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Abstract— This paper considers the problem of steering the
state distribution of a nonlinear stochastic system from an initial
Gaussian to a terminal distribution with a specified mean and
covariance, subject to probabilistic path constraints. An algo-
rithm is developed to solve this problem by iteratively solving
an approximate linearized problem as a convex program. This
method, which we call iterative covariance steering (iCS), is
numerically demonstrated by controlling a double integrator
with quadratic drag force subject to additive Brownian noise
while satisfying probabilistic path constraints.

I. INTRODUCTION

Guidance and control design has generally followed the
standard approach where an open-loop reference optimal
control is solved with respect to the nonlinear dynamics
and then a feedback controller is subsequently designed with
respect to the dynamics linearized about the reference trajec-
tory. Hence, there is an implicit unidirectional dependence of
the feedback controller on this reference trajectory, but there
is no direct mechanism from which the reference trajectory is
affected by the closed-loop system behavior. Intuitively, if we
could explicitly couple the design of the reference trajectory
with the design of the feedback controller, then since we are
optimizing over a larger set we could improve closed-loop
system performance. The situation becomes more complex
with the introduction of state constraints and uncertainty. If
the closed-loop statistics of a system are not considered,
then the reference trajectory design must be conservative
to satisfy the constraints. For systems that are significantly
influenced by uncertain external forces, the conservatism of
this approach may lead to greatly increased control cost or
even infeasibility.

In this paper we consider the system state to be a random
vector which evolves according to a nonlinear stochastic
differential equation with additive Brownian noise. By letting
the state to be a random vector, the control problem can be
formulated as one of simultaneously steering each sample
trajectory, and as a consequence, we can analytically study
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the difference between open and closed-loop control [1]. This
machinery will serve as our mechanism to understand the
coupling between the reference trajectory and the feedback
controller. We assume that the state is normally distributed
at the initial time, and we will design a control that steers
the mean and the covariance of the initial state distribution to
some given terminal values at the final time. This problem is
referred to as the nonlinear covariance steering (CS) problem.
Since the state is assumed to be normally distributed, and
thus unbounded, we must treat state constraints probabilisti-
cally. That is, the probability that the constraints are satisfied
must be greater than some prespecified value. Since, by
construction, these constraints may not be met for every
sample path, they are often referred to as chance constraints
[2], [3].

The special case of linear time-varying stochastic systems
with additive Brownian noise has been extensively studied
in the literature. It has been shown that if the system is
controllable, then the state covariance is also controllable [1].
That is, for an initial covariance Px0

> 0 at time t0, there
exist a state feedback gain defined on the interval [t0, tf ]
that steers the covariance to any final value Pxf > 0 for any
time tf > t0. The solution to the optimal linear CS problem
with expected quadratic cost was given by Chen et al. [4],
[5], [6], and the solution was found to be closely related to
the classical linear quadratic feedback control. The discrete
linear CS problem with quadratic cost has also been studied
and a similar close connection to linear quadratic control has
been shown [7].

It is well known that, for linear systems, and in the
absence of any constraints, the mean and the covariance
have independent dynamics, and that the mean state is
controlled by the mean open-loop control and the covariance
is controlled by the state feedback gain. It follows that,
without constraints, we can consider the mean steering and
the covariance steering as separate problems but that, when
there are constraints, the mean and covariance are coupled.
In other words, for linear systems, the reference trajectory
explicitly depends on the closed-loop behavior of the system
when the state or control is constrained. For the discrete-
time linear case with convex chance constraints, the chance-
constrained CS problem can be cast as a deterministic convex
optimization problem [8]. This work was later extended to
include non-convex chance constraints using mixed-integer
programming [9].

