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Abstract— Optimal sensor placement is an important yet
unsolved problem in control theory. In biological organisms,
genetic activity is often highly nonlinear, making it difficult to
design libraries of promoters to act as reporters of the cell state.
We make use of the Koopman observability gramian to develop
an algorithm for optimal sensor (or reporter) placement for
discrete time nonlinear dynamical systems to ease the difficulty
of design of the promoter library. This ease is enabled due to
the fact that the Koopman operator represents the evolution of
a nonlinear system linearly by lifting the states to an infinite-
dimensional space of observables. The Koopman framework
ideally demands high temporal resolution, but data in biology
are often sampled sparsely in time. Therefore we compute what
we call the temporally fine-grained Koopman operator from
the temporally coarse-grained Koopman operator, the latter of
which is identified from the sparse data. The optimal placement
of sensors then corresponds to maximizing the observability of
the fine-grained system. We demonstrate the algorithm on a
simulation example of a circadian oscillator.

I. INTRODUCTION

Spectral methods have been increasingly popular in data-
driven analysis of nonlinear dynamical systems. Recently,
researchers working in Koopman operator theory have shown
that it is possible to identify and learn the fundamental
modes for a nonlinear dynamical system from data [16],
[17]. This operator, originally defined nearly 100 years ago
by Koopman [8], is a linear infinite dimensional opera-
tor that fully describes the underlying nonlinear dynami-
cal system. Identifying Koopman operators from data has
become computationally tractable, largely due to advances
integrating machine learning and deep learning to generate
novel, efficient representations of observable subspaces for
the Koopman operator [13], [28].

In many high-dimensional nonlinear systems, typically it
is not physically or economically feasible to measure every
state with the resolution specified by a fine-grained temporal
model. For example, the bacteria E. coli have approximately
4400 genes, making both spatially and temporally fine data
collection nearly impossible. On one hand, high-coverage
omics measurements provide a system-level view of all
gene activity, but prohibitive costs and the laborious and
destructive nature of sampling make it difficult to resolve
dynamics at a high temporal resolution. On the other hand,
fluorescently tagged genes can be measured at the second
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to minutes timescale, to profile bursty RNA dynamics and
protein expression. Knowing which genes to tag with flu-
orescent markers is critical, since not every gene can be
simultaneously tagged. This challenge motivates the need
for algorithmic data-driven approaches which allow the user
(e.g. biologists) to know a priori which genes should be
sampled. Finally, is it possible to design a nonlinear observer
that rather than measuring a single gene or a single node in
the network, fuses the state of a select set of biomarker genes
to report out an aggregate cellular state of the system? The
fundamental question is how to use metrics for nonlinear ob-
servability to design observers or optimize sensor placement.
Sinha et al. presented a systematic framework based on linear
transfer operators for the optimal placement of sensors and
actuators for control of nonequilibrium dynamics [20].

Koopman operators have been used to characterize ob-
servability of a nonlinear system [23], [24]. Yeung et al.
formulated the Koopman gramian and showed they can
be used to quantify controllability and observability and
lend insight for the underlying nonlinear dynamical system
[29]. This recent development of the Koopman gramians
can advance the imporant and unsolved problem of optimal
sensor placement in control theory. The Koopman framework
embeds nonlinear dynamics in a linear framework for opti-
mal nonlinear estimation and control [1], [2], [9]. For sensor
placement search spaces that are reasonable in size, there
are model-based solutions using optimal experiment design
[3], [7], information theoretic and Bayesian criteria [4], [10],
[11], [15], [18]. There is a need to develop purely data-
driven methods for determining optimal sensor placement.
Manohar et al. explored optimized sparse sensor placement
for signal reconstruction based on a tailored library of
features extracted from training data [14]. In [19], Sharma
et al. extended the transfer operator based approach for
optimal sensor placement, providing a probabilistic metric
to gauge coverage under uncertain conditions. Fontanini
et al. presented a data driven sensor placement algorithm
based on a dynamical systems approach, utilizing the Perron-
Frobenius operator [5]. Our framework provides a method to
determine optimal sensor placement, even in the presence of
noisy and temporally sparse data using Koopman operator
theory.

