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Adaptive Optimal Control via Continuous-Time Q-Learning for
Unknown Nonlinear Affine Systems

Anthony Siming Chen1 and Guido Herrmann2

Abstract— This paper proposes two novel adaptive optimal
control algorithms for continuous-time nonlinear affine systems
based on reinforcement learning: i) generalised policy iteration
(GPI) and ii) Q-learning. As a result, the a priori knowledge of
the system drift f (x) is not needed via GPI, which gives us a
partially model-free and online solution. We then for the first
time extend the idea of Q-learning to the nonlinear continuous-
time optimal control problem in a noniterative manner. This
leads to a completely model-free method where neither the
system drift f (x) nor the input gain g(x) is needed. For both
methods, the adaptive critic and actor are continuously and
simultaneously updating each other without iterative steps,
which effectively avoids the hybrid structure and the need
for an initial stabilising control policy. Moreover, finite-time
convergence is guaranteed by using a sliding mode technique
in the new adaptive approach, where the persistent excitation
(PE) condition can be directly verified online. We also prove the
overall Lyapunov stability and demonstrate the effectiveness of
the proposed algorithms using numerical examples.

Index Terms— adaptive optimal control, Q-learning, non-
linear systems, reinforcement learning, approximate dynamic
programming, adaptive critic

I. INTRODUCTION

In the context of control theory, the idea of combining
adaptive control [1] and optimal control [2] has emerged
recently due to the advancement in reinforcement learning
[3][4][5], which is also known as approximate/adaptive dy-
namic programming (ADP) [6]. A common framework for
studying the reinforcement learning or ADP is the Markov
decision process (MDP), where the control process is often
stochastic and formulated in discrete time. That follows the
increasing need to formalise the method in a control perspec-
tive for deterministic continuous-time systems. Vrabie de-
veloped an online policy iteration algorithm for continuous-
time nonlinear affine systems [7]. The method is termed as
integral reinforcement learning (IRL) [8] which employs two
neural networks in a critic/actor configuration. Vamvoudakis
[9] proposed an online synchronous algorithm to overcome
the sequantial updates of the critic and actor in [7] by
using an adaptive control approach. The persistent excitation
(PE) condition was required to ensure the convergence of
the adaptive algorithm. Unlike IRL [8], it necessitates the
complete knowledge of system dynamics. Na [10] suggested
to add an extra identifier so that the unknown nonlinear
part of the system can be online identified. However, it still
requires the a priori knowledge of input gain.
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A different approach to address reinforcement learning for
unknown systems is Q-learning, which is a model-free tech-
nique primarily developed for discrete-time systems. At an
early stage, Q-learning was first extended to continuous time
as advantage updating [11]. It is specified in [12] that the Q-
function can be seen as an extension of the Hamiltonian,
which connects Q-learning with continuous-time control.
An integral Q-learning algorithm [13] was derived from
the singular perturbation of the control input, it solves the
continuous-time linear quadratic regulation (LQR) problem
but strictly requires a stabilising (admissible) initial policy.
Then different model-free ideas [14][15] were proposed also
as iterative algorithms. The limitation was recently overcome
in [16] via a synchronous method, but it still requires two
neural networks for both critic/actor and is only effective
under the strict PE condition. Moreover, all these methods
above [13]-[16] only focused on linear quadratic problems
and were not extended to general nonlinear framework. The
authors of [17] proposed a set of model-free algorithms
for nonlinear input-affine systems. However, it performs
iteratively in the least-squares sense for two neural networks
and still needs a stabilising initial control policy.

This paper proposes two new adaptive optimal control
algorithms for continuous-time nonlinear affine systems.
The main contributions are summarised as follows: i) To
the best of our knowledge, for the first time, the idea of
Q-learning is extended to the nonlinear continuous-time
optimal control problem as an adaptive optimal controller
in a noniterative manner, where an initial stabilising policy
as in [7][13][14][17] is not required. ii) The two proposed
methods: GPI and Q-learning, are partially and completely
model-free, i.e., neither the a priori knowledge of system
dynamics in [9] nor the additional identifier in [10] is
needed. iii) The adaptive critic and actor are continuously
and simultaneously updating each other without iterative
steps, which effectively avoids the hybrid structure in [7]
with a continuous-time actor and a discrete-time sampling-
based critic. iv) The finite-time convergence is guaranteed
by using a sliding mode technique [18] in the new adaptive
approach, where the PE condition can be directly online
verified. Moreover, the actor neural network in [9] is not
necessary to prove the overall stability.