In this paper, we propose an algorithmic approach to solve
the nonlinear CS problem by iteratively solving the linear CS
problem with respect to the reference trajectory of the previ-
ous step. This algorithm, which we will refer to as iterative
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CS (iCS), is a natural extension of linear CS in the spirit of
other well known successive approximation methods such as
differential dynamic programming (DDP) [10] and iterative
LQG (iLQG) [11], which both compute a feedback control
by backwards propagating an approximation of the value
function. For iCS, we similarly approximate the nonlinear
dynamics about a reference trajectory, but, in contrast, the
control updates are found by solving a convex program,
which has the benefit of allowing direct consideration of
probabilistic constraints at the cost of computation time and
restricts the approximation of the dynamics to first order.

To the best of our knowledge, there are currently no known
methods to solve the nonlinear CS problem. Furthermore,
in contrast to the existing literature on chance constrained
linear CS, we begin our analysis with a continuous stochastic
system and describe an exact discretization procedure.

A. Notation and Preliminaries

For a random vector z on a probability space (Ω,F ,P),
we denote the expectation of a function f of z as E[f(z)].
The mean value of z is denoted by z̄ := E(z), and the
difference from the mean as z̃ := z − E(z). The covariance
of z is denoted by Pz := E(z̃z̃T). The complement of an
event A ⊆ Ω is denoted Ac = Ω \ A, and we use the
shorthand {ω ∈ Ω : z(ω) ∈ B} = {z ∈ B} to denote
events. Dependence of a quantity y on time t is denoted by
yt. For a square matrix A, we write A > 0 (≥ 0) if A is
positive (semi-)definite, i.e., xTAx > 0 (≥ 0) for all nonzero
real vectors x. The set of natural numbers, including zero, is
written as N0, and N+ = N0 \ {0}. We will denote by Nm0
the set of natural numbers up to, and including, a positive
integer m (similarly for Nm+ ).

II. PROBLEM FORMULATION

Consider the nonlinear stochastic differential equation

dxt = f(xt, ut, t)dt+Gtdwt, t ∈ [t0, tf ], (1)

where xt ∈ Rnx is the state, ut ∈ Rnu is the control input,
and wt is an nw-dimensional standard Brownian motion. At
time t0, the state xt0 is assumed to be normally distributed
with fixed mean and covariance

E(xt0) = x̄0, E(x̃t0 x̃
T
t0) = Px0

. (2)

At each time, the state and control are constrained in
probability to given convex sets

P(xt ∈ Xt) ≥ 1− px,t, P(ut ∈ Ut) ≥ 1− pu,t, (3)

where 0 < px,t < 1/2 and 0 < pu,t < 1/2 are prescribed
maximum probabilities of failure. The constraints (3) are
referred to as chance constraints. We wish to find a control
that brings the state xt to a final distribution at time tf with
given mean and covariance

E(xtf ) = x̄f , E(x̃tf x̃
T
tf

) = Pxf , (4)

where Pxf is a given positive-definite matrix, while mini-
mizing the cost functional

J(u) =

∫ tf

t0

[
`(ūt, x̄t) + E(x̃T

tQx,tx̃t + ũT
tQu,tũt)

]
dt. (5)

Here Qx,t > 0 and Qu,t ≥ 0 are weight matrices, and ` is
an integrable function that is convex in ūt and x̄t, and the
optimization is performed over the control u. In summary,
we are interested in solving the following problem.

Problem 1: Nonlinear Covariance Steering. Find a con-
trol u∗t to minimize the cost (5) subject to the dynamics (1),
terminal state constraints (4), and chance constraints (3).

In the remainder of this section, we will develop a linear
approximation of (1) in the neighborhood of a given refer-
ence. Then, after discretizing the linearized system, we will
focus our analysis on the discrete linear system.

