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Abstract

Principal submatrices of the controllability Gramian and their inverses are examined, for a network-

consensus model with inputs at a subset of network nodes. Specifically, several properties of the Gramian

submatrices and their inverses – including dominant eigenvalues and eigenvectors, diagonal entries, and

sign patterns – are characterized by exploiting the special doubly-nonnegative structure of the matrices.

In addition, majorizations for these properties are obtained in terms of cutsets in the network’s graph,

based on the diffusive form of the model. The asymptotic (long time horizon) structure of the controlla-

bility Gramian is also analyzed. The results on the Gramian are used to study metrics for target control

of the network-consensus model.

1 Introduction

Dynamical models for consensus or synchronization in networks have been exhaustively studied [1–3]. One

focus of this effort has been on open-loop control of the dynamics using inputs at a subset of the network’s

nodes [4–9]. In particular, graph-theoretic necessary or sufficient conditions for controllability have been

obtained, and some characterizations of the required control energy have also been obtained using analyses

of the controllability Gramian. Recently, researchers have begun to study target control of network models,

wherein inputs are designed to manipulate a group of target nodes rather than the whole network [10,11,13–

15]. The target-control problem is of practical interest in several application domains, in which stakeholders

need to use limited actuation capabilities to guide a few key nodes’ states. In parallel with the general
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controllability analysis for networks, the effort on target controllability has also yielded graph-theoretic

conditions and analyses of metrics. These studies demonstrate that limited-energy target control of network

processes is sometimes possible even when full-state control is prohibitively costly or impossible.

Target control for network models can be analyzed in terms of principal submatrices of the controllability

Gramian [10, 11]. Precisely, target controllability resolves to invertibility of a principal submatrix of the

Gramian, while the minimum energy required to achieve a desired target state and/or guide certain state

projections can be found in terms of quadratic forms of the Gramian-submatrix inverses. Thus, the study

of target controllability motivates analysis of the Gramian matrix and its principal submatrices for network

consensus/synchronization models.

Because of the relevance of Gramian matrices to network controllability as well as dual observabil-

ity/estimation problems, some structural and graph-theoretic results on the full Gramian have been developed

for canonical network-consensus models, as well as for other dynamical network processes [9, 11, 16, 17, 20].

In addition, explicit formulae for the Gramian inverse in terms of the network model’s spectrum have been

developed, using Cauchy matrix properties [9]. These explicit computations give insight into the relationship

between the network model’s spectrum and the required control energy.

The purpose of this study is to develop new characterizations of the Gramian and its principal submatrices

in the context of a canonical discrete-time network consensus model, with the goal of assessing target control

metrics. Relative to the earlier studies on the Gramian of network models, the main contributions of this

work are to: 1) characterize principal submatrices of the Gramian and their inverse, in addition to the full

Gramian matrix; 2) give new insights into the sign patterns and eigenvalues of Gramian- and Gramian-

submatrix inverses; 3) develop graph-theoretic majorizations on the Gramian’s entries; and 4) assess target

control metrics and optimal inputs using the results on Gramian submatrices. The analyses primarily draw

on the diffusive structure of the network model, which imposes a spatial pattern on the input response of

the network. A main result is that Gramian submatrix inverses exhibit a special sign pattern as well as a

dependence on cutsets of the network graph, which allows majorization of the control energy and analysis

of minimum-energy inputs.

Although our focus here is on target control, the analyses of Gramian submatrices are germane to the

control and estimation of various network dynamical processes with a diffusive or nonnegative structure.

In particular, the analyses are relevant to the controllability analysis of other discrete-time models with

nonnegative state matrices and continuous-time models with Metzler state matrices (e.g., models for infection

spread, economic systems, etc) [18, 19]. The results also inform other problems in network estimation and

control which require consideration of Gramians and Markov parameters, including observability analysis
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and model reduction [21,22].

The article is organized as follows. The network consensus model is presented in Section II, and analysis

of target control metrics in terms of the Gramian is reviewed in Section III. The main results on the

Gramian, and their implications on target control, are developed in Section IV. Finally, the graph-theoretic

characterization of target control is illustrated in an example in Section V.