II. PRELIMINARIES

This section presents a general formulation of the infinite-
horizon nonlinear optimal control problem for continuous-
time systems. Given the continuous-time nonlinear affine
time-invariant system

ẋ(t) = f (x(t))+g(x(t))u(t), x(0) = x0 (1)



where x(t) ∈Rn is the measurable state vector, u(t) ∈Rm is
the control policy or input vector, and f (x(t))∈Rn, g(x(t))∈
Rn×m are the system drift and the input gain functions,
respectively. We define the value function V u(x) ∈C1 as the
infinite-horizon integral cost

V u(x(t)) :=
∫

∞

t
r(x(τ),u(τ))dτ (2)

where r = S(x(t)) + uT(t)Ru(t) is the utility (also known
as reward in reinforcement learning) with positive definite
S(x(t)) ∈R and R = RT ∈Rm×m. For simplicity, we set R to
be diagonal in this paper without loss of generality.
Assumption 1. It is assumed that f (x)+g(x)u is Lipschitz
continuous on a compact set Ω ∈Rn that contains the origin
and the system (1) is stabilisable, i.e., the system state x is
bounded for a stabilising control u. �

The optimal control problem is to minimise the value
function (2) by choosing the optimal stabilising control (or
admissible policy) u∗(t). The optimal value function V ∗(x)
can be defined as

V ∗(x(t)) := min
u

∫
∞

t
r(x(τ),u(τ))dτ (3)

A general solution to the nonlinear optimal control problem
can be formulated as a partial differential equation for the
optimal value function V ∗(x). We define the Hamiltonian of
the problem as

H (x,u,∇V u
x ) := r(x,u)+(∇V u

x )
T( f (x)+g(x)u) (4)

with the gradient vector ∇V u
x = ∂V u/∂x ∈ Rn. The optimal

value function V ∗(x) in (3) satisfies the Hamilton-Jacobi-
Bellman (HJB) equation

0 = min
u

H (x,u,∇V ∗x ) (5)

For unconstrained control u, the optimal control u∗ can be
found by setting ∂H (x,u,∇V ∗x )/∂u = 0 so that

u∗ =−1
2

R−1g(x)T∇V ∗x (6)

Inserting the optimal control (6) into (5) gives the HJB
equation in terms of ∇V ∗x as

0 = S(x)+(∇V ∗x )
T f (x)− 1

4
(∇V ∗x )

Tg(x)R−1g(x)T∇V ∗x (7)

The HJB equation (4) is generally difficult to solve due to
its nonlinearity and the requisite for explicitly knowing the
system drift dynamics f (x) and input gain dynamics g(x).

III. GENERALISED POLICY ITERATION

Policy iteration [3] is one of the reinforcement learning
methods for finding the optimal value and optimal con-
trol. It iteratively performs policy evaluation and policy
improvement until the optimal policy is reached. The method
generated a family of algorithms (e.g. [7][9]) to solve the
HJB equation online and forward in time. In this section,
these two processes are concurrent since the critic and the
actor are continuously and simultaneously updating each
other. This method can be interpreted as an extremal version
of the generalised policy iteration (GPI) [3].

For continuous-time systems, policy evaluation can be
achieved by an adaptive critic based on a nonlinear Lyapunov
equation (e.g. [9][10]), which can be derived by differen-
tiating value function (2) via Leibniz’s formula. Another
approach is via the integral reinforcement learning (IRL) [8]
Bellman equation

V u(x(t−T )) =
∫ t

t−T
r(x(τ),u(τ))dτ +V u(x(t)) (8)

with a sample period T > 0. This is an analogy to the
discrete-time Bellman equation in the integral form. Note
that the system drift f (x) and input gain g(x) appearing in
the Lyapunov equation are not involved here in the Bellman
equation (8). For policy improvement, it is shown in [19]
by successively solving (8) for the value function V u, the
following control

u =−1
2

R−1g(x)T∇V u
x (9)

will uniformly converge to the optimal control u∗ (6).