In this paper, we develop an algorithm for optimizing
sensor placement from sparsely sampled time-series data.
We use the Koopman observability gramian, developed by
Yeung et al. [29], to maximize the observability of the
underlying discrete time nonlinear dynamical system. Section
II introduces the Koopman operator formulation and Section
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III introduces the notion of a Koopman observability gramian
[29]. In Section IV, we show how to compute the temporally
fine-grained Koopman operator from the temporally coarse-
grained Koopman operator, which is learned from data that
are temporally sparse. In the case of noisy data, a closed
form expression for the error in computing the temporally
coarse-grained Koopman operator is derived. In Section IV-
B, we present a novel algorithm for optimal sensor design
and placement. Finally, the algorithm is illustrated with a
simulation example.

II. KOOPMAN OPERATOR FORMULATION

We briefly introduce Koopman operator theory, as we will
use it extensively for the sensor placement problem. Consider
a discrete time open-loop nonlinear system of the form

xt+1 = f(xt)

yt = h(xt)
(1)

with f : Rn → Rn is analytic and h ∈ Rp. The Koopman
operator of (1), K : F → F , is a linear operator that acts on
observable functions ψ(xk) and propagates them forward in
time as

ψ(xt+1) = Kψ(xt). (2)

Here F is the space of observable functions that is invariant
under the action of K.

Assumption 1: Given system (1), we suppose that yk =
h(xk) ∈ F and that h ∈ span{ψ1, ψ2, ...}.
Then the output yt can be expressed as

yt = h(xt) = Whψ(xt) (3)

where the output matrix Wh ∈ Rp×nL , nL ≤ ∞. We make
this strong assumption since the structure of Wh will be
manipulated to achieve optimal sensor placement.

Throughout the paper, we take observable functions which
are state-inclusive, i.e.

ψ(x) = (x, ϕ(x)) (4)

where ϕ ∈ RnL−n are continuous functions in F .

III. KOOPMAN OBSERVABILITY GRAMIAN

The observability matrix of the transformed system may
be obtained by showing how the Koopman operator maps
initial conditions x0 to y [29]. Using equations (2) and (3),
we have

yt = WhKtψ(x0) (5)

Therefore, WhKt : RnL → Rp is the transformation that
maps ψ(x0) to yt. Given an initial condition ψ(x0) ∈ RnL ,
the energy of the output yt is given by

‖y‖2 =
∑
n

< yt, yt >

=
∑
n

ψ(x0)>(Kt)>W>h WhKtψ(x0)

=
∑
n

ψ(x0)>Xψ
o ψ(x0)

(6)

where <· , ·> represents the inner product and as can be
seen in the last equality of (6), the Koopman observability
gramian is defined as

Xψ
o =

∞∑
t=0

(Kt)>W>h WhKt (7)

and is an nL×nL matrix. The observability gramian can be
obtained as a solution of following matrix Lyapunov equation

K>Xψ
o K −Xψ

o = −W>h Wh.

The Koopman observability gramian quantifies the observ-
ability of the function ψ(x). More importantly, when ψ(x)
includes observable functions related to the local observabil-
ity of the underlying nonlinear system (1), the Koopman
observability gramian retains that information [29].

IV. SENSOR PLACEMENT FROM TEMPORALLY SPARSE
DATA

A. Fine-grained models from coarse-grained models

We consider the scenario where high-resolution measure-
ments of all genes in a single cell are infrequently sampled.
This is a common scenario when tracking the state of
biological, cyber-physical, and social networks. Exhaustive
measurement of every state in the system is expensive (and
often manual) and thus can only be performed infrequently.

