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On the Optimal Control of Relaxation Systems

Richard Pates, Carolina Bergeling and Anders Rantzer

Abstract— The relaxation systems are an important subclass
of the passive systems that arise naturally in applications. We
exploit the fact that they have highly structured state-space
realisations to derive analytical solutions to some simple H-
infinity type optimal control problems. The resulting controllers
are also relaxation systems, and often sparse. This makes them
ideal candidates for applications in large-scale problems, which
we demonstrate by designing simple, sparse, electrical circuits
to optimally control large inductive networks and to solve linear
regression problems.

I. INTRODUCTION

In this paper we consider the problem of designing optimal

controllers for relaxation systems. Such systems play an

important role in applications, and correspond to [1]:

1) Reciprocal electrical networks with only one type of

energy storage element (i.e. only inductors or only

capacitors).

2) Mechanical systems in which inertial effects may be

neglected.

3) Viscoelastic systems.

4) Thermal systems.

This makes them ideal candidates for modelling a range

of simple networks and optimisation algorithms, including

the single commodity flow problem, symmetric consensus

algorithms and heating networks [2], [3], [4], [5].

In the 1970s Jan Willems made several fundamental

contributions on the realisability and synthesis of relaxation

systems [1], [6], [7]. In particular he demonstrated that they

have highly structured state-space realisations. He used this

property to connect several important reciprocity theorems

from physics to the theory of dissipative systems, as well as

to solve some problems in electrical network synthesis.

Our main contribution is to show that the same inherent

structure in the realisations of relaxations systems can be

exploited to solve two optimal control problems analytically.

In particular we build on the techniques in [8] to show that

if the system with dynamics

ŷ (s) = G (s) û (s)

is of the relaxation type, then the control law

û (s) = −α−1G (0) ŷ (s) (1)
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minimises
∫ ∞

0

y (t) T y (t) + α2u (t)
T
u (t) dt

over a set of bounded L2-norm disturbances. We also

show that a similar energy-based performance measure is

minimised by

û (s) = −α−1ŷ (s) . (2)

These results are presented in Section III.

The simple analytical nature of these controllers makes

them ideal candidates for applications to large-scale prob-

lems. This is because the control laws eqs. (1) and (2)

are simple to update if the network changes, and globally

optimal. Furthermore they are at least as sparse as G (0)
and can be synthesised with resistive circuits that inherit

the underlying structure of the original system. This will be

illustrated in Section IV, where we will show how to design

simple electrical circuits to optimally control large inductive

networks and to solve least squares problems.

NOTATION

Rn×m denotes an n × m matrix of proper real rational

transfer functions, and ŷ (s) the one-sided Laplace transform

of a signal y (t) : [0,∞) → Rn. A transfer function G ∈
Rn×m has a realisation

ΣG =

[
A B
C D

]

if

G (s) = C (sI −A)
−1

B +D.

A realisation is said to be minimal if (A,B) is controllable

and (A,C) is observable. Finally, M † denotes the Moore-

Penrose pseudo-inverse of a matrix with complex entries,

and M � 0 and M ≻ 0 denote that such a matrix is both

Hermitian, and positive semi-definite or positive definite,

respectively.

II. PRELIMINARIES

The relaxation systems, so called because of their close

connections with the relaxation function from physics, are

the input-output LTI systems with completely monotone im-

pulse responses. Dynamcially they correponsd to the systems

that exhibit no oscillatory behaviour. Jan Willems made

several fundamental contributions on their realisability in

the 70s, see [1], [6], [7]. We will summarise and illustrate

the properties of relaxation systems that we require in this

section.

http://arxiv.org/abs/1909.07219v1


A matrix valued function

W (·) : [0,∞) → R
m×m

is said to be completely monotone [9] if for all t > 0 and

n = 0, 1, 2, . . . ,

(−1)
n dnW (t)

dtn
� 0.

Basic examples include

e−t and ln (1 + 1/t) ,

and if A � 0, eAt. We now formally define the relaxation

systems.

