
ar
X

iv
:1

90
3.

05
41

8v
1 

 [
m

at
h.

O
C

] 
 1

3 
M

ar
 2

01
9

Multivariable analytic interpolation with complexity constraints:

A modified Riccati approach

Yufang Cui1, and Anders Lindquist2

Abstract— Analytic interpolation problems with rationality
and derivative constraints occur in many applications in systems
and control. In this paper we present a new method for the
multivariable case, which generalizes our previous results on
the scalar case. This turns out to be quite nontrivial, as it poses
many new problems. A basic step in the procedure is to solve a
Riccati type matrix equation. To this end, an algorithm based
on homotopy continuation is provided.

I. INTRODUCTION

A common problem in robust control and spectral estima-

tion is to find an ℓ × ℓ matrix-valued rational function F ,

analytic in the unit disc D = {z | |z| > 1}, such that

F (eiθ) + F (e−iθ)′ > 0, −π ≤ θ ≤ π, (1)

which also satifies the interpolation condition

1

k!
F (k)(zj) = Wjk, j = 0, 1, · · · ,m, (2)

k = 0, · · ·nj − 1,

where ′ denotes transposition, F (k)(z) is the kth derivative of

F (z), and z0, z1, . . . , zm are distinct points in D. We restrict

the complexity of the rational function F (z) by requiring

that its McMillan degree be at most ℓn, where

n = (
m
∑

j=0

nj − 1). (3)

Without loss of generality we may assume that z0 = 0 and

W0 = 1
2I . Then F (z) has a realization

F (z) = 1
2I + zH(I − zF )−1G, (4)

where H ∈ Rℓ×ℓn, F ∈ Rℓn×ℓn, G ∈ Rℓn×ℓ, the matrix

F has all its eighenvalues in D and (H,F ) is an observable

pair.

Let W be the ℓ(n+ 1)× ℓ(n+ 1) matrix

W :=







W0

. . .

Wm






(5)

with

Wj =











Wj0

Wj1 Wj0

...
. . .

. . .

Wjnj−1
· · · Wj1 Wj0











(6)
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for each j = 0, 1, . . . ,m. Moreover, let Z be the (n+ 1)×
(n+ 1) matrix

Z :=







Z0

. . .

Zm






(7)

with

Zj =











zj
1 zj

. . .
. . .

1 zj











j = 0, 1, . . . ,m. (8)

Finally define the n+ 1-dimensional column vector

e := [e1n0
, e1n1

, · · · , e1nm
]′, (9)

where e1nj
= [1, 0, · · · , 0] ∈ R

nj for each j = 0, 1, . . . ,m,

and let S be the unique solution of the Lyapunov equation

S = ZSZ∗ + ee′. (10)

Note that the eigenvalues of Z are all located in the open

unit disc D.

The problem of determining the interpolant F (z) is an

inverse problems which has a solution if and only if

W (S ⊗ Iℓ) + (S ⊗ Iℓ)W
∗ > 0 (11)

(see, e.g., [22]), and then there are an infinite number of

solutions. We would like to find a parametrization of these

solutions.

The special case when ℓ = 1, m = 0 and n0 = n + 1
is called the rational covariance extension problem and was

first formulated by Kalman [1] and then solved in steps in [2],

[3], [4], [5], where a complete parameterization in terms of

spectral zeros was obtained, and in [6], [7], where a convex

optimization approach was introduced. This problem have

occurred in many applications in systems and control such

as in signal and speech processing [8] and in identification

[9]. The case n0 = n1 = · · · = nm = 1 and m = n is

called the Nevanlinna-Pick interpolation problem with degree

constraint and was early considered in robust control [10]

and many other applications in systems and control [11],

[12]. It was completely parameterized, again in steps, in [13],

[14], [15], [16], and a convex optimization approach was

introduced in [15], [16]. Since then a large number of papers

on the more general scalar problem has appeared [17], [18],

[19], [20], [21]. We refer to [9] for further references.