A. Time Normalization and Linearization

We begin by normalizing the time domain [t0, tf ] to the
unit interval using the dilation coefficient [12]

σ := tf − t0. (6)

Let τ := (t − t0)/σ ∈ [0, 1] be the normalized time, from
which it follows that σ = dt/dτ . Since the Brownian motion
increment dwt has variance dt, we scale the diffusion term
in (1) by

√
σ to obtain dwτ with variance dτ (i.e., dwt is

identically distributed with
√
σdwτ ). The time normalized

system is then given by

dxτ = σf(xτ , uτ , τ)dτ +
√
σGτdwτ , τ ∈ [0, 1], (7)

and the time normalized cost is given by

J(u) = σ

∫ 1

0

[
`(ūτ , x̄τ ) + E(x̃T

τQx,τ x̃τ + ũT
τQu,τ ũτ )

]
dτ.

(8)
Next, we linearize (7) about a given reference trajectory
(x̂iτ , û

i
τ ), where i ≥ 1 is an index to count successive

linearizations. This procedure results in the linear stochastic
system

dxτ ≈ (Aiτxτ +Biτuτ + riτ )dτ +
√
σGτdwτ , (9)

where

Aiτ := σ
∂f

∂x

∣∣∣∣
(x̂iτ ,û

i
τ )

, Biτ := σ
∂f

∂u

∣∣∣∣
(x̂iτ ,û

i
τ )

, (10)

rτ := σf(x̂iτ , û
i
τ , τ)−Aiτ x̂iτ −Biτ ûiτ . (11)

B. Discrete Approximation

Let 0 = τ0 < τ1 < · · · < τN = 1 be a partition of the
interval [0, 1], where

τk :=
k

N
, k ∈ NN0 . (12)

Henceforth, we will write xk := xτk and uk := uτk . We use
a zero-order-hold (ZOH) discretization of the control given
by

uτ = uk, τ ∈ [τk, τk+1), k ∈ NN−10 . (13)



Substituting uk in (9), we obtain the solution [13]

xk+1 = Φi(τk+1, τk)xk

+

∫ τk+1

τk

Φi(τk+1, τ)(Biτ uk + riτ )dτ

+
√
σ

∫ τk+1

τk

Φi(τk+1, τ)Gτdwτ , k ∈ NN−10 , (14)

where Φi(τ, s) is the state transition matrix for system (9),
which satisfies

∂

∂τ
Φi(τ, s) = AiτΦi(τ, s), Φi(τ, τ) = I. (15)

For k ∈ NN−10 , we rewrite (14) as

xk+1 = Aikxk +Bikuk + rik +
√
σGikwk, (16)

where wk ∈ Rnx are independent and identically distributed
N (0, I) and where

Aik := Φi(τk+1, τk), (17a)

Bik :=

∫ τk+1

τk

Φi(τk+1, τ)Biτdτ, (17b)

rik :=

∫ τk+1

τk

Φi(τk+1, τ)riτdτ. (17c)

The stochastic integral in (14) is a zero-mean Gaussian
random vector with covariance

Σ =

∫ τk+1

τk

Φi(τk+1, τ)GτG
T
τΦiT(τk+1, τ)dτ, (18)

and therefore the matrix Gik is selected such that Gikwk ∈
Rnx is distributed N (0,Σ). Since Σ may have rank greater
than nw (e.g., Σ is full rank if (Aiτ , Gτ ) is controllable), the
matrix Gik must be nx×nx. Furthermore, since the solution
to GikG

iT
k = Σ is not unique, there exist a continuum of

coefficient matrices Gik such that the resulting state processes
are equidistributed.

The discrete formulation (14) is an exact representation of
the linear system (9) with ZOH control. However, since the
previous integrals may be difficult to compute, the following
first-order approximation is commonly used:

Aik := Aiτkdτ + I, Bik := Biτkdτ,

Gik :=
√

dτGτk , rik := riτkdτ.
(19)

We remark that the method of discretization chosen does
not affect any of the following discussion.