Consider the case where the system in (1) is a biomolec-
ular reaction network evolving with unknown governing
equations. The precise functional form and parameters of
f are typically considered unknown. In some settings, a
priori knowledge of the biomolecular reaction network can
be utilized to bootstrap the modeling problem [27], [30] . We
consider a data-driven operator theoretic approach, using the
method of Koopman briefly introduced in Section II.

The discrete time Koopman representation for the system
(1) is

ψ(xt+1) = Kψ(xt) (8)

where the matrix K ∈ RnL×nL is a finite dimensional ap-
proximation of the exact Koopman operator K and ψ(xk) ∈
RnL . We suppose that full-state measurements are made
available for xt, xt+N , with enough biological replicates
that the temporally coarse-grained (approximate) Koopman
operator is identifiable via the optimization problem

min
KN

||Ψ(Xf )−KNΨ(Xp)||

where

Ψ(Xf ) ≡
[
ψ(xt+N (ω1)) . . . ψ(xt+N (ωR))

]
,

Ψ(Xp) ≡
[
ψ(xt(ω1)) . . . ψ(xt(ωR))

]
.

and ωR represents the number of replicates. In the presence
of sparse and noisy data, [21] showed that the Koopman
learning problem can be formulated as a robust optimization
problem, which is equivalent to a specific regularized learn-
ing problem in which the LASSO penalty parameter corre-
sponds to the upper bound on the noise i.e. the maximum
Frobenius norm of the noise. We will suppose, for simplicity



of exposition of the technique, that an exact Koopman
operator for the coarse-time step mapping t to t+N is either
known or obtained directly from data satisfying

ψ(xt+N ) = KNψ(xt). (9)

Because of linearity of the Koopman operator, we know that
the temporally fine-grained Koopman operator K satisfies

ψ(xt+1) = Kψ(xt)

and most importantly,

K = K
1/N
N . (10)

When the Koopman observable function includes the state as
an element, this relationship allows the recovery of the fine-
grained governing equations for f directly from a temporally
coarse-grained Koopman operator (and the corresponding
data). To see this, take the state-inclusive observable func-
tions (4) and partition the Koopman equation accordingly
as [

xt+1

ϕ(xt+1)

]
=

[
Kxx Kxϕ

Kϕx Kϕϕ

] [
xt

ϕ(xt)

]
. (11)

Since the Koopman operator satisfies

Kψ(xt) = ψ(f(xt)) (12)

for each row, then in particular, the upper half of the
Koopman equation satisfies

xt+1 = Kxxxt +Kxϕϕ(xt) = f(xt). (13)

This provides a powerful scheme for estimating the gov-
erning equations of a fine-grained time-evolving biological
process from sparse or coarse-grained temporal measure-
ments, so long as the coarse-grained time measurement is
a product of regularly spaced intervals of time in the fine-
grained representation. Again, since RNAseq and proteomic
measurements often provide full-state measurements of a
network, this in theory can provide sufficient information
to recover the Koopman operator, even in the presence of
noise [21]. The key insight and property leveraged is the
linearity of the lifted Koopman representation. One would
not be able to obtain the fine-grained dynamics of the
governing equations from a coarse grained representation
of the governing equations as it is generally not feasible to
compute the nth root of a n-layered function composition.
Specifically, note that the N -step map for the underlying
governing dynamics of system (9) is given as

xt+N = f (n)(xt) = f ◦ f ◦ . . . f(xt) ≡ fN (xt). (14)

Given an arbitrary nonlinear function fN (xt) that is the N th

composition of f(xt), there is no general way to obtain the
underlying f(xt). However, by using the Koopman operator
lifting framework, we can express the governing equations
with linear coordinates, which allows us to consider com-
puting the N th root to obtain the single-step map from the
N -step map.