The multivariable case (ℓ > 1) is much harder, and the

nice spectral-zero assignability present in the scalar case

http://arxiv.org/abs/1903.05418v1


appears to be lost or at lease elusive. Restrictive classes

of such problems have been considered in large number of

papers [2], [22], [23], [24], [25], [26], [28], [27], [29], [30],

but the theory remains incomplete, and many problems have

been left open.

In [31] we presented a complete parameterization of the

problem presented above for the scalar case (ℓ = 1) in terms

of a modified Riccati equation, which was first introduced

for more restricted classes of interpolation problems in [5]

and [32]. As [5] studied the rational covariance extension

problem, the modified Riccati equation was named the

Covariance Extension Equation (CCE), and we retain this

name although the problems now considered are much more

general.

In the present paper we take a first step in generalizing the

results in [31] to the multivariable case (ℓ > 1). In Section II

we provide the basic tools for the multivariable problem. To

describe our ultimate goal we provide in Section III a brief

review of the scalar results in [31], and then in Section IV we

develop the multivariable case in the same spirit. In Section V

we present our main results and an algorithm based on

homotopy continuation in the style of [33], [31]. The results

fall somewhat short of what the scalar case promises, and,

given some results in [27], we suspect that this is due to

problems introduced by the nontrivial Jordan structure of

the multivariable case. In SectionVI-C we provide some

simulations to illustrate this and also an example of model

reduction. Finally, in Section VII we give some concluding

remarks and suggestions for future research.

II. PRELIMINARIES

Defining Φ+(z) := F (z−1) we have

Φ+(z) =
1
2I +H(zI − F )−1G, (12)

which has all its poles in the unit disc D. In view of (1)

Φ+(e
iθ) + Φ+(e

−iθ)′ > 0, −π ≤ θ ≤ π,

and hence Φ+(z) is (strictly) positive real [9, Chap-

ter 6]. By a coordinate transformation (H,F,G) →
(HT−1, TFT−1, TG) we can choose (H,F ) in the observer

canonical form

H = diag(ht1 , ht2 , . . . , htℓ) ∈ R
ℓ×nℓ

with hν := (1, 0, . . . , 0) ∈ Rν , and

F = J −AH ∈ R
nℓ×nℓ (13)

where J := diag(Jt1 , Jt2 , . . . , Jtℓ) with Jν the ν × ν shift

matrix

Jν =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1
0 0 0 . . . 0















and A ∈ Rnℓ×ℓ. The numbers t1, t2, . . . , tℓ are the observ-

ability indices of Φ+(z), and

t1 + t2 + · · ·+ tℓ = nℓ. (14)

Next define Π(z) := diag(πt1(z), πt2(z), . . . , πtℓ(z)), where

πν(z) = (zν−1, . . . , z, 1), and the ℓ× ℓ matrix polynomial

A(z) = D(z) + Π(z)A, (15)

where

D(z) := diag(zt1 , zt2 , . . . , ztℓ). (16)

Lemma 1: H(zI − F )−1 = A(z)−1Π(z)
Proof: First note that

Π(z)(zI − J) = diag(zt1 , zt2 , . . . , ztℓ)H.

Then

Π(z)(zI − F ) = Π(z)(zI − J) + Π(z)AH = A(z)H

as claimed.

Consequently

Φ+(z) =
1
2A(z)

−1B(z), (17)

where

B(z) = D(z) + Π(z)B

with

B = A+ 2G. (18)

Moreover let V (z) be the minumum-phase spectral factor

of

V (z)V (z−1)′ = Φ(z) := Φ+(z) + Φ+(z
−1)′.