A. Adaptive critic for value function approximation

This section presents a new design of the adaptive critic for
policy evaluation. We approximate the value function using
a critic neural network such that

V u(x) = wT
ϕ(x)+ ε(x) (10)

where ϕ(x) : Rn→RN denotes the activation function vector
with the number N of neurons in the hidden layer, w ∈ RN

is the weight vector and ε(x) ∈ R is the neural network
approximation error. The activation functions are selected
to provide a complete independent basis set so that V (x)
is uniformly approximated. According to the Weierstrass
higher-order approximation theorem [19], within a compact
set Ω, the error ε(x) and its derivative ∇εx are bounded for
a fixed N and ε(x)→ 0, ∇εx→ 0 as the number of neurons
N→ ∞.

We use the Bellman approach to update the critic. Inserting
the value function approximation (10) into the Bellman
equation (8) gives∫ t

t−T
r(x(τ),u(τ))dτ︸ ︷︷ ︸

ρ(x,u)

+wT
ϕ(x(t))−wT

ϕ(x(t−T ))︸ ︷︷ ︸
wT∆ϕ(t)

=−εB

(11)
with the integral reinforcement ρ(x,u), the difference
∆ϕ(t) = ϕ(x(t))− ϕ(x(t − T )), and the Bellman equation
residual error εB = ε(x(t))− ε(x(t−T )) being bounded for
bounded ε(x) within the compact set Ω. In order to construct
an adaptive law that can estimate the weight of the value
function approximation with guaranteed convergence, we
introduce a set of auxiliary variables P1 ∈RN×N and Q1 ∈RN

by low-pass filtering the variables in (11) as{
Ṗ1 =−`P1 +∆ϕ(t)∆ϕ(t)T, P1(0) = 0
Q̇1 =−`Q1 +∆ϕ(t)ρ(x,u), Q1(0) = 0

(12)

with a filter parameter `> 0. The forgetting factor ` providing
an exponential leakage effectively avoids the unbounded



explosion of P1(t), Q1(t) and guarantees stability [18]. Their
solutions can be found by solving (12) as{

P1(t) =
∫ t

0 e−`(t−τ)∆ϕ(τ)∆ϕT(τ)dτ

Q1(t) =
∫ t

0 e−`(t−τ)∆ϕ(τ)ρ(τ)dτ
(13)

Definition 1. (Persistent Excitation (PE) [20]) The signal
∆ϕ(t) is said to be persistently excited over the time interval
[t − T, t] if there exists a strictly positive constant σ1 > 0
such that∫ t

t−T
∆ϕ(τ)∆ϕ(τ)Tdτ ≥ σ1I, ∀t > 0 (14)

.
The PE condition [20] is widely required in adaptive

control to guarantee parameter convergence.
Lemma 1. [18] If the signal ∆ϕ(t) is persistently excited for
all t > 0, the auxiliary variable P1 defined in (12) is positive
definite, i.e. P1 � 0 and the minimum eigenvalue λmin(P1)>
σ1 > 0, ∀t > 0 for some positive constant σ1. �
Proof. The detailed proof follows from [18]. �

The adaptive critic neural network can be written as

V̂ (x) = ŵT
ϕ(x) (15)

where ŵ and V̂ (x) denote the current estimate of w and
V u(x), respectively.

Now we design the adaptation law using a sliding mode
technique to update ŵ such that

˙̂w =−Γ1P1
M1

||M1||
(16)

where M1 ∈ RN is defined as M1 = P1ŵ+Q1 and Γ1 � 0 is
a diagonal adaptive learning gain to be tuned [18].
Lemma 2. Given the adaptation law (16), if the system state
x(t) is bounded for a stabilising control and u(t), ∆ϕ(t)
and the system states x(t) are persistently excited, one can
formulate for the estimation error of weight w̃ = w− ŵ that

a) If there is no neural network approximation error, i.e.
ε(x) = 0, the error w̃ will converge to zero in finite time
t1 > 0.

b) If ε(x) 6= 0, the error w̃ will converge to a compact set
in finite time t1 > 0. �.
Proof. We first examine the boundness in terms of M1.
From (13), with states x(t), x(t − T ) being bounded, the
matrix P1 is upper bounded for some positive δP1 > 0
such that λmax(P1) ≤ δP1 . Inserting ρ in (11) into (13)
gives Q1 =−P1w+Λ1 with Λ1(t)=