Definition 1: Let G ∈ Rm×m be the transfer function of

a continuous time system with impulse response Dδ (t) +
W (t), where δ (t) is the Dirac delta function. G is said to

be a relaxation system if D � 0 and W (t) is a completely

monotone function.

One of Willems’ central contributions was to demonstrate

that such systems have highly structured state-space reali-

sations, and special storage functions that can be physically

motivated. The relevant result for our purposes is the follow-

ing, which is essentially just a restatement of [1, Theorem

9].

Theorem 1: Let G ∈ R
m×m be the transfer function of a

continuous time system. The following are equivalent:

(i) G is a relaxation system.

(ii) There exist matrices A,B and D such that (A,B) is

controllable, A � 0, D � 0 and

ΣG =

[
A B
BT D

]

.

(iii) Given any minimal realisation

ΣG =

[
A B
C D

]

,

the matrix D is positive semi-definite, and there exists

a Q ≻ 0 such that QA = ATQ � 0 and QB = CT .
For the special symmetric realisation in (ii), the Q from

part (iii) equals I . However even in the general case it is

always unique and can be calculated [1, Lemma 3] according

to

Q =
[

CT ATCT . . .
(
AT

)n−1
] [

B AB . . . An−1B
]†
.

The matrix Q has many appealing interpretations in the

context of dissipativity theory. A detailed discussion of this

would take us too far, however for the purposes of this paper

it suffices to say that the quantity

V (x) =
1

2
xTQx

corresponds directly to the energy stored internally in the sys-

tem, and although Q depends on the particular realisation of

G, V (x) is specified entirely by the input-output behaviour

of G. By factoring Q = STS it can also be used to map an

arbitrary minimal realisation into the symmetric form via
[

A B
C D

]

7→
[

SAS−1 SB
CS−1 D

]

. (3)

iR

R Cv

i

i

Fig. 1. RC-circuit studied in Example 1

We will highlight these features in the simple example below,

and encourage the interested reader to consult [1, §10-12].

Example 1: Consider the simple RC-circuit shown in Fig-

ure 1. This system is governed by the equations

q̇ = i− iR,

v =
1

C
q = RiR,

where i and v are the current through and voltage across the

terminals, q the charge on the capacitor with capacitance C,

and iR the current through the resistor with resistance R.

The transfer function G : i → v for this system equals

G (s) =
1

Cs+ 1/R
,

and has realisation

ΣG =

[
−1/RC 1
1/C 0

]

. (4)

Setting Q = 1/C and applying Theorem 1 shows that G is a

relaxation system, which is to be expected since it contains

only one type of storage element. Furthermore

V (x) ≡ 1

2

q2

C
,

which is the familiar equation for the energy stored in a

capacitor, and the similarity transform eq. (3) given by S =
1/

√
C clearly takes eq. (4) into its symmetric form. ♦

III. RESULTS

In this section we solve two simple optimal control prob-

lems for the following LTI system

ẋ = Ax+Bu+ w, x (0) = 0,

y = Cx+Du,
(5)

that apply when it realises a relaxation system. In the above

x ∈ Rn, y ∈ Rp, u ∈ Rm and w ∈ Rn denote the state,

output, input and disturbance respectively, and A,B,C,D
are matrices of compatible dimension with real entries. We

consider the problem of designing an internally stabilising

control law

û (s) = −K (s) ŷ (s) (6)

to minimise two different performance measures in the face

of the disturbance w. We assume that the disturbance is from

the following class

WQ :=

{

w (t) :

∫ ∞

0

w (t)
T
Qw (t) dt ≤ 1

}

,

where Q is a positive definite matrix.

First we consider the following optimal control problem:



Problem 1: Let α > 0. Minimise

sup
w∈WQ

∫ ∞

0

y (t) T y (t) + α2u (t)
T
u (t) dt (7)

subject to eqs. (5) and (6) over stabilising K ∈ Rm×m.

In words, the objective is to design the controller to regulate

the output y in the presence of disturbances w ∈ WQ. The

second term in eq. (7) penalises the amount of control effort

required to achieve this, and the size of α can be chosen to

balance these competing objectives.