We know [9, Chapter 6] that V (z) has a realization of the

form

V (z) = H(zI − F )−1K +R,

which, by Lemma 1, can be written

V (z) = A(z)−1Σ(z)R, (19)

where

Σ(z) = D(z) + Π(z)Σ (20)

with

Σ = A+KR−1. (21)

From stochastic realization theory [9, Chapter 6] we have

K = (G− FPH ′)(R′)−1 (22)

RR′ = I −HPH ′ (23)

where P is the unique minimum solution of the algebraic

Riccati equation

P = FPF ′ + (G− FPH ′)(I −HPH ′)−1(G− FPH ′)′.
(24)

Now, from (13), (22) and (23) we have

G = JPH ′ −AHPH ′ +KR−1(I −HPH ′)

= ΓPH ′ +KR−1,

where, in view of (21),

Γ = J − ΣH. (25)

Hence

G = ΓPH ′ +Σ−A. (26)



Since F = Γ+KR−1H and G−ΓPH ′ = KR−1, (24) can

be written

P = (Γ +KR−1H)P (Γ +KR−1H)′ +KK ′

= ΓPΓ′ + ΓPH ′(KR−1)′ +KR−1HPΓ′

+KR−1(KR−1)′,

where we have also used (23). Inserting KR−1 = G−ΓPH ′

we have

P = Γ(P − PH ′HP )Γ′ +GG′. (27)

III. A REVIEW OF THE SCALAR CASE

To motivate our approach to the multivariable problem

presented in Section I we shall briefly review some results

on the scalar case (ℓ = 1) presented in [31]. To stress the

fact that the matrices H,G,A,B and Σ are now n-vectors

we shall here denote them h, g, a, b and σ instead, and the

scalar R will be denoted ρ.

Introducing the interpolation conditions (2) into the cal-

culation we obtain

g = u+ Uσ + UΓPh,

where P is the unique solution of the algebraic Riccati

equation (27). Elimination g we then have the modified

Riccati equation

P =Γ(P − Phh′P )Γ′

+ (u+ Uσ + UΓPh)(u+ Uσ + UΓPh)′,
(28)

where u ∈ Rn and U ∈ Rn×n are given by
[

u U
]

:=
[

0 In
]

M (29)

with

M =
[

e V
]−1

(W +
1

2
I)−1(W −

1

2
I)

[

e V
]

(30a)

and

V :=
[

Ze Z2e · · · Zne
]

. (30b)

We showed in [31] that there is a map sending W to u which

is a diffeomorphism and that there is a linear map L such

that U = Lu.

Let Sn be the space of Schur polynomials (i.e., polyno-

mials with all zeros in the open unit disc D) of the form

a(z) = zn + a1z
n−1 + · · ·+ an, (31)

and let Pn be the 2n-dimensional space of pairs (a, b) ∈
Sn × Sn such that b(z)/a(z) is positive real. Moreover, for

each σ ∈ Sn, let Pn(σ) be the submanifold of Pn for which

a(z)b(z−1) + b(z)a(z−1) = 2ρ2σ(z)σ(z−1) (32)

holds, where ρ2 is the appropriate normalizing factor. It was

shown in [34] that {Pn(σ) | σ ∈ Sn} is a foliation of

Pn, i.e., a family of smooth nonintersecting submanifolds,

called leaves, which together cover Pn. Moreover, for any

polynomial (31), let a∗(z) = zna(z−1) be the reversed

polynomial of a(z). Finally, let W+ be the space of all W
such that the generalized Pick matrix WS+SW ∗ is positive

definite, where S the unique solution of the Lyapunov

equation (10) .

The following result was proved in [31].

Theorem 2: Let ℓ = 1. For each (σ,W ) ∈ Sn ×W+, the

modified Riccati equation (28) has a unique positive definite

solution P such that hPh′ < 1, and the problem to find

a rational function b∗(z)/a∗(z) satisfying the interpolation

conditions (2) and the positivity condition (32) has a unique

solution given by

a = (I − U)(ΓPh+ σ)− u

b = (I + U)(ΓPh+ σ) + u
(33)

In fact, the map sending (a, b) ∈ Pn(σ) to W ∈ W+ is a

diffeomorphism. Finally, the degree of the interpolant equals

the rank of P .

Consequently, by (32), for each σ ∈ Sn there is a unique

interpolant b∗(z)/a∗(z) with the prescribed properties such

that

ρ2
σ(z)σ(z−1)

a(z)a(z−1)
=

1

2

[

b(z)

a(z)
+

b(z−1)

a(z−1)

]

.

Hence

V (z) = ρ
σ(z)

a(z)

is the correspondning spectral factor.