Following [7], [8], [9], we will rewrite the discrete system
(16) as a single linear equation. Define the state transition
matrix from step k0 to step k1 as

Aik1,k0 :=

{
Aik1A

i
k1−1 · · ·A

i
k0
, k1 ≥ k0,

I, k1 < k0,
(20)

and the corresponding transitions for the control, noise, and
affine terms as

Bik1,k0 := Aik1,k0+1Bk0 , Gik1,k0 := Aik1,k0+1G
i
k0 , (21)

rik1,k0 := Aik1,k0+1rk0 . (22)

Define concatenated control and disturbance vectors at step
k as

Uk :=
[
uT
0 uT

1 · · · uT
k

]T ∈ R(k+1)nu , (23)

Wk :=
[
wT

0 wT
1 · · · wT

k

]T ∈ R(k+1)nx . (24)

Then the state at step k can be written as

xk = Āikx0 + B̄ikUk−1 + r̄ik1k +
√
σḠikWk−1, (25)

where 1k ∈ Rk is a column vector of ones, Āik := Aik−1,0,
and

B̄ik :=
[
Bik−1,0 Bik−1,1 · · · Bik−1,k−2 Bik−1

]
, (26)

Ḡik :=
[
Gik−1,0 Gik−1,1 · · · Gik−1,k−2 Gik−1

]
, (27)

r̄ik :=
[
rik−1,0 rik−1,1 · · · rik−1,k−2 rik−1

]
. (28)

In terms of the concatenated state vector X :=[
xT
0 · · · xT

N

]T ∈ R(N+1)nx , control vector U := UN−1 ∈
RNnu , and disturbance vector W := WN−1 ∈ RNnx , the
system dynamics are written as the matrix equation

X = Aix0 + BiU +Ri +
√
σGiW. (29)

The matrices Ai,Bi, Ri, and Gi are formed by appropriately
stacking the terms from (25).

Let Qx and Qu be block-diagonal state and control cost
weight matrices with entries corresponding to the continuous
weights Qx,t and Qu,t from (5):

Qx := blkdiag(Qx,τ0 , . . . , Qx,τN−1
, 0nx), (30)

Qu := blkdiag(Qu,τ0 , . . . , Qu,τN−1
). (31)

The quadratic state cost at step N is neglected,
since the terminal state is fixed. Letting
Ek =

[
0nx,knx , Inx , 0nx,(N−k)nx

]
and Euk =[

0nu,knu , Inu , 0nu,(N−k−1)nu
]
, such that xk = EkX

and uk = EukU , the continuous time cost functional (8) can
be rewritten in terms of the linearized system as

J(U) ≈ σ

N

[N−1∑
k=0

`(Euk Ū , EkX̄)+E(X̃TQxX̃+ Ũ TQuŨ T)

]
,

(32)
and the boundary conditions (2) and (4) as

E0X̄ = x̄0, E0E(X̃X̃T)ET
N = Px0 , (33a)

EN X̄ = x̄f , ENE(X̃X̃T)ET
N = Pxf . (33b)

The chance constraints (3), enforced at each time step k, are
written as

P(EkX ∈ Xτk) ≥ 1− px,τk , (34a)
P(EukU ∈ Uτk) ≥ 1− pu,τk . (34b)

In summary, we have approximated the continuous time,
nonlinear stochastic system (1) by the discrete, linear
stochastic system (29). Problem 1 can be accordingly restated
in terms of this approximate system as follows.

Problem 2: Find the control sequence U∗ that minimizes
(32) subject to the dynamics (29), boundary conditions (33),
and chance constraints (34).



Remark 1: In the discrete-time formulation, the chance
constraints are only enforced at the discrete times τk, and
therefore the original constraints (3) may be violated for
some τ ∈ (τk, τk+1). Constraint violation in this interval
is likely when the discretization is too coarse.

