 = 0, correspond to paths that begin on
the y axis (so the initial condition x0 = 0 is satisfied)
and end on the x axis. One solution is (xt, yt) ≡ (0, 0)

for 0 ≤ t ≤ T. Let φ = arctan
(
x
y

)
denote the angle

of x, y from the positive x axis. The angular velocity of
(x, y) is given by

φ̇ =
ẏx− yẋ
x2 + y2

= −1 +
3
2xy|y|+ 4ηxy

x2 + y2
(12)

4



Fig. 1: Contour plot of H for several values of η. Dashed
lines are the zero sets of Hx, and dotted lines are the zero sets
of Hy. The intersections of dotted and dashed lines are the
critical points of H (i.e. solutions to ∇H = 0.)

It is negative along the y axis, indicating clockwise
motion. If η ≥ 1/2 then φ̇ > 0 along the line x = y,
indicating that y = 0 is never reached. Thus, if η ≥ 1/2,
the trajectory (0, 0) is the only MFG equilibrium.

If η < 1/2 then φ̇ < 0 for (x, y) in a neighborhood of
the origin, indicating clockwise movement. Moreover,
for φ fixed, φ̇ is an increasing function of the distance
of (x, y) to the origin (decreasing angular speed because
angular velocity is negative). Thus, the time for (x, y) to
traverse a contour across the first quadrant is increasing
in y0. for y0 > 0. As y0 → 0 the dynamics is given, to
first order, by the MFG linearized about (0, 0), given by

ẋ = y − 2ηx
−ẏ = x− 2ηy

(13)

with solution of the form (setting x0 = 0 and y0 > 0):

xt = sin
(√

1− 4η2 t
)

yt = sin
(√

1− 4η2 t+ arccos(2η)
)

The time it takes the linear system to traverse the first
quadrant is Tc(η) , π−arccos(2η)√

1−4η2
. Hence, as y0 → 0, the

traversal time for the quadrant converges to Tc(η). Thus,
for η < 1/2 and T ≤ Tc(η), (0, 0) is the unique solution
to the MFG. For T > Tc(η) there is one more solution

Fig. 2: Several solutions with various terminal values of x run
backwards in time, for follow the crowd dynamics with η = 0.

that remains in, and traverses, the first quadrant, and the
negative of that solution remains in, and traverses, the
third quadrant. For T large enough there are solutions
that traverse contours of H through three quadrants, five
quadrants, and so on. A similar radial velocity analysis
for the pair (y, ẏ) (see Appendix C) establishes that the
entire periods of the dynamical system are increasing
with amplitude, as illustrated in Fig. 2. Since the dy-
namics is symmetric under rotation by π, we conclude
that for any odd number k, starting on the positive y
axis, the time required to rotate through k quadrants
is increasing in the initial condition y0. Therefore, as
T increases from 0, the number of solutions starts at
one and jumps up by two when T crosses times of the
form Tc + kπ/(

√
1− 4η2) for k ≥ 1. Equivalently, the

number of solutions is 1 + 2

⌈
(T−Tc)

√
1−4η2

π

⌉
.

B. Infinite horizon constant or periodic MFG solutions

The equilibrium points of the dynamics (10) are the crit-
ical points of the Hamiltonian function (i.e. ∇H = 0),
and are given as follows. If 0 ≤ η < 0.5, (0, 0) is an
equilibrium point and there are also exactly two nonzero
equilibrium points, given by ±P , where

P =

(
x

y

)
,

(
1− η2 − η

√
2 + η2√

2 + η2 − 3η

)
. (14)

If η ≥ 0.5, (0, 0) is the unique equilibrium point.

Regarding infinite horizon periodic solutions, examina-
tion of H and the equations for angular velocity, (12) and
similar equation for angle of (y, ẏ), lead to the following
conclusions. If 0 ≤ η < 0.5, there is a two-dimensional
family of periodic solutions that can be indexed by the
peak amplitude of x (ranges over (0, x)) and phase.
The period of the solutions increases continuously over
(2π/

√
1− 4η2,∞) as the peak amplitude of x increases

over (0, x). If η ≥ 0.5, there are no periodic solutions
of (10).
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C. Infinite horizon convergent transient MFG solutions,
and the asymptotically stable constant solutions

Consider the initial value problem over t ∈ [0,∞) with
some initial condition (x0, y0) and dynamics (10). First,
suppose 0 ≤ η < 0.5. For any initial condition (x0, y0)
such that x0 6= 0, one of four cases holds: xt is periodic
with a positive period, x converges to P , x converges
to −P , or xt exits [−1, 1] in finite time. The following
categorize the convergent solutions such that xt remains
in [−1, 1].