Although, in general, the matrix root always exists, we
note that we may not always obtain the desired fine-grained

K from KN due to there being multiple solutions to matrix
roots. Yue et al [31] showed that similarly the matrix loga-
rithm raises a concept of system aliasing. They describe the
scenario where there might be multiple fine-grained systems
which give the same coarse-grained system. In the case that
multiple fine-grained Koopman operators exist, our method
can be applied to each operator. We can distinguish which
operator is the ”correct” operator by collecting a few data
points at a fine-grained temporal resolution and evaluating
the predictive accuracy of the fine-grained Koopman operator
models.

In the presence of noise, we approximate the fine-grained
discrete time Koopman operator K from the coarse-grained
discrete time Koopman operator KN as

K̂ = K̂
(1/N)
N = (KN + ε(x))1/N

=

∞∑
k=0

(
1/N

k

)
K

(1/N−k)
N ε(x)k

= K̂
1/N
N +

1

N
K

(1/N−1)
N ε(x)

+
1
N ( 1

N − 1)

2!
K

(1/N−2)
N ε(x)2 + ...

(15)

where the last equality follows from Newton’s generalization
of the binomial theorem [12]. Here we assume that ε(x) is
bounded as in [6] for all x ∈ M ⊆ Rn. A closed form
expression of the error term ε(x) is found by noting that

ε(x) = K̂N −KN .

Then we have

ε(x)Ψ(Xp) = (K̂N −KN )Ψ(Xp) = Ψ̂(Xf )−Ψ(Xf )

ε(x)Ψ(Xp)Ψ(Xp)
† = (Ψ̂(Xf )−Ψ(Xf ))Ψ(Xp)

†.

giving the closed form expression of the error as

ε(x) = (Ψ̂(Xf )−Ψ(Xf ))Ψ(Xp)
†. (16)

Once we obtain the one-step Koopman operator, notice
that the Koopman invariant subspace of observable functions
is the same as the N -step operator. We suppose, mirroring
the scenario presented with transcriptomic and proteomic
measurements, that the state is measured completely, in this
setting. The precise coverage of the entire transcriptome and
proteome is often a subject of debate, but relative to the
spatial sparsity of fluorescence based readout approaches,
we shall assume for our purposes that the full state of the
network is measured sparsely.

The state-output equations of the coarse-grained system
can then be written as

xt+N = f(xt)

yt = xt
(17)

and thus the corresponding Koopman equation can be written
as

ψ(xt+N ) = KNψ(xt)

yt = Pxψ(xt)
(18)



where
Px =

[
In 0
0 0

]
is the projection matrix that extracts the state observable from
the vector observable ψ(xt).

B. Fine-Grained Sensor Placement via Optimal Observabil-
ity

Often times, it is not physically or economically feasible
to measure every state with the resolution specified by a fine-
grained temporal model. We seek to develop an algorithm for
identifying the design and placement of reporters that max-
imizes the observability of the underlying nonlinear system,
as well as the corresponding Koopman representation. For
this task, we find it convenient to pose this problem using
the Koopman gramian as defined in Section III. Specifically,
we seek to construct an output observer for the fine-grained
dynamical system (1) given full-state sparse temporal mea-
surements at t, t+N , t+jN in sufficient frequency to recover
the temporally coarse-grained Koopman operator KN , so that
it is possible to compute the fine-grained Koopman operator
K = K

(1/N)
N . We suppose that the corresponding Koopman

representation with output equation is thus written as

ψ(xt+1) = Kψ(xt)

yt = Whψ(xt).
(19)

We seek to maximize the output energy ||yt||2 for an initial
condition x0 at a time instant t i.e. solve the nonlinear
optimization problem

max
h(x)∈L2(M)

||y(tj)||2 (20)

for all initial conditions x0 with ||x0|| ≤ 1. This is an
optimization problem of a nonlinear function space (i.e.
an uncountably infinite dimensional space) and is generally
intractable. However, if we were to find a basis for h(x), we
could express the problem in terms of a linear combination of
the basis functions, which would yield a convex formulation
of the problem. This is precisely what we can do using the
spectral properties of the Koopman operator representation.
Following the formulation given in Section III, the system
in (19) has Koopman observability gramian

Xψ
o,f =

tN∑
j=0

(Kj)>W>h Wh(Kj) (21)

where the subscript f is used to distinguish the fine-grained
system from coarse-grained.