In [31] we solved (28) by homotopy continuation by taking

u(λ) = λu with λ varying from 0 to 1. We showed that

this provides an efficient and robust algorithm for analytic

interpolation with degree constraint that can handle situations

which are difficult with the optimization approach, especially

when system poles are close to the unit circle.

IV. THE MATRIX CASE

Next we turn to the general multivariable case and intro-

duce the interpolation condition (2) in the matrix setting of

Section II.

Lemma 3: Let the matrices W and Z be given by (5) and

(7), respectively. Then the interpolation condition (2) can be

written

F (Z ⊗ Iℓ) = W, (34)

where ⊗ denotes Kronecker product.

Proof: Since F (z) is analytic in D, it has the represen-

tation

F (z) =

∞
∑

k=0

Ckz
k

for all z ∈ D, where C0 = 1
2Iℓ. A straight-forward but

tedious calculation, omitted here for lack of space, yields

F (Zj ⊗ Iℓ) =

∞
∑

k=0

(Zj)
k ⊗ Ck = Wj ,

where Wj , defined by (6), is given by (2). Then (34) follows

from (7) and (5).

Let A∗(z) be the reversed matrix polynomial

A∗(z) = D(z)A(z−1) = Iℓ +D(z)Π(z−1)A, (35)



where D(z) is given by (16), and let B∗(z) be defined in

the same way in terms of B(z). Then

F (z) = 1
2A∗(z)

−1B∗(z) (36)

and the interpolation condition (34) can be written

2A∗(Z ⊗ Iℓ)W = B∗(Z ⊗ Iℓ). (37)

Moreover, let the ℓ× ℓn matrices N1, N2, . . . , Nt be defined

by

D(z)Π(z−1) = N1z +N2z
2 + · · ·+Ntz

t, (38)

where t is the largest observability index. Then

A∗(z) = Iℓ +A1z +A2z
2 + · · ·+Atz

t,

where Ak = NkA. For later use we observe that

N =







N1

...

Nt






∈ R

ℓt×ℓn, Nk =











ekt1
ekt2

. . .

ektℓ











(39)

where ekj is a 1×j row vector with the k:th element 1 and the

others 0 whenever k ≤ j, and a zero row vector of dimension

1× j when k > j.

Next we reformulate (37) as

M











Iℓ(n+1)

In+1 ⊗A1

...

In+1 ⊗At











W =
1

2
M











Iℓ(n+1)

In+1 ⊗B1

...

In+1 ⊗Bt











, (40)

where M is the ℓ(n+ 1)× ℓ(n+ 1)(t+ 1) matrix

M =
[

(Iℓ(n+1) Z ⊗ Iℓ (Z ⊗ Iℓ)
2 · · · (Z ⊗ Iℓ)

t
]

.

In view of (18), (40) can be written

M











Iℓ(n+1)

In+1 ⊗A1

...

In+1 ⊗At











(W −
1

2
I) = M











0ℓ(n+1)

In+1 ⊗G1

...

In+1 ⊗Gt











or, equivalently,

M











0ℓ(n+1)

In+1 ⊗G1

...

In+1 ⊗Gt











= M











Iℓ(n+1)

In+1 ⊗Q1

...

In+1 ⊗Qt











T, (41)

where Qk := Ak +Gk, k = 1, 2, . . . , t, and

T := (W −
1

2
I)(W +

1

2
I)−1 =







T0

. . .

Tm






, (42)

where

Tj =











Tj0

Tj1 Tj0

...
. . .

. . .

Tjnj−1
· · · Tj1 Tj0











(43)

for j = 0, 1, . . . ,m.

Using the rule (A ⊗ B)(C ⊗D) = (AC) ⊕ (BD), valid

for arbitrary matrices of appropriate dimensions, (41) takes

the form

Z ⊗G1 + Z2 ⊗G2 + · · ·+ Zt ⊗Gt

= (Iℓ(n+1) + Z ⊗Q1 + Z2 ⊗Q2 + · · ·+ Zt ⊗Qt)T.