∫ t
0 e−`(t−τ)∆ϕ(τ)εB(τ)dτ

being bounded by some constant δ1 > 0 as the Bellman
equation residual error εB is bounded. Then M1 can be
written as

M1 =−P1w̃+Λ1 (17)

Since ∆ϕ(t) is persistently excited, from Lemma 1 we know
P1 is symmetric positive definite so it is invertible. Then
we have P−1

1 M1 = −w̃+P−1
1 Λ1. Here P−1

1 M1 can be used
to design a proper Lyapunov function as it contains the
estimation error w̃ and Λ1. We differentiate P−1

1 M1 as

∂

∂ t
(P−1

1 M1) =− ˙̃w+
∂P−1

1
∂ t

Λ1 +P−1
1 Λ̇1 = ˙̂w+ Λ̄1 (18)

with Λ̄1 = −P−1
1 Ṗ1P−1

1 Λ1 + P−1
1 Λ̇1 being bounded for

bounded Λ1, i.e., ||Λ̄1|| ≤ δ̄1 holds for a constant δ̄1 > 0. Note
that P−1

1 is bounded since λmin(P1)> σ1 and λmax(P1)< δP1 ,
so the lower and upper bounds of P−1

1 can be found as
λmin(P−1

1 )> δP1 and λmax(P−1
1 )< 1/σ1. Thus, one can easily

find two class K functions [21] of M1 that serve as the lower
and upper bounds of the following time-varying Lyapunov
function

L1 =
L1

2
(P−1

1 M1)
T

Γ
−1

1 P−1
1 M1 (19)

with a postive constant L1 > 0. Its time derivative can be
determined as

L̇1 = L1MT
1 P−1

1 Γ
−1

1 ( ˙̂w+ Λ̄1)

= L1MT
1 P−1

1 Γ
−1

1 (−Γ1P1
M1

||M1||
+ Λ̄1)

≤−α1
√

L1

(20)

where α1 = (σ1−L1δ̄1λmax(Γ
−1

1 ))
√

2/λmax(Γ
−1

1 ) is a pos-
itive constant for a properly chosen L1 with 0 < L1 <
σ1/(λmax(Γ

−1
1 )δ̄1). According to [22], it can be found that

L1 = 0 and M1 = 0 in finite time t1 = 2
√

L1(0)/α1 > 0 so
that

a) In the case of ε(x) = 0, we can obtain εB = 0, M1 =
0 and Λ1 = Λ̄1 = 0, which implies that w̃ = 0 and α1 =

σ1

√
2/λmax(Γ

−1
1 ) so that w̃ will converge to zero in finite

time t1.
b) In the case of ε(x) 6= 0, i.e., εB 6= 0, M1 = 0 implies

that w̃ = P−1
1 Λ1, and ||w̃|| ≤ δ1/σ1 bounded after finite time

t1. �
Remark 1. From Lemma 1, the PE condition can be online
verified by checking the minimum eigenvalue of P1. For im-
plementation, the PE condition can be retained by reinitiating
the state or adding sufficient exploration noise to the control
as in [9][17]. �
Remark 2. The adaptation law (16) with the sliding mode
term M1/||M1|| can lead to finite-time convergence of the
weight ŵ without causing severe chattering phenomenon [18]
due to the integration action. �

B. Adaptive optimal control via GPI
Now we design an actor for policy improvement. By

inspection of (9), one can determine the optimal control di-
rectly using the adaptive critic (15) if the weight ŵ converge
to the actual unknown weight w which solves the Bellman
equation (8). The control law (actor) will be

u =−1
2

R−1g(x)T∇Φ
Tŵ (21)

Now we summarise the first result of this paper as follows.
Theorem 1. Given the continuous-time nonlinear affine
system (1) with the infinite-horizon value function (2), the
adaptive critic neural network (15) with the adaptation law
(16) and the actor (21) form an adaptive optimal control so
that:

a) In the absence of a neural network approximation error,
the adaptive critic weight estimation error w̃ will converge
to zero and the actor u will converge to its optimal control
solution u∗ in finite time t1 > 0.