We want to identify the optimal sensor placement that
informs the design of optimal observers. Utilizing the Koop-
man observability gramian, Xo,f , as defined in (21), the
output energy of system (19) is written as

||ytN ||2 =

tN∑
j=0

ψ(x0)>(Kj)>W>h Wh(Kj)ψ(x0). (22)

Our goal is to now maximize the output energy (22) of the
lifted system up at time t with the output matrix Wh as the

decision variable. If the output energy of the lifted system is
maximized, then by proxy the output energy of the original
nonlinear system is maximized.

For the purposes of this paper, we will suppose that we
construct an observable function basis that results in a diag-
onalizable Koopman operator. The subsequent presentation
can be generalized for Koopman operators that only admit
a Jordan decomposition, but for simplicity of exposition, we
consider the case of the diagonalizable Koopman operator.

Assumption 2: We suppose that ψ(x) and K are provided
or trained during the learning process to admit a diagonaliz-
able K.
Thus, an eigendecomposition of K gives

KV = V Λ

where V is an nL×nL matrix of eigenvectors. The nL×nL
matrix Λ is a diagonal matrix whose components are the
eigenvalues λ of the Koopman operator, K. The eigenfunc-
tions of K are then written as

φ(x0) = V −1ψ(x0).

where φ ∈ RnL . Since (22) has a symmetric form, let us
deal with the right half of this equation. We have that

WhK
jψ(x0) = WhV ΛjV −1ψ(x0)

= WhV ΛjV −1V φ(x0)

= WhV Λjφ(x0).

The output energy can now be written in terms of the
Koopman eigenfunctions as

||ytN ||2 =

tN∑
j=0

[
φ(x0)>ΛjV >W>h WhV Λjφ(x0)

]
(23)

The optimization problem (20) can now be formulated as

J = max
Wh

tN∑
j=0

[
φ(x0)>ΛjV >W>h WhV Λjφ(x0)

]
(24)

with ||W>h Wh||2 ≤ C. The upper bound C would vary
between biological experiments and should be identified
directly from data.

By picking out the p (≤ nL) most observable modes
of the system such that we can ensure the collection of
measurements which correspond to maximal energy. If we
define Wh as

Wh ,
[
Ip×p 0

]
V −1

the argument of (24) becomes
tN∑
j=0

(
φ(x0)>ΛjV >(V −1)>

[
Ip×p

0

] [
Ip×p 0

]
V −1V Λjφ(x0)

)

=

tN∑
j=0

(
φ(x0)>diag(λ2j

1 , λ
2j
2 , ..., λ

2j
p , 0, ..., 0)φ(x0)

)
where λ1 through λp are the p maximum eigenvalues of K.
The maximum output energy comes from a choice of Wh

that depends on the eigenvectors of the Koopman operator.



1) Example (Circadian oscillator): To illustrate our sen-
sor placement algorithm, we consider a model of a circadian
oscillator, see Vilar et al. [25], that involves an activator A
and a repressor R. Both A and R are transcribed into mRNA
and subsequently translated into protein. Since A can bind
to both A and R promoters, it increases their transcription
rates. R acts as a negative element by hindering A. The
deterministic dynamics are given by the following reaction
rate equations

ḊA = θAD
′

A − γADAA

ḊR = θRD
′

R − γRDRA

Ḋ
′

A = γADAA− θAD
′

A

Ḋ
′

R = γRDRA− θRD
′

R

ṀA = α
′

AD
′

A + αADA − δMAMA

Ȧ = βAMA + θAD
′

A + θRD
′

R

−A(γADAA+ γRDR + γCR+ δR)

ṀR = α
′

RD
′

R + αRDR − δMRMR

Ṙ = βRMR − γCAR+ δAC − δRR
Ċ = γCAR− δAC.