2 Model

A network with n nodes, labeled 1, . . . , n, is considered. Each node i has a scalar state xi[k] which evolves

in discrete time (k ∈ Z+). A set S containing m nodes, which we call the source nodes, are amenable to

external actuation. The nodes’ states evolve according to:

x[k + 1] = Ax[k] +Bu[k], (1)

where the state vector is x[k] =


x1[k]

...

xn[k]

, A = [aij ] is a row-stochastic matrix (aij ≥ 0,
∑n
j=1 aij = 1 for

each i), u[k] =


u1[k]

...

um[k]

 specifies the input (actuation) signals at the m source nodes, and B is an n ×m

matrix whose columns are 0−−1 indicators of the source nodes in S.

The manipulation of the states of a set T containing p target nodes is of interest. The target state vector

y[k], defined as containing the states of the p target nodes at time k, can be expressed as:

y[k] = Cx[k], (2)

where C is a p×m matrix whose rows are 0−−1 indicators of the target nodes in T . We refer to the model

as a whole as the input-output network consensus model or simply the network model.

A weighted digraph Γ is defined to represent the topology of nodal interactions in the network model.

Specifically, Γ is defined to have n nodes labeled 1, . . . , n, which correspond to the n vertices. A directed

edge is drawn from vertex i to vertex j if and only if aji > 0, and the weight of the edge is set to aji. We

note that the graph may include self loops (i.e., edges from vertices to themselves). The sum of the weights

of the incoming edges to each vertex is 1. An edge in Γ from node i to node j indicates that node j’s state

at time k+ 1 is directly influenced by the node i’s state at time k. The vertices corresponding to the source

and target nodes are referred to as source and target vertices, respectively.

3



Throughout the article, we assume that the matrix A is irreducible and aperiodic, or equivalently that

the graph Γ is ergodic. Under this assumption, the unactuated model reaches consensus, i.e. the manifold

where all nodes’ states are identical is globally asymptotically stable.

3 Preliminaries: Target Control and the Gramian

Target control of the network model is primarily concerned with two questions: 1) deciding whether the

input u[k] can be designed to guide the target state vector y[k] to a desired goal (i.e. analyzing target

controllability); and 2) determining how much actuation energy or effort is needed to do so (i.e. assessing

target control metrics). Our primary focus here is on assessing target control metrics.

Formally, target controllability is defined as follows:

Definition 1 The input-output network-consensus model is said to be target controllable over [0, kf ] if, for

any goal y ∈ Rp, an input signal u[0], . . . ,u[kf−1] can be designed to drive the network model from a relaxed

initial state x[0] = 0 to the target state y[kf ] = y.

In the case that the network model is target controllable over an interval [0, kf ], the minimum input energy

required to achieve each goal state can be assessed. This notion is formalized in the following definition:

Definition 2 The target-control energy for an interval [0, kf ] and goal state y is defined as E(kf ,y) =

minu[0],...,u[kf−1]
∑kf−1
i=0 uT [i]u[i], subject to the constraint that the input sequence drives the system from a

relaxed state to y[kf ] = y. We refer to an argument (input sequence) that achieves the minimum as an

optimal target-control input.

Additionally, the energy required to drive projections of the target state to a unit value may be important

to characterize, as an indication of the the manipulability or security of key output statistics. This notion is

formalized as follows:

Definition 3 The projection-manipulation energy for an interval [0, kf ] and projection vector α is defined

as F (kf , α) = minu[0],...,u[kf−1]
∑kf−1
i=0 uT [i]u[i], subject to the constraint that the input sequence drives the

system from a relaxed state to αTy[kf ] = 1. We refer to an input sequence that achieves the minimum as

an optimal projection-manipulation input.

Often, it is of interest to characterize extremal values of the target-control energy across goal states with a

particular norm, or dually of the projection-manipulation energy across projection vectors of a certain norm.

In particular, the minimum values of the two metrics across goal states and projection vectors, respectively,
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are indications of the security of the network model to manipulation. These global security notions are

formalized in the following definitions:

Definition 4 The minimum of the target-control energy over unit-two-norm goal states, i.e. Emin(kf ) =

miny s.t. ||y||2=1E(kf ,y), is referred to as the target security of the network model. A goal state y that

achieves the minimum is denoted as ymin, and is termed a minimally-secure goal.

Definition 5 The minimum of the projection-manipulation energy over projection vectors with unit one-

norm, i.e. Fmin(kf ) = minα s.t. ||α||1=1 F (kf , α), is referred to as the projection security of the network

model. A projection vector α that achieves the minimum is denoted as αmin, and is termed a minimally-

secure projection.