The second problem we consider is the following:

Problem 2: Let α > 0. Minimise

sup
w∈WQ

∫ ∞

0

y (t) T y (t) + α2u (t)
T
ȳ (t) dt,

where

ȳ (t) = y (t)−
∫ t

0

CeA(t−τ)w (τ) dt,

subject to eqs. (5) and (6) over stabilising K ∈ Rm×m.

The objective is very similar to Problem 1. The only differ-

ence is that the term penalising the control effort has been

replaced with a penalty on u (t)
T
ȳ (t). Note that ȳ is nothing

but the part of the output that is caused by the input u.

The motivation for this is that if eq. (5) realises a relaxation

system, then typically the quantity u (t) T ȳ (t) is the product

of a current and voltage (or their analogues), and has the units

of power. Therefore
∫ ∞

0

u (t)
T
ȳ (t) dt

corresponds to the energy supplied to the system by the

controller, which is arguably a more natural way to penalise

the control effort.

Remark 1: Problem 1 is equivalent to a standard H∞

optimal control problem, but Problem 2 is not.

The following theorem is the main result of this paper,

and shows that if
[

A B
C D

]

= ΣG

is the realisation of a relaxation system G with storage

V (x) =
1

2
xTQx,

then both Problems 1 and 2 can be solved analytically (the

constraints on the realisation in the theorem statement exactly

match those in Theorem 1(iii)). Note in particular that the

optimal controllers are themselves relaxation systems, are

independent of the realisation of G, are at least as sparse

as G (0) and can be synthesised with networks of resistors

(and transformers) that inherit the underlying structure of

the original system. These features will be illustrated in

Section IV.

Theorem 2: If AQ = QAT � 0, QB = CT and D � 0,

then:

1) K ≡ α−1
(
D − CA−1B

)
solves Problem 1.

2) K ≡ α−1I solves Problem 2.

Before proving the result we will illustrate its meaning on

the system from Example 1.

Example 2: Applying Theorem 2 to the system in Exam-

ple 1 with realisation eq. (4) and Q ≡ 1/C shows that the

controller

K ≡ R/α

solves Problem 1, and the controller

K ≡ 1/α

solves Problem 2. Both controllers are independent of the

realisation, provided the matrix Q is updated accordingly.

Observe that choosing Q to satisfy the conditions of the

theorem normalises the size of the disturbance to match the

physical properties of the energy storage elements. ♦

Proof: The proof will be in two stages. We will first

show that the given controllers are optimal with respect to

a restricted class of disturbances. We will then exploit the

properties of relaxation systems to show that the same level

of performance is achieved even when disturbances in the

full class are allowed (that is, the worst case disturbances

in WQ are contained in the restricted class). Stability will

be tacitly assumed throughout, and is guaranteed by the

passivity theorem (both the plant and controller are relaxation

systems, which are automatically passive).

Stage 1: Let

HT (t) =

{

1/T if 0 ≤ t ≤ T ,

0 otherwise,

and define the class of disturbances

WT
Q =

{
w (t) : w (t) = HT (t) v, vTQv = 1

}
. (8)

We will now show that the controllers in 1) and 2) minimise

the performance criteria in Problems 1 and 2 over all

disturbances w ∈ WT
Q in the limit T → ∞. The key feature

in this argument is that this restriction reduces the synthesis

problem into a matrix minimisation problem that can be

solved using least squares techniques. Since for any T > 0,

WT
Q ⊂ WQ, the minimum value of the cost over this class

of disturbances can be no larger than the cost in Problems 1

and 2.

We now proceed to solve Problems 1 and 2 under the

restriction that w ∈ WT
Q . The system dynamics impose the

following constraint between û, ŷ and ŵ:
[
ŷ (s)
û (s)

]

=

[
I

−K (s)

]

(I +G (s)K (s))
−1

C (sI −A)
−1
ŵ (s) ,

where

G (s) = C (sI −A)
−1

B +D.

A standard argument (e.g. [10, Chapter 1]) shows that if

w (t) = vHT (t) , (9)

where v ∈ Rm, then

lim
T→∞

∫ ∞

0

y (t) T y (t) + α2u (t)
T
u (t) dt = zT

[
I 0
0 α2

]

z,

where

z =

[
I

−K (s)

]

(I +G (s)K (s))C (sI −A)−1

∣
∣
∣
∣
∣
s=0

v.