III. COVARIANCE STEERING

For the remainder of this paper, we will restrict the control
law to be of the form [9]

uk = vk +Kkyk, (35)

were vk ∈ Rnu is a feedforward control, Kk ∈ Rnu×nx is a
feedback gain matrix, and yk ∈ Rnx is a zero-mean random
process given by

yk+1 = Aikyk +
√
σGikwk, y0 = x0 − x̄0. (36)

In vector notation, we have

Y = Aiy0 +
√
σGiW, (37)

and thus,

U = V +KY = V +K(Aiy0 +
√
σGiW ), (38)

where the block feedback matrix K ∈ RNnu×(N+1)nx is
given by

K :=
[
blkdiag(K0, . . . ,KN−1) 0Nnu,nx

]
. (39)

Substituting the control into the state equation, we obtain the
expressions for the mean and deviation states as

X̄ := E(X) = Aix̄0 + BiV +Ri, (40)

X̃ := X − E(X)

= Aiy0 + BiK(Aiy0 +
√
σGiW ) +

√
σGiW

= (I + BiK)(Aiy0 +
√
σGiW ). (41)

Similarly for the control, we obtain

Ū := E(U) = V, (42)

Ũ := U − E(U) = K(Aiy0 +
√
σGiW ). (43)

It follows that the state and control covariances, in terms of
the covariance of the process yk, are given as

Py := E(Y Y T) = AiPx0AiT + σGiGiT, (44)

Px := E(X̃X̃T) = (I + BiK)Py(I + BiK)T, (45)

Pu := E(Ũ Ũ T) = KPyKT. (46)

Substituting (45) and (46) into the cost function (32) and
simplifying, we obtain

J(V,K) =
σ

N

[
L(V ) + tr

{[
(I + BiK)TQx(I + BiK)

+KTQuK
]
Py
}]
, (47)

where

L(V ) :=

N−1∑
k=0

`
(
EukV,Ek(Aix̄0 + BiV +Ri)

)
. (48)

A. Endpoint Constraints

Substituting (40) into (33b), we obtain the equality con-
straint on the final mean state

h(V ) := EN
(
Aix̄0 + BiV +Ri

)
− x̄f = 0. (49)

Since the equality constraint ENPxET
N = Pxf is not convex

in K, and since in practice a smaller than anticipated state
covariance is acceptable, we instead enforce the relaxed
inequality constraint [14]

EN (I + BiK)Py(I + BiK)TET
N ≤ Pxf , (50)

which is convex in K. This constraint may be equivalently
stated in the more standard form [8]

g(K) := ‖P1/2
y (I + BiK)TET

NP
−1/2
xf

‖2 − 1 ≤ 0. (51)

B. Chance Constraints

Assume that at each time step the convex regions Xk :=
Xτk and Uk := Uτk can be represented by the finite
intersection of half spaces

Xk =

Mx⋂
m=1

Xk,m, Uk =

Mu⋂
m=1

Uk,m, (52)

where Xk,m := {x ∈ Rnx : āT
k,mx ≤ αk,m} and Uk,m :=

{u ∈ Rnu : b̄T
k,mu ≤ βk,m} are given in terms of the vectors

āk,m ∈ Rnx , b̄k,m ∈ Rnu and scalars αk,m, βk,m ∈ R. By
subadditivity of probability, we have

P(xk ∈ X ck ) = P
(
xk ∈

Mx⋃
m=1

X ck,m
)
≤

Mx∑
m=1

P(xk ∈ X ck,m).

(53)

It follows that if P(xk ∈ X ck,m) ≤ pxk,m for a set of positive
numbers {pxk,m} that sum over the index m to less than
px,k, then P(xk ∈ X ck ) ≤ px,k [3], [15]. In terms of the
concatenated state and control vectors, and since xk = EkX
and uk = EukU , the events {xk ∈ Xk} ⊂ Rnx and {EkX ∈
Xk} ⊂ R(N+1)nx have the same probability. Therefore, when
relabeling indices of the inequality constraints according to

aT
mEk = āT

k,m, m ∈ NMx
+ , k ∈ NN0 , (54)

bT
mE

u
k = b̄T

k,m, m ∈ NMu
+ , k ∈ NN−10 , (55)

if {pxm,k} and {pum,k} are given sets of positive numbers that
satisfy, for each k,