Remark: Other norms may be used in the security definitions. We have assumed a 1-norm constraint on

the projection vector in the projection-security definition, because the weighted sum of nodal quantities is

often of interest for diffusive processes. Meanwhile, we have assumed a two-norm constrain on the goal state

in the target security definition, in keeping with standard assessments of controllability/security of linear

models.

Target controllability and the target-control metrics can readily be characterized in terms of principal

submatrices of the controllability Gramian of the network model. The controllability Gramian for the network

model over the interval [0, kf ] is given by:

W (kf ) =

kf−1∑
i=0

(AiB)(AiB)T . (3)

We define principal submatrices of the controllability Gramian using a set B which lists a subset of the nodes

1, . . . , n in the network. The B-controllability Gramian W (B, kf ) is defined as the principal submatrix of

W (kf ) in which the rows and columns indicated in B are maintained.

The following lemma provides characterizations of target controllability and the target control metrics in

terms of the T -controllability Gramian (i.e. the principal submatrix of controllability Gramian associated

with the target nodes T ). These results follow directly from standard analyses of output controllability

[23,24], hence the proof is omitted.

Lemma 1 The input-output network-consensus model is target controllable if and only if the T -controllability

Gramian W (T , kf ) is invertible.

If the network model is target controllable, then the target-control energy is given by:

E(kf ,y) = yTW (T , kf )−1y, (4)
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and an optimal target-control input is

û[i] = (CAkf−i−1B)TW (T , kf )−1y (5)

for i = 0, . . . , kf − 1. Further, the target security is given by:

Emin(kf ) =
1

λmax(W (T , kf ))
, (6)

where λmax(W (T , kf )) refers to the largest eigenvalue of matrix W (T , kf ). The minimally secure goal is

given by

ymin = vmax(W (T , kf )), (7)

where vmax(W (T , kf )) is the right eigenvector of W (T , kf ) associated with the largest eigenvalue.

The projection manipulation energy is given by:

Fmin(kf , α) =
1

αTW (T , kf )α
, (8)

The projection security is given by

Fmin(kf ) =
1

maxi[W (T , kf )]i,i
, (9)

The minimally-secure projection is given by αmin = ej, where j = arg maxi[W (T , kf )]i,i.

Lemma 1 is the starting point for the main graph-theoretic and structural analyses developed in the

paper.

4 Main Results

Per Lemma 1, target controllability and the target control metrics are tied to properties of the controllability

Gramian. Our focus here is to develop structural and graph-theoretic results on the Gramian of the network

model, with the aim of giving insights into target control. Because a number of graph-theoretic results have

already been developed for the binary question of target controllability [10–12], we will primarily focus on

the target-control metrics.

First, we identify some matrix-theoretic properties of Gramian submatrices and their inverses for the

network model. These properties depend on the diffusive structure of the network-consensus model, but not

on the specifics of the network’s topology.

Theorem 1 Consider any principal submatrix of the Gramian for the network model, say Q = W (B, kf ).

Also, for invertible Q, consider R = Q−1. The matrices Q and R have the following properties:
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1) Q is doubly nonnegative, i.e. it is symmetric, positive semi-definite, and entry-wise nonnegative. For

sufficiently large kf , Q is entry-wise strictly positive

2) The eigenvalues of Q are real, nonnegative, and non-defective. For sufficiently large kf , the largest

eigenvalue λmax(Q) has algebraic multiplicity of 1, and its associated eigenvector vmax(Q) is strictly

positive (to within a scale factor).

3) λmax(Q) ≤ λmax(W [kf ]). Furthermore, for sufficiently large kf , the inequality is strict.

4) The matrix R is symmetric and positive definite. For sufficiently large kf , R is irreducible.

5) Consider any permutation T = PRP−1 of the matrix R, and consider any block-partition of T as

T =

T11 T12

TT12 T22

 where T11 is square. Assuming that kf is sufficiently large, the matrix T12 has at

least one negative entry.

6) For the special case that the cardinality of the set B (denoted |B|) is 2, the matrix R is a nonsingular

M matrix.