• For any initial value of x0 ∈ (−x, x), there exist
two corresponding initial values of y0 such that
the solution of the initial value problem satisfies (i)
xt ∈ [−1, 1] for all t and (ii) the solution converges
to a limit as t→∞. For the smaller value of y0 the
limit is −P and for the larger value of y0 the limit
is P . The value of the larger y0 for example is such
that the contour of H through (x0, y0) contains P .

• For an initial value x0 ∈ [−1,−x] there exists a
unique value of y0 such that the solution of the
initial value problem satisfies xt ∈ [−1, 1] for all t.
That solution converges to −P as t→∞.

• Similarly, for an initial value x0 ∈ [x, 1] there exists
a unique value of y0 such that the solution of the
initial value problem satisfies xt ∈ [−1, 1] for all t.
That solution converges to P as t→∞.

Second, suppose η ≥ 0.5. For any x0 ∈ [−1, 1], there
is a unique value of y0, such that the solution of the
initial value problem for (10) satisfies xt ∈ [−1, 1] for
all t. Furthermore, y0 has the same sign as x0, and the
solution converges to (0, 0) as t→∞. The value of y0

is the root of H(x0, y0) = 0 (for x0 fixed) that is closer
to zero.

The above observations give a sense in which ±P is an
asymptotically stable equilibrium point of the dynamics
(10) if 0 ≤ η < 0.5, and (0, 0) is an asymptotically
stable equilibrium point if η ≥ 1/2. This sense of
stability is not the usual definition of (Lyapunov) stability
because we ask, for given x0, whether there exists an
associated value of y0 giving the desired convergence.
The asymptotically stable limit points are saddlepoints
of H.

As mentioned above, a related definition of stability,
called linear asymptotic stability, is formulated in [10].
That definition and the results of [10] for it are translated
to the model of this paper in Appendix D.

IV. EVIDENCE FOR CONJECTURE 1

In order to explore whether Conjecture 1 is true, it
is natural to explore two sides of the question. One
side is to identify the FLMP trajectories. Numerically

Fig. 3: On the left is a set of realizations of the N + 1-player
game with 400 players and various time to play, with initially
200 players in each state. On the right, are the MFG solutions
believed to be the FLMP trajectories. Both are for follow-the-
crowd game with η = 0.

that can be done by solving the 2(N + 1) dimensional
HJB equation for the system with N + 1 players to
find the strategy α∗(i, n, t) players use for the Markov
perfect equilibrium with N + 1 players, and then either
simulating the corresponding occupancy process through
Monte Carlo simulation of N + 1 players independently
using that policy, or solving the Kolmogorov forward
equations to find the marginal distribution, mean and
variance of the number of players in state 0 vs. time.

The other side is to identify the stable fixed points of T .
Two ways to explore which fixed points of T are stable
are to either numerically investigate the orbit trajectories
as T is repeatedly applied to some initial trajectory, or
to examine the linearization of T about a fixed point–
this is the Gateaux derivative and it can be expressed as
an integral operator. The eigenvalues can be computed
numerically, and in rare cases, analytically. By abuse
of notation, we use T to denote the mean field map
as a mapping T (x) 7→ x̃ obtained by the change of
coordinates x = 2θ − 1.

a) Numerical identification of FLMP trajectories: For
the symmetric follow the crowd model, numerical anal-
ysis strongly and consistently indicates which MFG
solutions are FLMP trajectories. We find that for η ≤
1/2 they coincide with the unique MFG equilibrium –
namely, the (0,0) trajectory over [0, T ]. And for η > 1/2
there are two FLMP trajectories. Namely, the one that
traverses the first quadrant in the x-y plane once, and the
negative of it, which traverses the third quadrant in the x-
y plane once. In particular, the solutions that wind around
the origin through three or more quadrants do not appear
to be FLMP solutions. See Fig. 3 for illustration. For less
symmetric examples it is less obvious where the bifurca-
tion curve is that separates FLMP solutions that converge
to a point closer to 1, or converge to a point closer to
0. The bifurcation curve often coincides with a line or
curve of indifference for the N + 1 player game with
a large number of players, corresponding to upcrossings
of zero by the mapping n 7→ u1(0, n, t) − u0(0, n, t).
This is illustrated in Fig. 4.
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Fig. 4: Heat maps for cost-to-go functions for follow the
crowd, f(i, θ) = |θ− (1− i)|, with N = 400, T = 10, η = 0,
and asymmetric terminal cost: ψ(1) = 0.3 and ψ(0) = 0.
The MFG equilibrium trajectories beginning at the bifurcation
curve are overlaid onto the heat map of u1 − u0 in the top
figure.