Mx∑
m=1

pxm,k ≤ px,k,
Mu∑
m=1

pum,k ≤ pu,k, (56)

then, from (53),

P(aT
mEkX ≤ αk,m) ≥ 1− pxm,k, m ∈ NMx

+ , (57)

it follows that

P(xk ∈ Xk) ≥ 1− px,k. (58)

The same construction applies to the control sets Uk.
Next, we formulate the chance constraint P(aT

mEkX ≤
αk,m) into a deterministic expression of the control variables.



From (29) it follows that X is normally distributed and
hence aT

mEkX is a scalar normal random variable with mean
aT
mEkX̄ and covariance aT

mEkPxET
kam. It follows that

P(aT
mEkX ≤ αk,m) = cdfn

(
αk,m − aT

mEkX̄√
aT
mEkPxET

kam

)
, (59)

where cdfn is the cumulative normal distribution function.
Therefore, the chance constraint P(aT

mEkX ≤ αk,m) ≥ 1−
px,k can be equivalently written as

aT
mEkX̄ − αk,m + cdfn−1(1− px,k)

∥∥(PxET
kam

)1/2∥∥ ≤ 0.
(60)

Putting it all together, if (56) holds, and if

cxm,k(K,V ) := aT
mEk(Aix̄0 + BiV +Ri)− αm

+ cdfn−1(1− pxm,k)
∥∥P1/2

y (I + BiK)TET
kam

∥∥ ≤ 0, (61a)

and

cum,k(K,V ) := bT
mV − βm

+ cdfn−1(1− pum,k)
∥∥P1/2

y KTEuT
k bm

∥∥ ≤ 0, (61b)

then we ensure that the chance constraints (34) will be
satisfied.

Remark 2: This work assumes that {pxm,k} and {pum,k}
are given sets of positive numbers that satisfy (56). This
assumption allows (61) to be convex. Otherwise, (61) be-
comes non-convex, and we need to consider an optimal risk
allocation problem. Several approaches have been proposed,
such as [16], [17], to handle the risk allocation problem. In
addition, the authors of [18] used a primal-dual interior point
method to find an optimal risk allocation.
We are now ready to restate the covariance steering problem
as a deterministic, finite dimensional optimization problem.

Problem 3: Linear Covariance Steering. Find K∗ and V ∗

that minimize the cost (47) subject to the terminal state
constraints (49) and (51) and the chance constraints (61).

IV. ITERATIVE COVARIANCE STEERING

In the previous sections, we have locally approximated
the continuous time, nonlinear system (1) with the discrete
linear system (29), and we have restated the cost function
and constraints in terms of the discrete linear system as
functions of a feedfoward control V and feedback gain K.
We will search for solutions to the original nonlinear system
by successively solving this approximate convex problem,
where the optimal controls from each successive problem
are used to propagate trajectories of the nonlinear system to
obtain references for the next linearization step. This method
is referred to in the literature as successive convexification
[19], [20].

A. Stochastic Trust Region

The linear approximation of the system dynamics is only
valid in a neighborhood around the reference trajectory, so
care must be taken to ensure that the optimal controls for
the linear problem are relevant to the nonlinear problem. For
this reason, variations in the state and the control from the

previous solution are bounded inside a trust region [19]. In
this paper, we are successively approximating a stochastic
system, and since the state of a system with Brownian noise
is unbounded, we must define a stochastic trust region instead
as follows

P
( ∥∥x̂ik − xk∥∥1 ≤ ∆i

x

)
≥ 1− pxtr, k ∈ NN0 , (62a)