(25)

Extended dynamic mode decomposition (EDMD) [26] is
used to compute the finite-dimensional approximation of the
Koopman operator, KN , for a coarse time step. A dictionary
of state-inclusive observable functions, Ψ, is constructed
using up to second-order polynomials. Often in biological
systems, Hill function type nonlinearities appear in the
dynamics. Even in these cases, the dictionary of polynomial
functions should capture the dynamics well, according to the
Weierstrass Approximation theorem, which states that any
continuous function on a closed and bounded interval can
be uniformly approximated on that interval by polynomials.
[22]. Therefore, as long as the non-polynomial linearity is
continuous, we expect that this dictionary of polynomials
will result in accurate predictions, although the representa-
tion may not be as low dimensional as a representation drawn
from a more efficient encoding [13], [28].

In this example, initial conditions were chosen such that
the trajectories converge to a limit cycle. From the coarse-
grained Koopman operator obtained from simulation data,
the fine-grained Koopman operator, K, is computed using
the scheme outlined in Section IV. Solving the optimization
problem (24), we can identify the optimal sensor placement.
Choosing p, the number of rows in Wh, to be p = 20, we
get the output matrix structure as seen in figure 1. A total
of 55 observable functions were used which correspondingly
sets the number of columns in the output matrix, Wh. The
output matrix has a sparse structure with most elements of
the matrix nearly zero. Using the criteria that the 1-norm
of the columns of Wh determine the most active states of
the observable coordinates, we can determine optimal sensor
placement. Using this criteria, the most active dynamics are
MAC,MRC,AC,R

2, RC, and C2 for a single initial condi-
tion where the trajectories converge to limit cycles. Figure
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Fig. 1. Sparse structure of the output matrix Wh with p = 20 for the
circadian oscillator simulation.

DA DR DA＇

DR＇ MA

MR

A

R C

Fig. 2. Network architecture of the circadian oscillator model in (25).
Arrows indicate activation, while bars indicate repression or degradation.
Highlighted in red are the states which have the most active dynamics in
the observable coordinates. Note that these active states were taken from
the single initial condition used to produce figure 1.

2 shows the entire network architecture of the circadian
oscillator. The states highlighted in red are the active states
and correspondingly are where the algorithm would dictate
sensors should be placed. Figure 3 shows how frequently a
state appears as an active state in the observable coordinates
over 20 different initial conditions.

From this analysis, a nonlinear observable can be de-
signed. For example, the state C2 is highly active in the
observable basis, therefore a nonlinear observer can be
designed where a C molecule binds with another C molecule
and integrated to obtain the output. We can then use this
observer (and other observers) to act as a reporter for the
cell state. This can enable rapid experimentation in synthetic
biology since there would no longer be a need to collect
expensive full state proteomics and transcriptomics data at a
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Fig. 3. Histogram showing the frequency of a state of (25) being in the
10 most active states of the observables over 20 different initial conditions.

low temporal resolution. We can collect partial state measure-
ments from states of interest at a high temporal resolution.
The Koopman method thus can identify critical genes that
serve as cell state biomarkers. These biomarkers provide a
link between internal dynamics and observed phenotypes.

V. CONCLUSION

In this work, we developed an algorithm for optimal
sensor placement from sparsely sampled time-series data
of discrete time nonlinear systems. The optimal sensor
placement algorithm was formulated as maximizing the
observability of a dynamical system or genetic network
in the Koopman lifted space. We compute the temporally
fine-grained Koopman operator from the temporally coarse-
grained Koopman operator, the latter of which is identified
directly from sparse biological data. In the case of noisy data,
a closed form expression for the error in the coarse-grained
Koopman operator is derived. Finally, we have illustrated the
optimal sensor placement method on a simulation example
of a circadian oscillator. This method can be utilized in the
context of developing bacterial sensors where the design of a
library of promoters is now informed by the sensor placement
algorithm.
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