b) Examination of orbits of T : Recall that the fixed
points of T are the collective mass trajectories (θt : 0 ≤
t ≤ T ) of mean field Nash equilibria. To numerically
investigate the stability of fixed points of T we generated
sequences of iterates of trajectories (θn)n≥0 defined by
θn+1 = T (θn), where the initial point θ0 is a perturba-
tion of a fixed point. Figure 5 shows such sequences of
iterates such that the initial trajectory is a perturbation of
one of the two MFG Nash equilibria that cross zero one
time, for the follow the crowd game and time horizon
T = 20. In both instances, the iterates converged to one
of the two equilibria with no zero crossings.

However, overall we found it difficult to numerically
verify that a given solution is not a stable fixed point. On
one hand, some MFG solutions that we don’t expect to
be stable, such as the trajectory that crosses zero once,
numerically appear to be asymptotically stable for a very

Fig. 5: Iterates (θn)0≤n≤10000 for two different initial tra-
jectories that are perturbations of a single-cross MFG Nash
equilibrium, which is indicated by a thick blue line.

small basin of stability. On the other hand, we have found
perturbations of MGF solutions that also numerically
appear to be asymptotically stable, indicating numerical
artifacts are possible.

c) Linearization of T about (0, 0): Given a fixed point
x̄ = T (x̄), the Gateaux derivative dTX(x̄, x), or the
directional derivative of T at x̄ in the direction x, is
obtained by linearizing T about x̄. This is particularly
simple if x̄ is the zero trajectory. (Linearization about a
nonzero trajectory is given in Appendix E.) In that case,
the linearized MFG equations are:

ẋ = y − 2ηx
−ẏ = x− 2ηy

(15)

Given (xu), x̃ = dTX(x̄, x) = L2L1x, where L1 and
L2 are linear operators defined as:

ys = (L1x)s =

∫ T

s

e−2η(T−u)xudu

x̃t = (L2y)t =

∫ t

0

e−2η(t−s)ysds

These expressions can be combined to yield

xt =

∫ T

0

K(t, u)xudu

where K(t, u) = e−2η(t∨u) sinh(2η(t∧u))/2η for η > 0
and K(t, u) = t ∧ u for η = 0. In other words, the
Gateaux derivative is the integral operator with kernel
K.

If η = 0, K(t, u) = t ∧ u, which is the covari-
ance of Brownian motion, which has a well known
Mercer series expansion. The eigenvalues of K are

λn =
(

2T
(2n+1)π

)2

with corresponding eigenfunctions

hn(t) = sin
(

(2n+1)πt
2T

)
for n ≥ 0. In particular, the

largest eigenvalue is λ0 =
(

2T
π

)2
, and λ0 ≤ 1 if

and only if T ≤ Tc(0) = π/2, where Tc(η) is the
critical time horizon for the appearance of multiple MFG
equilibria.

Here is an upper bound on the maximum eigenvalue of
K for η > 0. The mappings L1 and L2 are both bounded
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operators in the supremum norm: ‖y‖∞ ≤ c(η, T )‖x‖∞,
with operator norm c(η, T ) =

∫ T
0
e−2ηtdt = 1−e−2ηT

2η .
Thus, the Gateaux derivative is also a bounded operator
in the supremum norm with operator bound c2(η, T ).3

Hence, if η ≥ 1/2, the linearized mapping is a contrac-
tion in the L∞ norm for all T > 0. If η < 1/2 it is a
contraction if T is small enough that 1−e−2ηT

2η < 1.

For η > 0 we conjecture the largest eigenvalue
of K is greater than one precisely when there is
a nonzero MFG equilibrium, namely, when T >
Tc(η) , π−arccos(2η)√

1−4η2
. We numerically found the largest

eigenvalue of the matrix approximation of the kernel,
(K(iT/n, jT/n)T/n)i,j∈[n] for n = 103 for η ∈
(0, 0.499) and T near Tc, and the calculations match
the conjecture well.
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APPENDIX A
PROOF OF PROPOSITION 1

This section proves Proposition 1, that if η > 0, FLMP
trajectories are mean field game equilibria. The proof is
given after some initial notation is given and two lemmas
are proved. Let (θt)0≤t≤T be an FLMP trajectory and
let (iN (0), nN (0))N≥1 be a corresponding sequence of