Note that this is saying nothing more than the size of the

response of a stable system to a step input is given by the

DC gain of the system. It then follows from Lemma 1, which

is stated and proved in the Appendix, that K ≡ α−1G (0)
T

minimises

lim
T→∞

sup
w∈WT

Q

∫ ∞

0

y (t) T y (t) + α2u (t)
T
u (t) dt

subject to eqs. (5) and (6). By Theorem 1(ii), G (0) =
G (0)T , which proves that the controller in 1) is optimal

for Problem 1 when the disturbances are restricted to lie in

W∞
Q .

A similar argument can be used on Problem 2. To see this

observe that ˆ̄y (s) = G (s) û (s). Therefore just as before, if

the disturbance is given by eq. (9), in the limit T → ∞
∫ ∞

0

y (t) T y (t) + α2u (t)T ȳ (t) dt = zT
[
I 0
0 α2G (0)

]

z.

Since by Theorem 1(ii), G (0) � 0 it also follows from

Lemma 1 that K ≡ α−1I solves Problem 2 over disturbances

in W∞
Q (technically this requires that G (0) ≻ 0, but a simple

limit argument can be used to cover the semi-definite case).

Stage 2: We will now show that whenever K (s) = K̄ � 0
is stabilising, the disturbances of the form in eq. (8) are the

worst-case. This will prove that the controllers in 1) and 2)

are optimal since they are both stabilising, positive semi-

definite, and optimal over disturbances in eq. (8).

We will first consider Problem 1. Note that given any

controller the performance criterion in this problem equals
∥
∥
∥
∥

[
I

−α−1K (s)

]

(I +G (s)K (s))
−1

C (sI −A)
−1

√

Q
−1

∥
∥
∥
∥
∞

,

where
√· denotes the positive definite matrix square root.

Standard algebraic manipulations show that the transfer

function in the above equals
[

I
−α−1K (s)

]

(I +DK (s))
−1

C
√

Q
−1

M (s) , (10)

where

M (s)=
√

Q
(

sI −A+BK (s) (I +DK (s))−1C
)−1√

Q
−1
.

We will now make use of the symmetric realisations for

relaxation systems from Theorem 1. In particular this guar-

antees that
[ √

QA
√
Q

−1 √
QB

C
√
Q

−1
D

]

=

[
Ā B̄
B̄T D

]

,

where Ā � 0. Substituting in this similarity transform shows

that

M (s) =
(

sI − Ā+ B̄K (s) (I +DK (s))−1 B̄T
)−1

.

Next note that if K (s) ≡ K̄ � 0 is stabilising, then

X = −Ā+ B̄K̄
(
I +DK̄

)−1
B̄T

= −Ā+ B̄
√

K̄
(

I +
√

K̄D
√

K̄
)−1 √

K̄B̄T ≻ 0.

Therefore for any such K (s), eq. (10) can be rewritten as

V (s) =

[
I

α−1K̄

]
(
I +DK̄

)−1
B̄TX−1

(
sX−1 + I

)−1
.

Since
∥
∥
∥

(
sX−1 + I

)−1
∥
∥
∥
∞

= 1, and
(
sX−1 + I

)−1

∣
∣
∣
∣
∣
s=0

= I,

we see that that

‖V ‖∞ = ‖V (0)‖2 .
Therefore given any stabilising K̄ � 0, the worst case

disturbance is of the form in eq. (8). Therefore the controller

in 1) is not only optimal over all disturbances in W∞
Q , but

also over all in WQ, and therefore solves Problem 1.

We now consider Problem 2. This is not an H∞ control

problem, so a little more work is required. First observe that

G (s) =

[

B̄
√
Ā−1√
D

]T [(
sĀ−1 − I

)−1
0

0 I

] [

B̄
√
Ā−1√
D

]

.

This implies that for any s in the closed right half plane
∣
∣û (s)

∗
G (s) û (s)

∣
∣ ≤ û (s)

∗
G (0) û (s) .