Then multiplying both sides from the right by (e ⊗ Iℓ) and

observing that

(Zk ⊗Gk)(e ⊗ Iℓ) = (Zke)⊗Gk = (Zke⊗ Iℓ)Gk,

we obtain

V







G1

...

Gt






= T̂ +(Z⊗Q1+Z2⊗Q2+ · · ·+Zt⊗Qt)T̂ , (44)

where V is the ℓ(n+ 1)× ℓt matrix

V :=
[

Ze⊗ Iℓ · · · (Zte)⊗ Iℓ
]

(45)

and T̂ is the ℓ(n+ 1)× ℓ matrix

T̂ := T (e⊗ Iℓ), (46)

that is

T̂ =











T̂0

T̂1

...

T̂m











, where T̂j =











Tj0

Tj1

...

Tjnj−1











. (47)

Therefore, since Gk = NkG and Qk = NkQ, we have

V NG = T̂ + (Z ⊗N1Q+ · · ·+ Zt ⊗NtQ)T̂ , (48)

where N is given by (39). Now, V N is an ℓ(n+1)×ℓn matrix

in which the top ℓ rows are zero, since z0 = 0. Therefore it

takes the form

V N =

[

0ℓ×ℓn

L

]

. (49)

For the moment assuming that the square matrix L is

nonsingular – we shall later see that this is not always true

– V N has a psuedo-inverse (V N)†, and hence (48) yields

G = (V N)†T̂+(V N)†(Z⊗N1Q+ · · ·+Zt⊗NtQ)T̂ (50)

Since, by definition, Q = A+G, (26) yields

G = u+ U(ΓPH ′ +Σ), (51)

where u := (V N)†T̂ and U : Rℓn×ℓ → Rℓn×ℓ is the linear

operator

Q 7→ (V N)†(Z ⊗N1Q+ · · ·+ Zt ⊗NtQ)T̂ .

Inserting (51) into (27) we obtain the modified Riccati

equation

P =Γ(P − PH ′HP )Γ′

+ (u + UΣ+ UΓPH ′)(u + UΣ+ UΓPH ′)′.
(52)

It was first introduced in [5] for the scalar case ℓ = 1 and

for the special case of covariance extension. Therefore it has

been called the Covariance Extension Equation (CEE).



V. MAIN RESULTS

Next we generalize the results of Section III to the general

multivariable problem, which is considerably more difficult.

Therefore several key questions will be left unanswered at

this time. Nevertheless the theory in its present (preliminary)

form does give an workable algorithm for large classes of

problems.

A. Basic results

Now redefine Sn to be the class of ℓ×ℓ matrix polynomials

(15) such that detA(z) has all its zeros in the open unit disc

D. Clearly Sn consists of subclasses with different Jordan

structure J defined via (13). In each such subclass D(z) and

Π(z) in (15), as well as N1, N2, . . . , Nt in (38), are the same.

Let W+ we the values in (2) that satisfy the geralized Pick

condition (11).

Lemma 4: Let the ℓn× ℓn matrix L be defined by (49).

Then L is nonsingular if and only if all observability indices

are the same, i.e., t1 = t2 = · · · = tℓ = n.

Proof: Let us order the observability indices as t1 ≥
t2 ≥ · · · ≥ tℓ and set t := t1. Then, by (14), t ≥ n. Since

(Z, e) is a reachable pair,

rank
[

Ze Z2e · · · Zte
]

= n. (53)

First assume that t = n. Then, since rank(A ⊗ B) =
rank(A)rank(B),

V =
[

Ze Z2e · · · Zne
]

⊗ Iℓ ∈ C
ℓn×ℓn

has rank ℓn, and N ∈ Rnℓ×nℓ given by

N =







N1

...

Nn






, Nk =











ekn
ekn

. . .

ekn











(54)

also has rank ℓn. Consequently Sylverster’s inequality,

rankV + rankN − ℓn ≤ rankV N ≤ min (rankV, rankN),

(see, e.g., [9, p.741]) implies that V N has rank ℓn, and hence

L is nonsingular.