3A somewhat tighter bound is given by ‖x̃‖∞ ≤ c̃(η, T )‖x‖∞,
where c̃(η, T ) = maxt

∫ T
0 K(t, s)ds, but the expression for c̃(η, T )

is complicated.

initial conditions as in the definition of FLMP trajectory.
For N ≥ 1, let ((i(t), n(t)) : 0 ≤ t ≤ T ) denote the
controlled Markov process for N + 1 players resulting
for initial state (iN (0), nN (0)), when all players use
the unique policy (α∗(i, n, t)) for the Markov perfect
equilibrium for N + 1 players. Since the functions
f(i, θ, t) and ψ(i, θ) are bounded, for T fixed, the cost to
go functions u(i, n, t) determined by the HJB equations
(1)- (24) are uniformly bounded for all N, i, n, and
t ∈ [0, T ]. Therefore, the policy α∗, determined by
(3), is also uniformly bounded. Select Γ1 such that
(α∗(i, n, t)) ≤ Γ1 for all N, i, n, and t ∈ [0, T ]. Suppose
also that Γ1 is large enough that α(i, t) ≤ Γ1 for
all i, t for any decentralized policy α(i, t) resulting by
responding to a deterministic collective mass trajectory.

Consider the following variation of the Markov perfect
equilibrium. Suppose the reference player switches from
using α∗ to some other policy, β∗(i, n, t), such that
β∗(i, n, t) ≤ Γ1 and t 7→ β∗(i, n, t) is continuous for all
(i, n). Let P denote the original probability distribution
for the process (i(t), n(t))0≤t≤T and let P̃ denote the
probability distribution of (i(t), n(t))0≤t≤T when the
reference player switches to policy β∗.
Lemma 1. (Insensitivity of FLMP trajectory to one
player switching policies) The following holds for any
ε > 0,

lim
N→∞

P̃
[∣∣∣∣ nN (t)

N + 1
− θt

∣∣∣∣ < ε for 0 ≤ t ≤ T
]

= 1. (16)

Lemma 2. Let P and P̃ be probability distributions on
the same measurable space (Ω,F) such that P̃ << P
(i.e. P̃ is absolutely continuous with respect to P ) and
let dP̃

dP denote the Radon-Nikodym derivative. Suppose

EP

[(
dP̃
dP

)p]1/p
≤ c for some p > 1 and c. Let q > 1

be such that 1
p + 1

q = 1. Then for any event A, P̃ (A) ≤
cP (A)1/q.

Proof of Lemma 2. By Hölder’s inequality,

P̃ (A) =

∫
Ω

dP̃

dP
1{A}dP

≤ c
(∫

Ω

1q{A}dP

)1/q

= cP (A)1/q

Proof of Lemma 1 . Since P and P̃ only differ by the
change in the policy for player 1, the Radon-Nikodym
derivative dP̃

dP can be written explicitly as follows. Let
(Yt)0≤t≤T denote the number of jumps of the state of the
reference player during [0, t]. Then, by standard theory
of change of probability measure for point processes
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(Girsanov type result for point processes, see [7], Theo-
rem 4.1 for example), P̃ << P and the Radon-Nikodym
derivative is given by

dP̃

dP
= exp

(∫ T

0

ln

(
β∗ + η

α∗ + η

)
dYt −

∫ T

0

(β∗ − α∗)dt

)
where β∗ is short for β∗(i(t−), n(t−), t), α∗ is short for
α∗(i(t−), n(−), t) and η is the fixed positive background
jump rate.
Note that for p > 1, the expression for the Radon-
Nikodym derivative to the pth power can be written as
a product(

dP̃

dP

)p
=
d
˜̃
P

dP
e
∫ T
0 (β∗+η)p−(α∗+η)p−p(β∗−α∗)dt ≤ d

˜̃
P

dP
Γ2

where ˜̃P is a probability measure corresponding to a sim-
ilar Radon-Nikodym derivative with a factor p in front
of the log term, and Γ2 = exp [T ((Γ1 + η)p + pΓ1)] .

Thus, EP
[(

dP̃
dP

)p]
≤ Γ2. Lemma 1 thus follows from

Lemma 2 with A equal to the complement of the event
in (16).