b) In the presence of a neural network approximation error,
the adaptive critic weight estimation error w̃ will converge
to a compact set and the actor u will converge to a small
bounded set around its optimal control solution u∗ in finite
time t1 > 0.
Proof. We design the Lyapunov function following a similar
procedure as in [8][10]

L2 = L1 +L2V ∗+
L3

2
Λ
T
1 Λ1 (22)

with positive constants L2 and L3. We investigate the Lya-
punov function L2 in a compact set Ω̃∈RN×Rn×Rm×RN

in tuple (M1,x,u,Λ1) that contains the origin and Ω̃⊂Ω. Ω

in Assumption 1 and Ω̃ are chosen to be sufficiently large but
of fixed size. Any initial value of (M1,x,u,Λ1) is assumed to
be within the interior Ω̃. Thus, for any initial trajectory, the
state x and the control u remain bounded for at least finite
time t ∈ [0,T1]. Within (22), differentiating the term L2V ∗(x)
will involve V̇ ∗ = (∇V ∗x )

Tẋ. Note that the HJB equation (5)
can be written as

0 = r(x,u)+(∇V ∗x )
T( f (x)+g(x)u) (23)

Considering a Young’s inequality ab ≤ η1
2 a2 + 1

2η1
b2 with

constant η1 > 0, using (19)(22)(23), the derivative of L2
can be derived as

L̇2 = L̇1 +L2(∇V ∗x )
T( f +gu)+L3Λ

T
1 Λ̇1

= L1MT
1 P−1

1 Γ
−1

1 ( ˙̂w+ Λ̄1)+L2(−r(x,u))

+L3Λ
T
1 (−`Λ1 +∆ϕεB)

≤−α
′
1||M1||−α2S(x)−α3||u||2−α4||Λ1||2 +β1

(24)

where α ′1 = 1 − L1δ̄1λmax(Γ
−1

1 )/σ1, α2 = L2, α3 =
L2λmin(R), α4 = L3` − L3η1/2 are positive constants
for properly chosen L1, L2, L3, η1 with 0 < L1 <
σ1/(λmax(Γ

−1
1 )δ̄1), L2 > 0, L3 > 0, 0<η1 < 2`, respectively;

β1 = L3||∆ϕεB||/(2η1) addresses the effect of the neural
network approximation error. Thus, the first four terms in
the last inequality of (24) form a negative definite function
in Ω̃ so that the set of ultimate boundedness Ωu exists and
it depends on the size of β1, i.e. a smaller size of β1 will
decrease the size of Ωu. Assuming that N has been chosen
large enough, this implies β1 to be sufficiently small so that
Ωu⊂ Ω̃. Hence, it is impossible for any trajectory to leave Ω̃,
i.e. it is an invariant set, i.e. the states x(t) remain bounded
and subsequently also the functions of x(t): approximation
error ε(x), ϕ(x) are bounded functions over a compact set.
According to Lyapunov’s theorem and Lemma 2, L2 and w̃
will converge to a set of ultimate boundedness, and based on
(9)(10)(21), the difference of the actor to the optimal control
||u∗ − u|| ≤ 1

2 ||R
−1g(x)T∇ϕ||||w̃|| + 1

2 ||R
−1g(x)T||||∇ε|| is

bounded after finite time t1. This implies part b), while part
a) easily follows. �
Remark 3. The proposed GPI (Theorem 1) is a partially
model-free algorithm that can approximately solve online the
continuous-time nonlinear optimal control problem without
the a priori knowledge of system drift f (x). Hence, the
identifier of the dual approximation structure in [10] can be
further removed. Moreover, since the finite-time convergence
of the critic weight is guaranteed, the actor neural network

in [9] is not needed. The adaptive critic and the actor are
continuously and simultaneously updating each other, which
effectively avoids the hybrid structure as in [7] and does not
require a stabilising initial control policy as in [7][17]. �

IV. NONLINEAR Q-LEARNING

It is widely shown that policy iteration [8][9][10] includ-
ing our proposed GPI algorithm still requires the a priori
knowlege of the input gain g(x). In this section, we extend
the idea of Q-learning to continuous-time nonlinear systems
in the form of adaptive optimal control, which leads to a
completely model-free algorithm, i.e., neither the knowledge
of f (x) nor g(x) is needed.