Next assume that t > n. Then the first t columns of N ,

now given by (39) can be written It ⊗ (e1ℓ)
′, so the first t

columns of V N form the matrix
([

Ze Z2e · · · Zte
]

⊗ Iℓ
) (

It ⊗ (e1ℓ)
′
)

=
[

Ze Z2e · · · Zte
]

⊗ (e1ℓ)
′,

which in view of (53) has rank n < t. Hence the columns

of V N are linearly dependent, and thus L is singular.

In the present matrix case, the relation (32) reads

A(z)B(z−1)′ +B(z)A(z−1)′ = 2Σ(z)RR′Σ(z−1)′. (55)

Let Pn be the space of pairs (A,B) ∈ Sn × Sn such that

A(z)−1B(z) is positive real. Then the problem at hand is to

find, for each Σ ∈ Sn, a pair (A,B) ∈ Pn such that (55)

and (2) hold.

Theorem 5: Given (Σ,W ) ∈ Sn × W+, where Σ(z)
has all it observability indicies equal. Then to any positive

definite solution P of the Covariance Extension Equation

(52) such that HPH ′ < I , there corresponds a unique

analytic interpolant (36), where A(z) and B(z) have the

same Jordan structure as Σ(z), the matrices A and B are

given by

A = (I − U)(ΓPH ′ +Σ)− u

B = (I + U)(ΓPH ′ +Σ) + u
(56)

and A(z) and B(z) satisfy (55) with

R = (I −HPH ′)
1

2 . (57)

Finally,

degF (z) = rankP. (58)

Proof: The theorem follows from the derivation above.

For the details of the proof of (58) we refer to [5].

Let us stress that these results are considerably weaker

than the corresponding theorem for the scalar case reviewed

in Section III. In fact, Theorem 5 does not guarantee that

there exists a unique solution to (52). In fact, if there were

two solutions to (52), there would be two interpolants, a

unique one for each solution P . Moreover, the condition

on the observability indices restricts the classes of Jordan

structures that are feasible.

However, Theorem 5 can be combined with other partial

results on existence and uniqueness. There are multivariable

problems for which we already know that there is a unique

solution to the interpolation problem, and then existence

and uniquenss of a solution to (52) will follow. A case in

point is when Σ(z) = σ(z)I , where σ(z) is a stable scalar

polynomial [22], [25], in which case the the observability

indices are all equal, as required in Theorem 5. In this

case the analytic interpolation problem will have a unique

solution, and thus, tracing the calculations in Section II

backwards, so will (52). The same is true when Σ(z) =
σ(z)C, where C is full rank [25].

On the other hand, in recent years there have been a

number of results [25], [26], [27], [29], [30] on the question

of existence and uniqueness of the multivariate analytic

interpolation problem, mostly for the covariance extension

problem (m = 0, n0 = n + 1), but there are so far only

partial results and for special structures of the prior (in

our case Σ(z)). Especially the question of uniqueness has

proven elusive. Perhaps, as suggested in [27], this is due

to the Jordan structure, and this could be the reason for the

condition on the observability indices required in Theorem 5.

In any case, as long as our algorithm delivers a solution to

the Covariance Extension Equation, we will have a solution

to the analytic interpolation problem, unique or not. An

advantage of our method is that (58) can be used for model

reduction, as will be illustrated in Section VI-C.

B. Solving CEE by homotopy continuation

We shall provide an algorithm for solving (52) based on

homotopy continuation. We assume from now on that t :=



t1 = t2 = . . . , tℓ = n. Whenever this algoritm delivers a

solution P , the interpolant is obtained via (56).

When u = 0, T̂ = 0, and hence U = 0. Then the modified

Riccati equation (52) becomes P = Γ(P − PH ′HP )Γ′,

which has the solution P = 0. We would like to make a

continuous deformation of u to go from this trivial solution

to the solution of (52), so we choose u(λ) = λu with

λ ∈ [0, 1]. The corresponding deformation of U is λU , and

T is deformed to λT . The value matrix (5) will vary as

W (λ) = (I − λT )−1 − 1
2I,

and we need to ascertain that W (λ) still satisfies (11) along

the whole trajectory.