Proof: Proof of Item 1: The Gramian is symmetric and positive semidefinite, hence it is immediate that the

principal submatrix Q is also symmetric and positive semidefinite. We characterize the signs of the entries

in Q = [qij ] as follows. First, these entries are expressed in terms of the impulse responses of the network

model at network nodes due to inputs at each source node. To simplify indexing in this analysis, we assume

without loss of generality that the target nodes are the nodes 1, . . . , p, and hence the Gramian submatrix of

interest is a leading principal submatrix. In this case, the entry qij can be written as qij =
∑
z∈S h

T
zi,kf

hzj,kf ,

where hzl,kf =
[
eTz el eTz Ael . . . eTz A

kf−1el

]
, where the notation ew is used for a 0–1 indicator vector

with wth entry equal to 1. We notice that hzl,kf encodes the impulse response at node l due to an input at

node z. Since the matrix A is nonnegative, it is immediate that hzl,kf is nonnegative, and hence qij ≥ 0.

From the fact that A is irreducible and aperiodic, it follows that the final entry in the vector hzl,kf is strictly

positive for all z and l, for all sufficiently large kf (see [25]). Thus, qij is necessarily strictly positive for

sufficiently large kf .

Proof of Item 2: Since Q is symmetric and positive semidefinite, it is immediate that its eigenvalues

are real, nonnegative, and nondefective (i.e. each eigenvalue’s algebraic and geometric multiplicities are

identical). For sufficiently large kf , we have shown above that Q is strictly positive. It thus follows from

the Frobenius-Perron theory that Q has a dominant eigenvalue (an eigenvalue with magnitude larger than

any other eigenvalue) with algebraic multiplicity 1, whose eigenvector is strictly positive (upon appropriate

scaling).
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Proof of Item 3: The inequality λmax(Q) ≤ λmax(W [kf ]) is an immediate consequence of the fact that

Q is a principal submatrix of the positive semidefinite matrix W [kf ]. The strictness of the inequality for

sufficiently large kf can be proved by contradiction. If λmax(Q) was equal to λmax(W [kf ]), then from

the Courant-Fisher theorem, maxv
vTW [kf ]v

vTv
would equal λmax(Q), and further the argument maximizing

the quadratic form would be the dominant eigenvector of W [kf ]. However, notice that substituting v =vmax(Q)

0

 into the quadratic form yields λmax(Q), but this v cannot be a dominant eigenvector since it is

not strictly positive. Hence, a contradiction is reached.

Proof of 4: Since Q is invertible, it is in fact positive definite (in addition to being symmetric and positive

semidefinite). It is immediate that R = Q−1 is symmetric and positive definite. Since Q is elementwise

strictly positive, it follows that R = Q−1 is irreducible.

Proof of 5: This result on the sign pattern of the inverse was proved for the class of doubly-positive

matrices (positive-definite matrices with strictly-positive entries) by Fiedler in [26], and generalized to the

class of irreducible doubly nonnegative matrices in our recent work [27] (see Theorem 1).

Proof of 6: R is positive definite matrix, and hence its diagonal entries are positive as is its determinant.

The off-diagonal entries are seen to be negative from the matrix inversion formula for 2× 2 matrices. Thus,

the matrix is an M matrix. �

Remark 1: The characterizations in Theorem 1 crucially depend on the doubly-nonnegative structure

of the Gramian, which is a consequence of the nonnegative structure of the network-consensus model (as

defined by nonnegative state, input, and output matrices). Doubly-nonnegative matrices also arise in other

contexts, such as semi-definite programming and covariance-matrix analysis [28,29].

Item 5 of Theorem 1 indicates that inverses of Gramian submatrices have a sophisticated sign pattern.

While the diagonal entries of the inverse are positive, the off-diagonal entries may be of either sign. Item

5 indicates, however, that some of the off-diagonal entries must be negative. The pattern of nonnegative

off-diagonal entries can be given a graph-theoretic interpretation, which helps to give insight into the target-

control metrics. To formalize this interpretation, it is helpful to define a graph that represents the sign pattern

of the inverse of a Gramian submatrix. Specifically, we define the negative-inverse graph for the invertible

Gramian submatrix W (B, kf ) as an (unweighted, undirected) graph on |B| vertices labeled 1, . . . , |B|, where

the notation |B| indicates the cardinality of the set. An edge is drawn between vertex i and j if [W−1]ij is

negative. The following corollary is an immediate consequence of Item 5 of Theorem 1:

Corollary 1 The negative-inverse graph for any invertible Gramian submatrix W (B, kf ) is connected.