A. Parameterisation of nonlinear Q-function
The core basis of Q-learning is to create an action-

dependent value function Q(x,u) : Rn+m → R such that
Q∗(x,u∗) = V ∗(x). For the continuous-time nonlinear affine
system (1), the Q-function can be explicitly defined by
adding the Hamiltonian (4) onto the optimal value (3) as

Q(x,u) : =V ∗(x)+H (x,u,∇V ∗x )

=V ∗(x)+S(x)+(∇V ∗x )
T f (x)︸ ︷︷ ︸

Fxx(x)

+

(∇V ∗x )
Tg(x)u︸ ︷︷ ︸

Fxu(x,u)

+uTRu︸ ︷︷ ︸
Fuu(u)

(25)

where Fxx(x), Fxu(x,u), and Fuu(u) are the lumped terms that
can be approximated respectively via neural networks.
Lemma 3. The Q-function defined in (25) is positive definite
with the optimisation scheme Q∗(x,u∗) = minu Q(x,u). The
optimal Q-function Q∗(x,u∗) has the same optimal value
V ∗(x) (3) as for the value function V u(x) (2), i.e. Q∗(x,u∗) =
V ∗(x) when applying the optimal control u∗. �
Proof. From its definition (25), Q-function is the sum of
the optimal value V ∗(x) and the Hamiltonian H (x,u,∇V ∗x ),
where V ∗(x) is positive definite. The HJB equation (5)
implies that the minimisation of the Hamiltonian with re-
spect to u yields the optimal solution. Hence, Q∗(x,u∗) =
minu Q(x,u). Inserting the HJB equation (5) with the op-
timal control u∗ gives H (x,u∗,∇V ∗x ) = 0. Then we have
Q∗(x,u∗) =V ∗(x). �

B. Adaptive critic for Q-function approximation
For the nonlinear affine system (1) with the Q-function

(25), we approximate the Q-function using a critic neural
network by

Q(x,u) =WT
Φ(x,u)+ εQ(x,u) (26)

where Φ(x,u) : Rn+m→ RN′ denotes the activation function
vector with the number N′ of neurons in the hidden layer,
W ∈RN′ is the weight vector, εQ(x,u) is the neural network
approximation error and WTΦ(x,u) can be explicitly ex-
pressed according to the three components Fxx(x), Fxu(x,u),
and Fuu(u) in (25) as

WT
Φ(x,u) =

[
WT

xx WT
xu WT

uu
] Φxx(x)

vec(Φxu(x)⊗u)
Φuu(u)

 (27)



where ⊗ denotes the Kronecker product and vec(·) is the
vectorisation function which stacks the columns of a matrix
together. For Φxx ∈ RNxx , Φxu ∈ RNxu and Φuu ∈ Rm, the
regressor Φ(x,u) is selected to provide a complete inde-
pendent basis such that Q(x,u) is uniformly bounded with
N′ = Nxx +m(Nxu + 1). Recall the Weierstrass higher-order
approximation theorem [19], the approximation error εQ(x,u)
is bounded for a fixed N′ within a compact set Ω and as the
number of neurons Nxx→ ∞ and Nxu→ ∞, i.e., N′→ ∞, we
have εQ(x,u)→ 0.
Remark 4. By the definition of Q-function (25), the matrix
WT

xxΦxx(x), WT
xuvec(Φxu(x)⊗u), WT

uuΦuu in (27) account for
the lumped functions Fxx(x), Fxu(x,u), Fuu(u) in (25), where
Fxu(x,u) is a linear function of u and Fuu(u) is a quadratic
function of u. �

One needs to derive the Bellman equation in terms of the
Q-function to update the critic. By Bellman’s principle of
optimality [4], we have the following optimality equation

V ∗(x(t−T )) =
∫ t

t−T
r(x(τ),u(τ))dτ +V ∗(x(t)) (28)

The result from Lemma 3 showed that Q∗(x,u∗) = V ∗(x),
which means we can rewrite (28) in terms of Q∗(x,u∗) as