Lemma 6: Suppose that W ∈ W+. Then W (λ) ∈ W+

for all λ ∈ [0, 1].
Proof: By (11) we want to show that

W (λ)E + EW (λ)∗ > 0 (59)

for E := S ⊗ Iℓ. We have

W (λ)E + EW (λ)∗

=
(

(I − λT )−1 − 1
2I

)

E + E
(

I − λT ∗)−1 − 1
2I

)

= (I − λT )−1(E − λ2TET ∗)(I − λT ∗)−1

which we know is positive definite for λ = 1. However,

E − λ2TET ∗ ≥ E − TET ∗,

and and therefore (59) holds a fortiori.

Now, note that equation (55) can be written as

S(A)M(B) + S(B)M(A)

= 2S(Σ)(In+1 ⊗RR′)M(Σ)
(60)

where

S(A) =











I A1 · · · An

I · · · An−1

. . .
...

I











M(A) =











I
A′

1
...

A′
n











.

Lemma 7: Let Nn be defined by (54). Then

An +Bn = 2ΣnRR′,

where An = NnA, Bn = NnB and Σn = NnΣ.

Proof: From (56) and (23) we have

A+B = 2(ΓPH ′ +Σ) = 2(JPH ′ +ΣRR′).

Since ennJn = 0 and hence NnJ = 0, the statement of the

lemma follows.

Applying Lemma 7 and deleting the zero row in (60), it

can be reduced to nℓ× ℓ equations
[

Inℓ 0nℓ×ℓ

]

(S(A)M(B) + S(B)M(A))

= 2
[

Inℓ 0nℓ×ℓ

]

S(Σ)(In+1 ⊗RR′)M(Σ)

Therefore, introducing the nℓ× ℓ matrix

p = PH ′, (61)

we use the homotopy

H(p, λ) :=
[

Inℓ 0nℓ×ℓ

] (

S(A)M(B) + S(B)M(A)

− 2S(Σ)(In+1 ⊗ (I −Hp))M(Σ)
)

= 0,
(62)

where

A = A(p, λ) := Γp+Σ− λu− λU(Γp+Σ)

B = B(p, λ) := Γp+Σ + λu+ λU(Γp+Σ)
(63)

depend on (p, λ). Then the problem reduces to solving the

differential equation

d

dλ
vec(p(λ)) =

[

∂vec(H(p, λ))

∂vec(p)

]−1
∂vec(H(p, λ))

∂λ

vec(p(0)) = 0

(64)

[35], which has the solution p̂(λ) for 0 ≤ λ ≤ 1. The solution

of (52) is then obtained by finding the unique solution of the

Lyapunov equation

P − ΓPΓ′ =− Γp(1)p(1)′Γ′

+ (u + U(Γp(1) + Σ))(u + U(Γp(1) + Σ))′.
(65)

VI. SOME SIMPLE ILLUSTRATIVE EXAMPLES

Next we provide a few simulations that illustrate the

theory.

A. Example 1

We consider a problem with the interpolation constraints

F (0) =
1

2

[

1 0
0 1

]

F (0.5) =

[

1 0
0 0.4

]

F (1)(0.5) =

[

2 0.1
0 0.1

]

,

where n = 2, ℓ = 2. This yields

Z =





0
0.5
1 0.5



 e =





1
1
0



 (66)

Taking Σ(z) of the form

Σ(z) =

[

z2 0
0 z2

]

+Π(z)Σ (67)

we have t1 = t2 = 2, and thus

V N =

[

02×4

L

]

, L =









0.5 0.25 0 0
0 0 0.5 0.25
1 1 0 0
0 0 1 1









,

where clearly L is nonsingular as required. Then choosing

Σ =









1 0.3
0.2 0.3
0.1 0.4
0.7 0.2









, (68)



the matrix polynomial (67) is stable, and we can use our

algorithm to obtain

A(z) =

[

z2 0
0 z2

]

+Π(z)A

B(z) =

[

z2 0
0 z2

]

+Π(z)B,

(69)

where

A =









0.9467 −0.1737
0.3603 0.3583
−0.0445 1.0925
0.2147 0.7364









B =









−0.0533 0.2263
−0.3517 −0.2893
−0.2445 0.0925
0.2406 −0.9739









If instead we choose Σ(z) of the form

Σ(z) =

[

z3 0
0 z

]

+Π(z)Σ,

then t = t1 = 3, t2 = 1, and thus

V N =

[

02×4

L

]

, L =









0.5 0.25 0.125 0
0 0 0 0.5
1 1 0.75 0
0 0 0 1









,

where L is singular as anticipated by Lemma 4. Hence the

algorithm cannot be used.