P
( ∥∥ûik − uk∥∥1 ≤ ∆i

u

)
≥ 1− putr, k ∈ NN−10 , (62b)

where pxtr, p
u
tr, ∆i

x, and ∆i
u are user-defined limits. Con-

straints in the 1-norm can be represented by 2nx or 2nu
inequality constraints for the state or control, respectively, us-
ing (61). As a consequence of these trust region constraints,
if the reference trajectory is sufficiently far away from the
terminal constraint, then the problem may become infeasible.
For these situations, which are most likely encountered when
initializing the problem, we relax the hard constraint (49) on
the terminal state mean to the soft constraint∥∥EN (Aix̄0 + BiV +Ri)− x̄f

∥∥ ≤ ηxf , (63)

with a corresponding term ηxfwxf added to the cost, where
wxf is a user-defined weight. This constraint may be replaced
with the hard constraint (49) when the reference trajectory
x̂i is sufficiently close to the terminal constraint. In the case
(63) is active, we use the augmented cost function given by

J (V,K, ηxf ) = J(V,K) + ηxfwxf . (64)

In summary, we have modified Problem 3 to the following
convex optimization problem.

Problem 4: iCS Convex Subproblem. Find K∗ and V ∗

that minimize the cost (64) subject to the terminal state
constraints (61) and (49) (or (63) if the reference trajectory is
sufficiently far from the target), the chance constraints (61),
and the trust region constraints (62).

This problem is solved successively in order to find a
solution to Problem 1 using the iCS algorithm presented in
Procedure 1.

Procedure 1 Iterative Covariance Steering (iCS)

Input: Initial guess û1k, K̂
1
k

Output: Optimal control ū∗k and K∗k
1: for i = 1 to imax do
2: Propagate nonlinear mean dynamics with ûik, K̂

i
k

3: x̂ik ← x̄k
4: Linearize about (x̂i, ûi)
5: Discretize
6: Solve problem (4) to obtain V ∗,K∗

7: Reshape ū∗k ← V ∗, K∗k ← K∗

8: if maxk∈NN−1
0

∥∥ū∗k − ûik∥∥ ≤ tol then
9: return ū∗k,K

∗
k

10: else
11: ûi+1

k ← ū∗k, K̂i+1
k ← K∗k

12: return Convergence not met

Remark 3: The nonlinear mean dynamics can be propa-
gated through Monte Carlo, which can be parallelized. In



the case when computational resources are limited, we can
approximate E[f(xt, ut, t)] ≈ f(x̄t, ūt, t) so that the mean
state evolves according to

˙̄xt = f(x̄t, ūt, t). (65)

In this case, the mean state can be estimated by integrating
a single trajectory.

V. NUMERICAL EXAMPLE

In this section we apply the iCS algorithm to control a
double integrator subject to a quadratic drag force. Let the
position ξ ∈ R2 and velocity v ∈ R2 be described by the
stochastic system

dξt = vtdt, (66)
dvt = ut − cd ‖vt‖ vt + γdwt, (67)

where cd > 0 is the drag coefficient and γ > 0 is a noise
scale parameter. In terms of the state x = (ξ, v) ∈ R4, the
dynamics can be written as

dxt = [Axt +But + fd(xt)]dt+Gdwt, (68)

where fd represents the nonlinear drag dynamics and where

A =

[
02 I2
02 02

]
, B =

[
02
I2

]
. (69)

Linearizing about a reference velocity v̂iτ , we obtain

Aiτ = σ

{
A− cdE2

(
v̂iτ v̂

iT
τ

‖v̂iτ‖
+ I2

∥∥v̂iτ∥∥)ET
2

}
, (70)

where ET
2 =

[
02, I2

]
, Biτ = σB, and riτ is given as in (11).