−ρ(x,u)︷ ︸︸ ︷
−
∫ t

t−T
r(x,u)dτ = Q∗(x(t),u∗(t))−Q∗(x(t−T ),u∗(t−T ))

=WT
Φ(x(t),u∗(t))−WT

Φ(x(t−T ),u∗(t−T ))︸ ︷︷ ︸
WT∆Φ(x,u∗)

+εBQ(x,u∗)

(29)

with the integral reinforcement ρ(x,u), the difference
∆Φ(t) = Φ(x(t),u∗(t)) − Φ(x(t − T ),u∗(t − T )), and the
Bellman equation residual error εBQ = εQ(x(t),u∗(t)) −
εQ(x(t−T ),u∗(t−T )) being bounded for bounded εQ(x,u).
Define two auxiliary variables P2 ∈RN′×N′ and Q2 ∈RN′ by
low-pass filtering the variables in (29) as{

Ṗ2 =−`P2 +∆Φ(t)∆Φ(t)T, P2(0) = 0
Q̇2 =−`Q2 +∆Φ(t)ρ(x,u), Q2(0) = 0

(30)

with a filter parameter ` > 0.
The adaptive critic neural network can be written as

Q̂(x,u) = ŴT
Φ(x,u) (31)

where Ŵ and Q̂(x,u) denote the current estimate of W and
Q(x,u), respectively.

Now we design the adaptation law using the sliding mode
technique to update Ŵ such that

˙̂W =−Γ2P2
M2

||M2||
(32)

where M2 ∈RN′ is defined as M2 = P2Ŵ +Q2 and Γ2 � 0 is
a diagonal adaptive learning gain to be tuned.
Lemma 4. Given the adaptation law (32), if the system state
x(t) is bounded for a stabilising control and u(t), ∆Φ(t)
and the system states x(t) are persistently excited, one can
formulate for the estimation error of weight W̃ =W−Ŵ that

a) If there is no neural network approximation error, i.e.
εQ(x,u) = 0, the error W̃ will converge to zero in finite time
t2 > 0.

b) If εQ(x,u) 6= 0, the error W̃ will converge to a compact
set in finite time t2 > 0. �.
Proof. The proof follows similarly from Lemma 2. �

C. Adaptive optimal control via Q-learning
We reconstruct the optimal control u∗ from (6) based on

the parameterisation of Q(x,u) (25) such that

u∗ =−1
2

diag(Wuu)
−1WT

xuΦxu(x)+ εQu (33)

where εQu is a bounded approximation error due to εQ,
WT

xuΦxu(x) accounts for the term g(x)T∇V ∗x , and diag(Wuu)
denotes the diagonal matrix with all its diagonal entries are
from Wuu. One can determine the optimal control directly
using the adaptive critic (31) if the weight Ŵ converge to
the actual weight W . The control law (actor) will be

u =−1
2

diag(Ŵuu)
−1ŴT

xuΦxu(x) (34)

Remark 5. The matrix diag(Wuu) is essentially the prede-
fined matrix R (see (25)). Although the value of R is available
through the value function (2), we shall write the actor in
the form of (34) for the sake of theoretical consistency. In
practice, the initial weights of Wuu can be chosen either
randomly or as the same values in R. �

We summarise the main result as follows.
Theorem 2. Given the continuous-time nonlinear affine
system (1) with the infinite-horizon value function (2) and
Q-function defined in (25), the adaptive critic neural network
(31) with the adaptation law (32) and the actor (34) form an
adaptive optimal control so that:

a) In the absense of a neural network approximation error,
the adaptive critic weight estimation error W̃ will converge
to zero and the actor u will converge to its optimal control
solution u∗ in finite time t2 > 0.

b) In the presence of a neural network approximation error,
the adaptive critic weight estimation error W̃ will converge
to a compact set and the actor u will converge to a small
bounded set around its optimal control solution u∗ in finite
time t2 > 0.
Proof. We design the Lyapunov function following a similar
procedure in [8] as

L4 = L3 +L5Q∗(x,u)+
L6

2
Λ
T
2 Λ2 (35)

with positive constants L5 and L6. From (25), differenti-
ating the term L5Q∗(x,u) in (35) will involve Q̇∗(x,u) =
V̇ ∗+Ḣ (x,u,∇V ∗x ). Since the Lagrange multiplier λ = ∇V ∗x ,
differentiating Hamiltonian gives