Proof of Proposition 1. Consider the Markov perfect
equilibrium for large N. In view of Lemma 1, if the
reference player deviates from using α∗, the normalized
process n(t)/N for the rest of the population still follows
θ arbitrarily closely as n→∞. Thus, an asymptotically
optimal policy for the reference player to switch to is
the optimal response to deterministic collective mass
trajectory θ. Furthermore, it implies u(n, i, t) − u(i, t)
converges to zero uniformly in n and t ∈ [0, T ], where
u(n, i, t) is associated with the N+1 player MP equilib-
rium, and u(i, t) is the cost-to-go for the single reference
player responding to the deterministic mass trajectory
θ. It follows that all players in the N + 1 game are
asymptotically effectively using the same policy as the
alternate policy of the reference player. (in other words,
(u(i, n, t)− u(1− i, n, t))+ ≈ (u(i, t)− u(1− i, t))+).
Thus, the corresponding fluid limit is the same as the
mean limit for the reference player with random initial
state equal to 0 with probability nM (0)/n.

APPENDIX B
THE UNIFORM LAW OF LARGE NUMBERS

Theorem 7.4 of [2] is repeated here for convenience.
Proposition 2. Let (Xt : 0 ≤ t ≤ T ) be a centered,
stochastically continuous uniformly bounded random
process whose trajectories are right continuous and have
left limits. Assume for some c > 0, some nondecreas-
ing function F ∈ D[0, 1] and for all s, t ∈ [0, 1],
E[|Xt − Xs| ≤ |F (t) − F (s)|. Then X ∈ CLT in
(D([0, 1], ‖ · ‖∞).

An implication of this theorem is that if all players use
the same decentralized policy α(i, t) (assumed to be
bounded and measurable in t) and if the initial conditions
satisfy n(0)

N → θ for some θ ∈ [0, 1], then as n → ∞,
the population average converges to (θt) in probability
in the supremum norm, where (θt) is determined by the
Kolmogorov forward equation

θ̇t = (1− θt)(α(0, t) + η)− θt(α1(t) + η)

θ0 = θ boundary condition at 0

Therefore, the following are equivalent for a trajectory
(θt):

(a) Let α∗ denote the optimal response policy for a
single player in response to θ. In other words,
α(i, t) = (u(i, t) − u(1 − i, t))+ where (u(i, t)) is
determined by (7)- (8). Then for any ε > 0 and any
sequence of finite player games with n(0)

N → θ0, the
strategy profile of all players using α∗ is an ε-Nash
equilibrium for sufficiently large N .

(b) (θt) is the population trajectory of a MFG equilib-
rium.

APPENDIX C
MONOTONICITY OF PERIOD WITH AMPLITUDE

Consider the follow the crowd dynamics (10), rewritten
here for convenience:

ẋ = y − x|y| − 2ηx
ẏ = −x+ 1

2y|y|+ 2ηy

From (10) we find for all x, y,

ÿ = −ẋ+ |y|ẏ + 2ηẏ

=
1

2
y3 + 3ηy|y|+ (4η2 − 1)y.

Equivalently, writing v = ẏ, yields

ẏ = v
v̇ = 1

2y
3 + 3ηy|y|+ (4η2 − 1)y.

(17)

The motion (17) admits the Hamiltonian H(y, v) =
1
2v

2 − 1
8y

4 − η|y|3 − 4η2−1
2 y2. If η < 1/2 then H(y, v)

is convex near the origin. Letting ϕ = arctan
(
y
v

)
we

find

ϕ̇(y, v) =
v̇y − vẏ
y2 + v2

= −1 +
4η2y2 + 1

2y
4 + 3η|y|3

y2 + v2

Note that ϕ̇ is increasing in |y| for any fixed ratio of v
to y (decreasing angular speed). Hence, the period of the
periodic trajectories increases with amplitude.
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APPENDIX D
LINEAR ASYMPTOTIC STABILITY FOR SYMMETRIC

FOLLOW THE CROWD EXAMPLE

A definition of linear asymptotic stability was introduced
in ([10], Section IV) for a constant in time solution to
the infinite horizon long term average cost mean field
game. We translate that definition to our setting. Roughly
speaking, linear asymptotic stability is a variation, based
on linearization, of the asymptotic stability properties
delineated in Section III-C.
Definition 1. Suppose (x̂, ŷ) is an equilibrium point for
the ode (10). Seeking solutions of the form (x̃, ỹ) =
(x̂, ŷ) + ε(x, y) + o(ε), we obtain a linear initial value
problem for (x, y) by linearizing (10) about (x̂, ŷ). The
point (x̂, ŷ) is said to be linearly asymptotically stable if
for any initial perturbation x0 ∈ R, there exists a unique
solution (xt, yt)t≥0 to the linearized equations (with the
given initial condition for x, some initial condition for y,
and satisfying the L2 constraint

∫∞
0
‖xs − x̂‖2ds <∞)

and, furthermore, limt→∞ xt = x̂.