In addition, we enforce the the chance constraint

P(‖e1ξτ‖1 ≤ 6) ≥ 1− 0.1, (71)

where e1 =
[
1, 0
]
. The initial state is normally distributed

with mean and covariance

x̄0 =
[
1, 8, 2, 0

]T
, Px0

= 0.01× I, (72)

and the terminal distribution is constrained by the mean and
covariance

x̄f =
[
1, 2,−1, 0

]T
, Pxf = 0.1× I. (73)

We set the drag coefficient cd = 0.005 and the noise scale
γ = 0.01. For the solution, we let the number of discrete
steps N = 25, terminal mean error weight wxf = 1000, and
time scale σ = 15. The mean cost function was

`(xτ , uτ ) = 10 ‖uτ‖2 , (74)

the weight matrices were Qx,τ ≡ 5I and Qu,τ ≡ I , and the
algorithm was seeded with the initial guess

û1k ≡
[
−0.3 −0.1

]T
. (75)

Since the initial guess violates the chance constraint (71), we
relax the chance constraint for the first iteration and tighten
it to the final constraint over the first several iterations.
The algorithm converged in five iterations, and solutions
for each iteration are shown in Figure 1. Samples from a

Fig. 1. State and control during successive solutions. The dashed lines are
the reference x̂i and ûi, and the solid lines are the mean state and control
after the ith step, x̄i and ūi. The first iteration is shown in blue and the
final iteration is shown in bold.

5,000 trial Monte Carlo simulation are shown in Figure 2.
The maximum probability of constraint violation was at step
k = 11, with 9.14% of states having ‖e1ξk‖1 ≥ 6, which
is below the limit of 10% set in (71). Also from the Monte
Carlo simulation, the final state mean was

x̄f =
[
1.004 1.997 −1.000 −0.001

]T
, (76)

which is very close to the specified value in (73), and the
covariance

Pxf =


0.018 −0.001 0.004 0.000
−0.001 0.016 0.000 0.004
0.004 0.000 0.001 0.000
0.000 0.004 0.000 0.001

 (77)

is less than the upper bound specified in (73).

VI. CONCLUSION

In this paper we presented an algorithmic solution to the
chance constrained nonlinear CS problem. We began by
approximating the original nonlinear stochastic system by a
linear discrete stochastic system, and then we formulated the
linear CS problem as a deterministic optimization problem.
Next, in order for the linearized problem formulation to
be a reasonable approximation of the original nonlinear
problem, we constrained the trajectory at each iteration
within a probabilistic trust region about the trajectory from
the previous iteration. The size of the trust region depends on
the nonlinearity of the dynamics, and therefore convergence
properties are problem-specific.

Since the proposed iCS algorithm linearizes the dynamics
at each iteration, an initial trajectory must be given for
the first iteration of the algorithm. At the same time, the
difference in the trajectories between iterations is constrained
within a trust region, and so a poor initialization may cause



Fig. 2. Successive iterations are shown by colored lines, with the initial
iteration in blue. The chance constraint is shown by the black dashed
line, and 90% confidence ellipses are shown in black and gray. The black
confidence ellipses are computed from the linear analysis and the gray
ellipses are computed from Monte Carlo, the dark gray and light gray
trajectories are a subset of the Monte Carlo trails for closed and open-loop
control, respectively.

the first step to be infeasible. In the numerical example we
addressed this problem by relaxing the chance constraints
in the first iterations of the algorithm. Since the chance
constrained region is assumed to be a convex polytope, the
region can be easily expanded by scaling the inequality
constraints. Another solution would be to first solve a deter-
ministic optimization problem with tightened inequality con-
straints representing a worst-case chance constrained region.
In this case, the iCS algorithm would be used to improve
the solution from the deterministic problem by adding the
closed-loop system statistics to the optimization. The latter
approach could be applied to problems such as planetary
entry and powered descent by iterating on a given reference
trajectory that is to be tracked in the presence of uncertainty.

In future work we plan to apply iCS to problems in entry,
descent, and landing (EDL) with nonlinear dynamics, such
as entry and powered descent [21]. Another extension to
this work would be the addition of time-varying chance
constraints that are satisfied for all time, rather than for each
time, while not being overly conservative.
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