The matrix-theoretic properties of the Gramian’s principal submatrices developed in Theorem 1 allow
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characterization of the defined target-control metrics and associated optimal input signals. Several results on

the target-control metrics are listed in the following theorem, and then interpreted in the following discussion:

Theorem 2 Assume that the input-output network-consensus model is target controllable. The target-control

metrics and associated optimal input signals have the following properties, for all sufficiently large kf :

1) The network model has a minimally-secure goal ymin which is strictly positive. Additionally, the optimal

input signal for the minimally-secure goal is nonnegative for k = 0, . . . .kf − 1.

2) When the network has two target nodes, the target control energy satisfies E(kf , |y|) ≤ E(kf ,y) for

any goal state y.

3) The projection-manipulation energy satisfies Fmin(kf , |α|) ≤ Fmin(kf , α) for any projection vector α.

Further, the optimal input signal for manipulation of any projection is nonnegative.

4) The global security metrics satisfy the inequality: Emin,full(kf ) < Emin(kf ) < Fmin(kf ), where

Emin,full(kf ) refers to the target-security metric when the set of target nodes T contains all nodes

in the network.

Proof: Proof of Item 1: The minimally-secure goal ymin is the dominant eigenvector of W (T , kf ).

From Item 2 of Theorem 1, this dominant eigenvector is strictly positive. From Equation 5, the opti-

mal target-control input for this goal is û[i] = (CAkf−i−1B)TW (T , kf )−1ymin. Since ymin is an eigenvector

of W (T , kf ), it is also an eigenvector of W (T , kf )−1. Thus, W (T , kf )−1ymin is positive, and it follows that

û[i] is nonnegative.

Proof of Item 2: The result follows immediately from the fact that W (T , kf )−1 is an M-matrix in this

case.

Proof of 3: Since W (T , kf ) is a nonnegative matrix, it follows that |αT |W (T , kf )|α| ≥ αTW (T , kf )α.

The inequality on the projection-manipulation energy follows immediately. The nonnegativity of the input

sequence then follows from a direct computation of the optimal input sequence.

Proof of 4: The inequality relating Emin,full(kf ) and Emin(kf ) follows from Item 3 of Theorem 1. The

inequality relating Emin(kf ) and Fmin(kf ) can be derived by noting that λmax(W (T , kf )) majorizes the

diagonal entries of W (T , kf ); this follows using the same argument as used to derive Item 3 of Theorem 1.

�

Item 1 of Theorem 2 indicates that the network model always has a minimally-secure goal (the unit-

norm goal that takes the minimum energy to reach) in the positive orthant. Further, the lowest-energy
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input needed to reach this goal is nonnegative. It is worth noting, however, that the minimum-energy input

needed to reach other positively-valued goals need not be positive.

Because of the diffusive structure of the network dynamics, one might postulate that goal states in the

positive orthant (i.e., goals with identically-signed entries) require less energy to achieve. Item 2 in the

theorem demonstrates that goal states in the positive orthant indeed require less energy to reach compared

to their sign-reversed versions, when there are only two target nodes. In other words, it is easier to move

any pair of nodes’ states to a more synchronized goal (with both nodes’ goal states having the same sign),

than to a comparable differentially-signed goal. The low-energy characteristic of the positive orthant results

specifically form the M -matrix structure of the inverse Gramian submatrix in the two-target case. However,

the result does not generalize to models with more than two target nodes: as Theorem 1 indicates, the

inverse Gramian submatrix has a complicated sign pattern when the target set has more than two nodes,

which means that mixed-sign goals may sometimes require less energy to reach than their positive orthant

counterparts. However, the connectedness of the negative-sign graph (Corollary 1) does indicate that low-

energy control is possible for many goal states in the nonnegative orthant.

Per Item 3, projections defined by vectors in the first quadrant are easier to manipulate than their sign-

reversed counterparts, regardless of the number of target states. This characterization is a direct consequence

of the nonnegative form of the Gramian submatrix.

Finally, Item 4 provides a comparison of different global security metrics. The inequalities follow imme-

diately from the positive definiteness of the Gramian and its submatrices, however the fact that they are

strict is a consequence of the doubly-nonnegative structure of the Gramian.