With the definition in place we prove the following
proposition.
Proposition 3. The equilibrium point (0, 0) is linearly
asymptotically stable if and only if η > ηc = 1/2. The
equilibrium points ±P̂ are linearly asymptotically stable
if and only if 0 ≤ η < 1/2.

Proof. For an equilibrium point (x̂, ŷ), we have
Hx(x̂, ŷ) = Hy(x̂, ŷ) = 0 and

Hy(x̂+ εx, ŷ + εy) = εHxy(x̂, ŷ)x+ εHyy(x̂, ŷ)y + o(ε)

Hx(x̂+ εx, ŷ + εy) = εHxx(x̂, ŷ)x+ εHxy(x̂, ŷ)y + o(ε).

So the linear initial value problem for (x, y) can be
written as (

ẋ

ẏ

)
= A

(
x

y

)
(18)

where

A =

(
Hxy Hyy

−Hxx −Hxy

) ∣∣∣∣
x̂,ŷ

Since Tr(A) = 0 (so sum of eigenvalues is zero) and
det(A) = det(H(x̂, ŷ)) where H is the Hessian of H:

H(x̂, ŷ) =

(
Hxx Hxy

Hxy Hyy

) ∣∣∣∣
x̂,ŷ

,

the eigenvalues of A are ±
√
−det(H(x̂, ŷ)). If

det(H) < 0 then the eigenvalues are real valued and
one is negative. If det(H) > 0 the eigenvalues are

purely imaginary. For the follow the crowd game with
Hamiltonian given in 11,

A =

(
−2η − |ŷ| 1
−1 2η + |ŷ|

)
.

Consider first the zero equilibrium, (x̂, ŷ) = (0, 0), in

which case A =

(
−2η 1
−1 2η

)
. This A has eigen-

values ±
√

4η2 − 1 and, for η ≥ 0.5, corresponding
eigenvectors

( 1

2η±
√

4η2−1

)
. If η > 0.5 then the solutions

to (18) have the following form, for some constants a
and b,

a

(
1

2η +
√

4η2 − 1

)
et
√

4η2−1

+ b

(
1

2η −
√

4η2 − 1

)
e−t
√

4η2−1

The initial condition for x and the L2 constraint are
satisfied if and only if a = 0 and b = x0, and the
resulting solution converges to zero as t → ∞. Hence,
the system is linearly asymptotically stable if η > 1/2.
If η < 1/2 then the two eigenvalues of A are purely
imaginary, nonzero, and negatives of each other, so that
all nonzero solutions to (18) are periodic. If η = 1/2 all
solutions have x of the form xt = a+bt. So, combining
the observations for η < 1/2 and η = 0.5, we conclude
that for η ≤ 1/2 there are no nonzero solutions satisfying
the L2 constraint. So for η ≥ 1/2 the zero equilibrium
is not linearly asymptotically stable.

Now consider the equilibrium point ±P̂ and suppose
η < 1/2. Then, since |ŷ| =

√
2 + η2 − 3η, we find

that 2η + |ŷ| =
√

2 + η2 − η > 1. Therefore, by the
analysis for the zero equilibrium point with 2η replaced
by 2η + |y|, we see that again A has two real-valued
eigenvalues of opposite sign, so the system is linearly
asymptotically stable.

Note that the eigenvalues ±
√

4η2 − 1 for the equilib-
rium point (0, 0) have qualitatively the same graph as in
Figure 2(b) of [10], with R and Rc replaced by η and
ηc.

Remark 1. Proposition 3 illustrates the notion of linear
asymptotic stability for equilibrium points of the infinite
horizon average cost mean field game, introduced in
[10]. The two state Markov control problem we have
considered is considerably simpler than the coupled
oscillator problem considered in [10], so, as explained
in Section III-C, we could observe asymptotic stability
properties of equilibrium points directly, rather than
considering the linearized dynamics.
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APPENDIX E
KERNEL FOR GATEAUX DERIVATIVE OF T FOR

NONZERO x.

We give an expression for the kernel of the Gateaux
derivative along a nonzero x trajectory in case η = 0 for
follow the crowd cost function. Given x, x̃ = T (x) is
found by first finding y:−ẏ = x− 1

2
y|y|

yT = 0,
(19)

and then x̃ : {
˙̃x = y − x̃|y|
x̃0 = x0.