The Plancharel theorem then implies that
∫ ∞

0

u (t)
T
ȳ (t) dt =

∫ ∞

−∞

û (jω)
∗
G (jω) û (jω) dω,

≤
∫ ∞

−∞

∣
∣û (jω)

∗
G (jω) û (jω)

∣
∣ dω,

≤
∫ ∞

−∞

û (jω)
∗
G (0) û (jω) dω,

=

∫ ∞

0

u (t)
T
G (0)u (t) dt.

Therefore for any stabilising K (s) ≡ K̄ � 0, the perfor-

mance criterion in Problem 2 is always upper bounded by

∥
∥
∥
∥
∥

[

I 0

0
√

G (0)
−1

]

V (s)

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

[

I 0

0
√

G (0)
−1

]

V (0)

∥
∥
∥
∥
∥
2

.

This means that the controller in 2) is not only optimal

over all disturbances in W∞
Q , but also over all in WQ, and

therefore solves Problem 2.

IV. EXAMPLES

A. Optimal Control of Inductive Electrical Networks

In this example we will show how to synthesise an

optimal controller for a simple inductive electrical network.

In particular we will show how to interpret and synthesise

the optimal controller for Problem 1 using duality theory

for electrical networks. The particular topology considered

here has been chosen for illustrative purposes, and far more

complicated networks could be handled with an identical

methodology.

Consider the graph in Figure 2. This represents an electri-

cal network in which each edge represents either a resistor

or an inductor. In addition a pair of terminals have been

specified. It is through this port that currents can be injected
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Fig. 2. An electrical network consisting of resistors and inductors and one
port.

into the network, and it is our aim to design a controller

to regulate this current flow about an equilibrium. Although

very abstract, such physical models are common throughout

physics and engineering, and through the use of analogues

can be used to represent a wide range of systems, for example

commodity flow networks, or heating networks [5], [2].

Since the network only contains elements of one storage

type, the dynamics of the electrical network are of the

relaxation type. This can be shown explicitly by finding G.

In this case it is simple to show by lumping elements that

G : i → v is given by

G (s) =
1

L1s+R1 +R2
+

1

L2s+R3
.

One possible realisation of this system is given by

ΣG =





−R1/L1 −R2/L1 0 1
0 −R3/L2 1

1/L1 1/L2 0



 ,

which clearly satisfies the conditions of Theorem 1 with

Q =

[
1/L1 0
0 1/L2

]

.

Applying Theorem 2 shows that the controller

K ≡ α−1

R1 +R2
+

α−1

R3
(11)

is optimal for Problem 1. Let us now consider how to

synthesise this controller. A simple way to do this is to build

a resistor that satisfies

Vc =

(
α−1

R1 +R2
+

α−1

R3

)

︸ ︷︷ ︸

Rc

Ic.

The control law in eq. (11) could therefore be implemented

by connecting the above resistance to the original system

across the terminals, as shown in Figure 3.

R3

L2

R1

L1

R2Rc

Fig. 3. Implemention of the optimal control law.

This is because Kirchhoff’s laws for this operation are

given by

i+ Ic = 0

v = Vc.

R3

R2

R1

i

(a) (b)

1
R3

1
R2

1
R1

v

1
R3

+ 1
R1+R2

(c)

Fig. 4. Construction of the dual network used to implement the optimal
controller. First, as shown in (a), all the inductive edges are contracted to
give a purely resistive network with the same steady state admittance as G.
Next the dual graph of this network is constructed as shown in (b). Finally,
as shown in (c), each edge in the dual graph is assigned a resistance equal
to the reciprocal of that from (a). This process produces a circuit with
impedance equal to the admittance of the circuit in (a), giving an electrical
realisation of the optimal controller.

These imply that v = −Rci, which is precisely the required

control law (c.f. eq. (6)).

However let us now think further about what the equation

for the controller in Theorem 2 means. First note that in

this case G (0) is equal to the admittance of the network

we wish to control in steady state. That is there will only

be a voltage drop across the resistive components. Our task

is then to synthesise a resistor with impedance equal to the

steady state admittance of the network. Such networks can

be found by finding the so called dual network (see e.g.