Remark: All goal states in the positive orthant require less energy to reach than their sign-reversed

counterparts if the corresponding inverse Gramian submatrix is an M-matrix. Per the discussion above, this

is guaranteed when the network has two target nodes. When the network has three or more target nodes,

the inverse Gramian submatrix may or may not be an M-matrix. The class of nonnegative matrices whose

inverses are M-matrices has been characterized algebraically in the linear-algebra literature (see e.g. [30],

and these results can be brought to bear to check whether positive-orthant goal states necessarily can be

reached with low energy.

Next, we study how the graph topology of the input-output network consensus model constrains the

associated Gramian submatrix and its inverse. The main outcome of this analysis is that the magnitudes of

the entries in the Gramian submatrix are small if the target nodes are far from the source. In fact, the entries

decrease monotonically as the target nodes are moved further away from the source nodes, in a certain sense

(related to cutsets of the network graph). Conversely, metrics related to the inverse Gramian are large if
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the target nodes are far from the source nodes. To formalize these notions, we find it convenient to consider

vertex-cutsets in the network graph that separate the source and target vertices. Formally, a set of vertices C

in the graph Γ (equivalently, nodes in the network) is referred to as a separating cutset, if all directed paths

between source and target nodes in Γ pass through a vertex in C.

The following theorem characterizes the principal submatrix of the Gramian associated with the network

model (i.e. the T -Gramian submatrix), and its inverse, in terms of a separating cutset:

Theorem 3 Consider the Gramian submatrix W (T , kf ) for the input-output network-consensus model.

Also, let C be a separating cutset of the network graph Γ. Then the following inequalities hold:

1) [W (T , kf )]ij ≤ maxl[W (C, kf )]ll. That is, all entries in the Gramian submatrix associated with the

target nodes are smaller than at least one of the diagonal entries of the Gramian matrix corresponding

to the separating cutset nodes.

2) Consider any vector α such that |α|T1 = 1. Then αTW (T , kf )α ≤ maxi[W (C, kf )]ii.

3) λmax(W (T , kf ) ≤ pmaxi[W (C, kf )]ii, where p is the number of target nodes.

Proof: From the proof of Theorem 1, the diagonal entries of the Gramian Q = W (kf ) can be written

in terms of the impulse responses of the network model at the corresponding nodes. Specifically, the lth

diagonal entry can be written as qll =
∑
z∈S h

T
zl,kf

hzl,kf .

To prove the theorem, we first compare qll for l ∈ C with qll for l ∈ T . The crux of the proof lies in

recognizing that the impulse responses hzl,kf for l ∈ T can be expressed in terms of the impulse responses

hzl,kf for l ∈ C To formalize this, let the first define a set V which contains all nodes that are isolated from

the source nodes by C (note that the set V contains T as well as all other nodes separated from the source

nodes by the cutset). The vector x̂[k] is defined to contain the states of the nodes in V. Then notice that

the response at any node l within V due to an impulse input at node z can be found by solving:

x̂[k + 1] = Âx̂[k] + B̂hz,kf [k] (10)

hzl,kf [k] = eTp x̂[k], (11)

where Â is the principal submatrix of A formed by maintaining the rows/columns identified in V, B̂ is the

submatrix of A with rows specified by V and columns specified by C, hz,kf [k] concatenates the impulse

responses hzl,kf for l ∈ C at time k, and the 0–1 indicator vector ep is a 0–1 indicator vector which selects

the response at node l from the vector x̂[k], We note that the expression holds for k = 0, 1, . . . , kf . We

stress that this expression allows computation of the impulse response at any node l in T without requiring

tracking of the states of nodes outside V, provided that the impulse responses at nodes in C are known.
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From Equation 10, it follows that

hzl,kf [k] = eTp

[
Âk−1B̂ . . . ÂB̂ B̂

]
hz,kf , (12)

where hz,kf =


hz,kf [0]

...

hz.kf [k − 1]

. Now consider the sum of the entries in each row of the matrix
[
Âk−1B̂ . . . ÂB̂ B̂

]
.