(20)

Fix t̂ ∈ (0, T ) and ε > 0 sufficiently small. Suppose
h(t) = δ(t − t̂). Let xε = x + εh, yε = y + εk + o(ε)
and x̃ε = x + εg + o(ε). Let y, yε be the solution to
(19) with the x, xε : [0, T ]→ [−1, 1] respectively. Then,
linearizing the equations for yand x̃ yields

−k̇ = h− k|y|, with k(T ) = 0

ġ = k − |y|g − xsgn(y)k, with g(0) = 0

so that

k(s) =

∫ T

s

e−
∫ t̂
s
|y|drh(t̂)dt̂

g(t) =

∫ t

0

e−
∫ t
s
|yr|drk(s)(1− sgn(ys)xs)ds,

and the kernel of T is thus given by

K(t, t̂) =

∫ t∧t̂

0

e−
∫ t
s
|y|dre−

∫ t̂
s
|y|dr(1− sgn(ys)xs)ds.

If y ≥ 0 over [0, T ] then (1 − sgn(yt)xt) = e−
∫ t
0
|y|dr,

yielding:

K(t, t̂) =

∫ t∧t̂

0

e−
∫ t
s
|y|dre−

∫ t̂
s
|y|dre−

∫ s
0
|y|drds.

APPENDIX F
AVOID THE CROWD COST FUNCTION

In contrast to the follow the crowd game focused on in
this paper, the MFG equilibrium for the avoid the crowd
game of this section has a unique solution. Suppose the
cost per time spent in state i is

f(i, θ) = |i− θ| =
{

θ i = 0
1− θ i = 1

where θ is the fraction of other players in state 0.
The reduced dimension MFG equations become

ẋ = y − x|y| − 2ηx
−ẏ = −x− 1

2y|y| − 2ηy
(21)

with associated Hamiltonian

H(x, y) =
−x2 − 4ηxy + y2 − xy|y|

2
. (22)

Contour maps of H are shown in Fig. 6 for two values
of η. We observe that (0, 0) is the unique critical point of

Fig. 6: Avoid the crowd case. Contour plot of H for several
values of η. Dashed lines are the zero sets of Hx, and dotted
lines are the zero sets of Hy. The intersections of dotted and
dashed lines are the critical points of H (i.e. solutions to
∇H = 0.)

H, and for any x0 ∈ [−1, 1] there exists a unique value
of y0 such that the solution of the initial value problem
with dynamics (21) over [0,∞) is such that xt ∈ [−1, 1]
for all t. Furthermore, such solution converges to (0, 0).
Also, det HessH(0, 0) = −1− 4η2 < 0, and the unique
equilibrium point (0, 0) of the infinite horizon average
cost MFG is linearly asymptotically stable.

APPENDIX G
ON THE DIFFERENCE OF COST TO GO FOR N + 1

PLAYERS

Recall that using yt defined by yt = u(1, t) − u(0, t)
yielded a reduction from three to two dimensions in
the MFG equilibrium equations. Let us see if a similar
reduction occurs for the Nash equilibrium equations for
the N + 1 player game. For convenience we restate the
HJB cost-to-go equations (1) and (3) for the reference
player in the N + 1 player game:

− u̇(i, n, t) = f(i, n)− ((α∗(i, n, t))2

2
+ η(u(1− i, n, t)− u(i, n, t))

+ γ+(i, n, t)(u(i, n+ 1, t)− u(i, n, t))

+ γ−(i, n, t)(u(i, n− 1, t)− u(i, n, t)), (23)
u(i, n, T ) = ψ(i, n), (24)

where the corresponding control policy is

α∗(i, n, t) = (u(i, n, t)− u(1− i, n, t))+. (25)

Suppose all players use policy α∗, so β = α∗ in the
definition of γ±. Let Y (n, t) = u(1, n, t) − u(0, n, t),
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δf(n) = f(1, n) − f(0, n), and δψ(n) = ψ(1, n) −
ψ(0, n). Using the facts

α∗(1, n, t) = (Y (n, t))+

α∗(0, n, t) = (−Y (n, t))+

γ+(i, n, t) = (N − n)(α∗(1, n+ 1− i, t) + η)

= (N − n)(Y (n+ 1− i, t)+ + η)

γ−(i, n, t) = n(α∗(0, n− i, t) + η)

= n((−Y (n− i, t))+ + η)

in (23) yields

− Ẏ (n, t)

= δf(n)− |Y (n, t)|Y (n, t)

2
− 2ηY (n, t)

+ (N − n)η(Y (n+ 1, t)− Y (n, t))

+ nη(Y (n− 1, t)− Y (n, t))

+ (N − n)Y (n, t)+(u(1, n+ 1, t)− u(1, n, t))