B. Example 2

Next consider the multivariable covariance extension prob-

lem

F (0) = 1
2I2, F (1)(0) = C1, F (2)(0) = C2,

where

C1 =

[

−0.5 0.2
−0.1 −0.5

]

, C2 = 2

[

0.1 −0.6
0.1 −0.3

]

.

In this case

Z =





0
1 0

1 0



 e =





1
0
0





By Lemma 4, we need to choose t1 = t2 = 2 and this yields

V N =

[

02×4

L

]

, L =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









,

where L is nonsingular. Choosing the Σ(z) in (68), our

algoritm delivers the solution (69) with

A =









0.9467 −0.1737
0.3603 0.3583
−0.0445 1.0925
0.2147 0.7364









B =









−0.0533 0.2263
−0.3517 −0.2893
−0.2445 0.0925
0.2406 −0.9739









.

Again the choice t = t1 = 3, t2 = 1 of obsevability indices

does not work (Lemma 4).

C. Model reduction

Consider a system with a 2× 2 transfer function

V (z) = A(z)−1Σ(z) (70)

of dimension 10 and with observability indices t1 = t2 = 5,

where A(z) and Σ(z) are given by (15) repectively (20) with

A =

































−0.11 −0.02
−0.08 −0.15
0.05 0.10
−0.05 −0.09
−0.13 −0.09
0.11 0.07
0.09 0.19
−0.03 −0.03
−0.10 −0.13
0.12 0.05

































, Σ =

































0.1500 0
−0.6900 0
0.1025 0
0.0306 0
−0.0034 0

0 0.1500
0 −0.6900
0 0.1025
0 0.0306
0 −0.0034

































.

Here Σ(z) = σ(z)I2, were

σ(z) = (z − 0.1)(z − 0.3)(z − 0.6)(z + 0.2)(z + 0.95).

We pass (normalized) white noise though the system

V(z)white noise y

to obtain the output y0, y2, · · · , yN , and from this output data

we estimate the 2× 2 matrix valued covariance sequence

Ĉk =
1

N − k + 1

N
∑

t=k

yty
′
t−k. (71)

Then we solve the problem (2) with ℓ = 2, m = 0, n0 = 6,

and W0k = Ĉk for k = 0, 2, . . . , 5. The modified Riccati

equation (52) has a solution P with eigenvalues

1.5× 10−6, 2.7× 10−5, 0.0007, 0.0041,

0.0104, 0.0338, 0.1993, 0.3457, 0.6535, 0.7138.

The first four eigenvalues are very small, so we can reduce

the degree of this system from ten to six by choosing the first

four covariance lags Ĉ0, Ĉ1, Ĉ2, Ĉ3 and removing zeros of

Σ(z) at −0.2 and 0.6. The reduced-order system will have

observability indices t1 = t2 = 3. The singular values of

the true system (70) are shown the multivariable Bode-type

plot in Fig. 1 together with those of the estimated systems of

degree ten and six, respectively. As can be seen, the reduced-

order system is a good approximation.

VII. CONCLUDING REMARKS

We have extended our previous results [31] for the scalar

case to the matrix case. However, multivariable versions of

analytic interpolation with rationality constraints have been

marred by difficulties to establish existence and, in particular,

uniqueness in the various parameterizations [2], [22], [23],

[24], [25], [26], [27], [29], [30], and we have encountered

similar difficulties here. Our approach attacks these problems

from a different angle and might put new light on these

challenges. Therefore future research efforts will be directed

towards settling these intriguing open questions in the context

of the modified Riccati equation (52).
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