[11, §10.4.3]). This process is illustrated in Figure 4. Note

that this gives an algorithmic way to synthesise the optimal

controller that inherits the sparsity of the electrical network

we wish to control. This is not so important for this specific

example since the resulting network can always be lumped

into a single resistor. The real strength of this approach is

that it could be applied to synthesise the optimal controller

in a sparse manner even when the graph is large (and planar),

and the network has many ports.

B. Solving Least Squares Problems Using Circuits

The use of electrical circuits to solve optimisation prob-

lems is classical [4]. In this section we will use Theorem 2 to

show how to optimise the dynamic performance of a simple

circuit that will solve the least squares problem

min
x∈Rm

‖Ax+ b‖2 . (12)

Recall that this problem has (minimum norm) solution x ≡
−A†b.
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Fig. 5. Circuit that synthesises eq. (14).

Consider now the electrical components with dynamics
[
V1

I2

]

=

[
0 A

−AT 0

] [
I1
V2

]

(13)

and

q̇ = I3 + w

V3 = q.
(14)

The component described by eq. (13) can be synthesised

using transformers for any A ∈ Rn×m (see e.g. [6, §VI.2)]),

and that in eq. (14) using capacitors and current sources

(see Figure 5). Interconnecting these components according

to Kirchhoff’s relations

I2 + I3 = 0 and V2 = V3

yields a system G : (w, I1) → V1 with realisation

q̇ = AI1 + w, q (0) = 0,

V1 = AT q.

Theorem 2 clearly applies with Q ≡ I . This shows that the

control law

I1 = −α−1V1

is optimal with respect to Problem 2. This controller can be

synthesised by connecting the resistors

V4 = αI4

to the existing circuit according to

I1 + I4 = 0 and V1 = V4.

Now consider the behaviour of the circuit if we apply the

current

w (t) = bH (t)

using the current sources, where H (t) denotes the unit step.

The final value theorem shows that

lim
t→∞

V1 (t) = lim
s→0

sAT
(
sI + α−1AAT

)−1 1

s
b

= αA†b.

This implies that as t → ∞, the current flowing through

the resistors equals the solution to eq. (12). That is, this

simple electrical circuit can be used to solve the least squares

problem in eq. (12) for any b, while minimising the dynamic

performance objective in Problem 2. In particular adjusting

the value of the resistance α allows the speed with which the

problem is solved to be balanced against the energy losses

(which will heat the system up).

V. CONCLUSIONS

It has been shown that if a system is of the relaxation type,

then some simple H∞-type control problems can be solved

analytically. The resulting controllers inherit the structural

properties of the system. Therefore if the original system has

a sparse structure, the optimal controllers can be synthesised

with sparse resistive networks. This has been demonstrated

by designing simple, sparse, electrical circuits to optimally

control large scale inductive networks and to solve linear

regression problems.
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APPENDIX

Lemma 1: Let G1 ∈ C
n×n, G2 ∈ C

n×n and G3 ∈ C
n×m.

If G1 is invertible, then given any vector v ∈ Cm

−G1G
∗
1G

∗
2 =arg min

K∈Cn×n
‖z‖2

s.t. z =

[
I

−G−1
1 K

]

(I −G2K)
−1

G3v.
(15)

Proof: Consider

min
K∈Cn×n

‖z‖2
s.t.

[
I G2G1

]
z = G3v

z =

[
I

−G−1
1 K

]

x.

(16)

Eliminating x from the above shows that the constraints in

eqs. (15) and (16) are the same, and therefore that these

problems are equivalent. We may obtain a lower bound to

the problem in eq. (16) by dropping the final constraint. If

this is done, eq. (16) becomes a standard minimum norm

least squares problem, with optimal solution

z ≡
[
I G2G1

]†
G3v =

[
I

G∗
1G

∗
2

]

(I +G2G1G
∗
1G2)

−1
G3v.

Setting K ≡ −G1G
∗
1G

∗
2 in the constraint in eq. (15) achieves

precisely this z, which completes the proof.

http://tiny.cc/btb43y
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