+ n(−Y (n− 1, t))+(u(1, n− 1, t)− u(1, n, t)),

− (N − n)Y (n+ 1, t)+(u(0, n+ 1, t)− u(0, n, t))

− n(−Y (n, t))+(u(0, n− 1, t)− u(0, n, t)),

Y (n, T ) = δψ(n)

The RHS is not a function of Y alone. However, using
Y (n, t)+ ≈ Y (n + 1, t)+ and (−Y (n − 1, t))+ ≈
(−Y (n, t))+ yields the approximation:

− Ẏ (n, t) ≈ δf(n)− |(Y (n, t)|Y (n, t)

2
− 2ηY (n, t)

+ (N − n)(Y (n, t)+ + η)(Y (n+ 1, t)− Y (n, t))

+ n((−Y (n, t))+ + η)(Y (n− 1, t)− Y (n, t)). (26)
Y (n, T ) = δψ(n) (27)

APPENDIX H
THE MFG PARTIAL DIFFERENTIAL EQUATION

An interpretation of a mean field game Nash equilibrium
(u(i, t), θt) is that at each time t, u(i, t) is the cost
to go for a reference player in state i, given that the
fraction of players in state 0 is θt. That picture can be
embedded into a larger picture. Bt taking a limit of the
HJB equations for N + 1 players as N → ∞, we can
derive a PDE for (U(i, θ, t)) such that U(i, θ, t) is the
cost-to-go for a reference player in state i given that the
fraction of players in state 0 is θ for any θ ∈ [0, 1].
This idea is described in [3] (see Proposition 8) and is
attributed there to P. Lions. For simplicity, we derive the
PDE for the avoid the crowd game and use the equations
derived in Section G. We use notation Y instead of U
and x instead of θ.

Equations (26)-(27) suggest the following PDE, where
now n is treated as a continuous variable over [0, N ]
rather than as an integer variable.

−∂Y
∂t

= δf − |Y |Y
2
− 2ηY

+ [(N − n)(Y+ + η)− n((−Y )+ + η)]
∂Y

∂n
.

(28)
YT = δψ (29)

Note that if we let (n̂t, 0 ≤ t ≤ T ) be defined by the
following initial value problem

˙̂n = (N − n̂)(Y (n̂t))+ + η)− n̂((−Y (n̂, t))+ + η)
(30)

then by the chain rule and the PDE (28),

−Y (n̂, t)

dt
= δf(n̂)− ∂Y

∂t
(n̂, t)− ∂Y

∂n
(n̂, t) ˙̂n

= δf(n̂)− |Y (n̂, t)|Y (n̂, t)

2
− 2ηY (n̂, t).

(31)
Y (n̂T , T ) = δψ(n̂T ) (32)

Note that if we set yt = Y (n̂, t) and xt = 2n̂t
N − 1 and

consider the join-the-crowd cost function (so f(n̂) =
2n−N
N ), then (30) and (31) are equivalent to the MFG

equations (10). This calculation is an instance of Propo-
sition 8 of [3]. Figure 8 gives numerical evidence that
u(1, n, t) − u(0, n, t), with n normalized to θ ∈ [0, 1],
converges as n → ∞. Presumably the limit is the
solution of the PDE.

The PDE (28)- (29) is a first order hyperbolic type.
Equation (30) defines a characteristic curve for the PDE,
which is why the PDE along the curve reduces to
an ODE. The fact there are multiple MFG solutions
indicates that solutions of the PDE are also not unique.
The problem of identifying which MFG Nash equilibria
are FLMP trajectories therefore can be extended to the
problem of determining which solutions of the PDE are
limits of the scaled cost-to-go functions ((u(i, n, t)).
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Fig. 7: Heat maps of cost to go functions for N = 400 for
an example with follow the crowd tendency with a prisoners’
dilemma cost added in. Running cost has f(i, θ) = |1 − i −
θ| − 0.6θ + 0.31i=0 and terminal cost is zero. State 0 is the
cooperative state and state 1 is the greedy state. The join-the-
crowd social pressure cost is given by |1−i−θ|, the cooperative
cost is given by 0.6θ, and the individual incentive cost is given
by 0.31i=0. All players would be better off if they moved to
state 0, but if θ is near 1/2 then players have incentive to move
to state 1.

Fig. 8: Illustration of the pointwise convergence of the
indifference set shown in Fig. 7 as N increases. Heatmaps
of differences of u1−u0 for different values of N are shown,
specifically, for N values: 100 vs. 50, 200 vs. 100, 500 vs.
250, and 1000 vs. 500.
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