The sum of each row in this matrix is less than or equal to the sum of the corresponding row in the top-right

block of

Â B̂

0 I

k−1, where the dimension of the identity matrix has been chosen so that exponentiated

matrix is square. However, as the matrix

Â B̂

0 I

 has unity row sums, so does its powers. Thus, the

vector eTp

Â B̂

0 I

k−1 has entries that are nonnegative and sum to less than 1. Considering Equation 12 for

k = 0, 1, . . . , kf , we thus find that hzl,kf can be found by convolving the impulse responses hzi,kf for i ∈ C

with nonnegative signals, whose total sum is less than 1, and then summing. Further, the same convolution

can be applied to find the impulse response for each source node z ∈ S. However, it is known that convo-

lution by a nonnegative signal whose entries sum to less than 1 serves to decrease the energy (two-norm)

of a signal. We thus recover that qll =
∑
z∈S h

T
zl,kf

hzl,kf must be smaller for each l ∈ V as compared to at

least one l ∈ C. Since T ∈ V, we have thus shown that the diagonal entries of W (T , kf ) are less than or

equal to maxl[W (C, kf )]ll. Finally, from the fact that W (T , kf ) is doubly nonnegative, it is immediate that

the off-diagonal entries are less than or equal to the largest diagonal entry. Thus, Item 1 of the theorem

statement is verified. Items 2 and 3 then follow immediately from standard properties of positive definite

matrices. �

The graph-theoretic analyses of Gramian submatrix properties in Theorem 3 immediately yield graph-

theoretic bounds on the defined target control metrics. In particular, the target control metrics can be

majorized in terms of the energy required to manipulate the nodes on any separating cutset of the network

graph. To present these comparisons, it is helpful to explicitly define control energy metrics for the nodes on

a separating cutset. Specifically, first consider any vertex c contained in a separating cutset C of the network

graph. We refer to the minimum input energy required to move the state of the corresponding network

node c to a unity value over the interval [0, kf ] (assuming that the network is initially relaxed) as Ec(kf ).

In analogy with Definition 2, Ec(kf ) can be formally defined as Ec(kf ) = minu[0],...,u[kf−1]
∑kf−1
i=0 uT [i]u[i],

subject to the constraint that the input sequence drives the system from a relaxed state to xc[kf ] = 1.

We then define the cutset-control energy as EC(kf ) = minc∈calC Ec(kf ). The target-control metrics can be
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majorized in terms of the cutset-control energy, as follows:

Theorem 4 Consider the input-output network consensus model. The following inequalities hold for the

target-control metrics, For any separating cutset C of the network graph:

1) The projection-manipulation energy satisfies F (kf , α) ≥ EC(kf ) for any α such that |α|T1 = 1.

2) The projection security satisfies Fmin(kf ) ≥ EC(kf ).

3) The target security satisfies Emin(kf ) ≥ 1
pEC(kf ).

Proof: Item 1 in the theorem follows from Item 2 of Theorem 3, together with the expression for the

projection-manipulation energy in Lemma 1. Item 2 is verified by noticing that the inequality in Item 1

holds for all α with unit one-norm, and hence holds for the vector α that minimizes F (kf , α). Item 3 follows

from Item 3 of Theorem 3, together with the expression for the target security in Lemma 1. �

Theorem 4 demonstrates that the target control metrics follow a spatial majorization, with respect to

cutsets in the network graph away from the source nodes. Specifically, the energy required to manipulate

any projection of the target state is larger than the energy required to manipulate at least one of the nodes

on a separating cutset. Thus, state projections become more secure (harder to manipulate) away from the

source nodes. A similar result also holds for the target security metric, but with a scale factor related to the

number of nodes being manipulated.

The values of the target-control metrics for long time horizons (i.e., in the limit of large kf ) are of interest,

since they serve as lower bounds on energy requirements for arbitrary horizons. Because the network-

consensus process naturally asymptotes to a synchronized state, one might expect that manipulation of the

dynamics to a desired synchronized state can be achieved with a vanishingly-small energy requirement, given

a long time horizon. This notion can be formalized by characterizing Gramian submatrices and their spectra

for large kf . This characterization of Gramian submatrices, and consequent analyses of the target-control

metrics, are formalized in the following theorem:

Theorem 5 Consider any principal submatrix of the Gramian for the network model, say Q = W (B, kf ).

The matrices Q has the following properties:

1) Q can be written as Q = (kf
∑
i∈S w

2
i )11T + H(kf ), where the absolute values of the entries in the

matrix H(kf ) have an upper bound that is independent of kf . In the expression, wi is ith entry in the

left eigenvector of A associated with its unity eigenvalue, where the eigenvector has been normalized

so that its entries sum to 1. Also, 1 represents a vector with all entries equal to 1, of appropriate

dimension.