Ḣ (x,u,∇V ∗x ) = ∂H /∂ t +(∇Hu)
Tu̇+(∇Hx + λ̇ )Tẋ (36)

According to Lagrange’s theory (pp. 114-115 [2]), from the
costate equation and stationarity condition, the derivative of
the Lagrange multiplier λ satisfies λ̇ =−∇Hx and ∇Hu =
0. For time-invariant system (1) and value function (2), the
Hamiltonian H (x,u,∇V ∗x ) is not an explicit function of t,
i.e. Ḣ = ∂H /∂ t = 0. Thus, one can analyse the derivative



of L4 in a similar way following the proof of Theorem 1.
The remaining proof is omitted due to space limits. �
Remark 6. Compared to the GPI method (Theorem 1), the
proposed Q-learning algorithm (Theorem 2) further relaxes
the requirement for the a priori knowledge of g(x), which
is a completely model-free approach to solve online the
continuous-time nonlinear optimal control problem. It does
not restrict Q-learning to linear cases as in [13]-[16] and the
actor neural network in [16] is not needed due to the finite-
time convergence of the adaptive critic. Unlike other iterative
model-free algorithms [14][17], the method does not require
an initial stabilising control policy. �

V. NUMERICAL EXAMPLE
In order to demonstrate the effectiveness of our theoretical

result, we consider a numerical example [9] for a continuous-
time nonlinear affine system (1) with x = [x1 x2]

T ∈R2, u ∈
R, and

f (x) =
[

−x1 + x2
−0.5x1−0.5x2(1− (cos(2x1)+2)2)

]
(37)

g(x) =
[

0
cos(2x1)+2

]
(38)

If we define the infinite horizon value function V u(x) to
be minimised as (2) with Q(x) = x2

1 + x2
2 and R = 1. Using

the converse procedure [23], the optimal value function is
V ∗ = 1

2 x2
1 +x2

2 and the optimal control is u∗ =−(cos(2x1)+
2)x2. For the GPI algorithm as in Theorem 1, the activation
function ϕ(x) of the adaptive critic neural network (15) is
selected as ϕ(x) = [x2

1 x1x2 x2
2]
T with the number of neurons

N = 3. We initialise the state x(0) = [1 1]T and the weight
ŵ(0) = [0.1 0.1 0.1]T. The tuning parameters are properly
chosen as follows. The sample period T = 2s, the filter
parameter ` = 1, the adaptive learning gain Γ1 = I. The PE
condition is ensured by adding onto the control input a small
exploration noise that can suffice the state to remain PE until
the weights converge. The result shows the neural network
weight ŵ converges w = [0.49 0.01 1.02]T, which is close
to the optimal value w = [0.5 0 1]T. For the Q-learning
algorithm as in Theorem 2, the activation function Φ(x,u)
of the adaptive critic neural network (15) is selected as
Φ(x,u) = [x2

1 x1x2 x2
2 x1u x2u x1x2u x2

1u x2
2u x2

1x2u x1x2
2u

x4
1x2u x1x4

2u u2]T with the number of neurons N′ = 13. We
initialise the state x(0) = [1 1]T and the weight Ŵ (0) =
[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1]T.
Using the Taylor series for cos(2x1), the optimal value
u∗ = −(cos(2x1) + 2)x2 ≈ − 1

2 (6x2 − 4x2
1x2) for small x1,

i.e. W5 ≈ 6, W9 ≈ −4. One can verify the optimal weight
convergence by checking the value of Ŵ5, Ŵ9. The result
shows the critic weights converge to the values of Ŵ5 = 5.76,
Ŵ9 =−3.64, which are close to the optimal values.

VI. CONCLUSIONS
In this paper, we provide two novel adaptive optimal

control algorithms for continuous-time nonlinear affine sys-
tems using reinforcement learning ideas, i.e. GPI and Q-
learning. The adaptive critic and actor are continuously and
simultaneously updating each other without neither iterative
steps nor an initial stabilising policy. The two approaches

can online approximate the value function/Q-function and are
partially/completely model-free. The new adaptive approach
enables the online verification of PE condition and guaran-
tees the overall stability and the finite-time convergence.
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