13



2) The dominant eigenvalue of the matrix Q is given by λmax(Q) = |B|kf
∑
i∈S w

2
i + λ̂(kf ), where |λ̂(kf )|

has an upper-bound that is independent of kf . The corresponding dominant eigenvector is given by

v = 1 + c(kf ), where each entry in |c(kf )| is upper bounded by an asymptotically-vanishing function

of kf .

Now consider target control for the input-output network-consensus model. Provided that the model is

target controllable, the target security metric is given by: Emin(kf ) = 1
pkf

∑
i∈S w

2
i

+ Ê(kf ), where |Ê(kf )|

is upper-bounded by an asymptotically-vanishing function of kf . The minimally-secure goal is given by

ymin = 1 + c(kf ), where each entry in |c(kf )| is upper bounded by an asymptotically-vanishing function of

kf .

Proof: The state matrix A for the network consensus model has a single strictly dominant eigenvalue

at 1, with a corresponding right eigenvector of 1 and a left eigenvector which is entrywise strictly positive.

Thus, from the Jordan form of A, it follows immediately that powers of the matrix can be expressed as

An = 1wT + Q(n), where wT is the left eigenvector of A associated with the 0 eigenvalue (whose entries

have been normalized to sum to 1), and Q(n) is a matrix whose entries are each upper-bounded by a decaying

exponential function of n. Substituting the expression forAn into the Gramian formula, we find thatW (kf ) =∑kf−1
n=0 (1wT +R(n))BBT (1wT +R(n)). With some algebra, we find that W (kf ) = kf

∑
i∈S w

2
i 11T +J(kf ),

where the entries in J(kf ) each have an upper bound that is independent of kf . The form of the principal

submatrix Q of the Gramian given in the theorem statement (Item 1) follows immediately.

To characterize the dominant eigenvalue/eigenvector for Q, notice that the matrix can be written as

kf ((
∑
i∈S w

2
i )11T + 1

kf
H(kf )). Next, notice that the matrix

∑
i∈S w

2
i )11T has a non-repeated eigenvalue

equal to |B|
∑
i∈S w

2
i , with corresponding eigenvector equal to 1; the remaining eigenalues of the matrix are

equal to 0. From standard eigenvalue and eigenvector perturbation results for non-repeated eigenvalues [31],

it follows that the matrix
∑
i∈S w

2
i )11T + 1

kf
H(kf ) has a dominant eigenvalue equal to |B|

∑
i∈S w

2
i + g(kf ),

where |g(kf )| is upper-bounded by a function of the form g
kf

for some constant g. The corresponding

dominant eigenvector is equal to v = 1 + c(kf ), where each entry in |c(kf )| is upper bounded by an

asymptotically-vanishing function of kf . The characterization of the dominant eigenvalue and eigenvector in

Item 2 of the theorem statement follows immediately.

The characterization of the target security metric then follows from Lemma 1. �

Remark: The graph-theoretic analysis of Gramian submatrices in Theorem 3 is relevant to myriad tech-

niques which use the Gramian, beyond assessment of the open-loop control energy. For instance, the Gramian

is used in several model reduction methods such as the balanced truncation algorithm [22, 32]. The graph-

theoretic analysis suggestion that, if the system being reduced has a diffusive-network structure, these model
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reduction methods can be adapted to also maintain contiguous portions of the network’s graph. We leave a

careful study to future work.

5 Example

The spatial majorization of target-control metrics, as developed in Theorems 3 and 4, is illustrated in

an example 50-node network. The graph Γ for the example network was constructed by placing vertices

randomly in the unit square, and connecting vertices within a certain radius. The edge weights of the

incoming edges into each vertex were selected to be identical.

One node in the network was subjected to actuation. The energy required to manipulate each individual

node’s state over a time horizon of 200 steps, which is the inverse of the corresponding diagonal entry of

the Gramian, was determined. These energy requirements are illustrated on the network graph in Figure 1.

Specifically, the actuated node (in the bottom right part of the graph) is shown in red in the plot. Also, for

all nodes, the energy required for manipulation is indicated by the size of the disk at the node. It is seen that

the nodes that are close to the source (actuated) node in the graph can be manipulated with limited energy,

while distant nodes require significant energy to manipulate. This spatial growth in the energy requirement

is commensurate with Theorems 3 and 4.
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