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1. Introduction

Given my interest in both mathematics and computer science from a very
young age, encounter with formal methods was inevitable, as they can
be found at the intersection of the two. To me, formal methods were the
ultimate form of magic: Synthesizing a system in a correct-by-construction
way that guarantees specific behavior expressed in a set of requirements
looked akin to crafting a spell carefully tailored to carry out a specific task.
And this was more than enough motivation to get me involved in the field
and the pursuit of improving the state of the art. While doing so, I realized
that, even though the usefulness of formal methods is well understood,
there are hindrances that prevent widespread adoption in certain parts of
the industry. These can broadly be split into two categories: (a) algorithmic
challenges and (b) modeling challenges. The former are about how well the
underlying procedures scale on systems of realistic size, while the latter
are about the effort required for modeling a system as well as its expected
behavior in terms of requirements. I decided to focus on the latter set of
challenges for my PhD thesis, in order to help others who want to become
wizards too, to do so in an easier way.

1.1 Background

1.1.1 System Design

The variety of system design methodologies in practice today can be cate-
gorized based on several dimensions. One such dimension is the high-level
structured (or not) workflow they may follow. Some examples here are the
traditional waterfall approach [116], the widely used V-model approach
(Figure 1.1) [114], and the more recent agile approach [115], which tends
to be popular among startups. Another important dimension is whether
we move directly from the mind of the designer to a system prototype
(implementation) or whether this transition is gradual and involves build-
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ing (abstract) system models in the process, in which case we talk about
Model-Based Design (MBD) [15, 105, 66, 78, 44, 93, 94, 99, 55, 104]. In
the case where models are used, we can further classify based on whether
these models are built manually or automatically (e.g. from specifications
and / or example behaviours). In addition to that, there is also the question
of which kinds of models are used. These can, for example, be (finite)
state machines, differential equations, hybrid automata [14, 54], neural
networks etc. Some of these models can actually also become part of the
final system implementation; for example, a neural network model could
be used as (part of) the image recognition software module of a self-driving
car. Alternatively, the models can be further refined into more efficient im-
plementations; for example, a neural network model could be implemented
on an FPGA.

Implementation

Unit Testing

Integration
Testing

System Testing

Operation and
Maintenance

Low-level
Design

High-level
Design

Requirements

Concept of 
Operations

Figure 1.1. V-Model system design methodology

Regardless of the specifics of a particular system design methodology, it
is well understood today that model-based design offers several concrete
advantages over prototype-based design (where no models are involved)
[107]. In particular, models are safer than prototypes, cheaper and faster
to build, modify and maintain, as well as cheaper and faster to simulate
(e.g. for testing purposes). In addition to that, one can perform more
rigorous types of analysis on models (such as static analysis and formal
verification) that cannot be performed on prototypes.

One disadvantage of the current MBD state of practice is that, more
often than not, these models are typically built by hand, which can be
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quite expensive and error prone. In particular, it requires manual effort
by domain experts, who may need several attempts to build a model
conforming to the given set of requirements. An emerging paradigm w.r.t.
this aspect of system design is the so called Data-driven and Model-based
Design (DMD) [107]. In this context, models are synthesized automatically
from specifications and / or example behaviour [16, 17, 18, 30, 39, 19], the
end goal being to reduce human effort, as well as to obtain correct-by-
construction models, guaranteed to conform to the requirements.

The focus of this thesis w.r.t. the system design aspect is in providing
processes and algorithms to help migrate from the typical MBD setting
into a more DMD-enabled one.

1.1.2 Formal Methods - What and Why

In 1970 Edsger Dijkstra famously stated that “Testing can only show
the presence, not the absence of bugs”; in order to achieve the latter,
a different approach is necessary. Formal methods constitutes such an
approach, consisting of mathematically rigorous ways for specification and
verification of hardware and software.

In the context of formal methods we can distinguish three specific ac-
tivities: (1) modeling, (2) specification and (3) verification. Modeling is
about describing the system, or rather an abstraction of the system, to
be verified using an appropriate formalism, such as state machines (for
finite state systems) or hybrid automata [54] (for cyber-physical systems).
Specification focuses on describing the property to be verified and is typi-
cally done in some form of logic, such as propositional, first order, higher
order, or modal logics, such as Linear Linear Temporal Logic (LTL) [86],
Computation Tree Logic (CTL) [35] and Differential Dynamic Logic (DDL)
[85].

Verification is about taking a model and a specification and applying
a procedure in order to determine whether the model conforms to the
specification. We distinguish two main categories here: Model checking
[36] and deductive verification [51]. The former is an automatic approach
of systematically performing exhaustive exploration of the given model.
The latter is typically carried out with the help of proof assistants and
requires manual effort, but can in principle handle more types of properties
as well as larger models than model checking can.

1.1.3 A Brief History of Formal Methods

One can trace the beginning of formal methods [38] back to 1954, when
Martin Davis developed the first computer generated proof for the theorem
stating that the product of two even numbers is even [80]. Important
milestones since then include the development of the Stanford Pascal
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Verifier (1960s) [70], ACL (1970s) [1], Isabelle [4], Coq [2] and PVS [5]
proof assistants (1980 - 2000) on the deductive verification side, as well
as temporal logics (LTL [86], CTL [35] – 1970s), the first model checking
algorithms (1980s) [34, 87], symbolic model checking (1993) [72], as well
as bounded [33] and probabilistic [63] model checking (1999-2005) on the
model checking side.

1.1.4 Formal Methods in Industry Today

Presently, formal methods are in use by leading hardware vendors [52,
45, 89] (their use was initially facilitated by the advent of symbolic model
checking, which drastically increased the number of system states that
can be explored automatically). Adoption on the software side is also
growing by the day, so that leading software companies now have dedicated
verification groups [77, 31, 21, 90, 29].

We can identify two broad categories of challenges that need to be ad-
dressed in order to increase adoption of formal methods in the industry:
the algorithmic challenge and the modeling challenge. The former is re-
lated to the (in)ability of tools and algorithms used for verification to scale
to industrial size problems – the so called state explosion issue of model
checking is a representative example. Potential solutions here include
abstraction and compositional verification approaches [36, 106].

The modeling challenge is about system model definition and require-
ment formalization. The algorithms used to conduct verification require
a formal model of the system as well as a formal specification of the ex-
pected behavior. Generating each of these artefacts typically requires
expert manual effort, the volume of which can sometimes be prohibitive in
cases of legacy systems. Potential solutions here include automatic model
extraction approaches, verification algorithms able to work on actual sys-
tem implementations , as well as approaches for automatic requirement
formalization. In this thesis, the focus is on providing solutions for the
modeling challenge, primarily from an industrial point of view.

1.1.5 Learning

One can encounter several different forms of learning in the current state
of practice; to name a few, consider system identification [69] and machine
learning [75]. The goal of the former is to extract information about
structure and / or parameters of an unknown system, while the latter is
typically linked with artificial intelligence [91] and focuses on solving a
variety of related problems, such as (image) classification, optical character
recognition, natural language processing / understanding, etc.

Within each of these two categories, one can identify more refined parti-
tions, based on the amount of training data needed, the learned model type,
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as well as how easy the learned model is to analyze. For example, in the
system identification category, the learned model could be a (finite) state
machine, a dynamical system or a hybrid system, each of which would
typically need more training data and be more difficult to analyze than the
previous model type. Correspondingly, in the machine learning category,
the learned model could be a decision tree, a random forest or a neural
network, with similar characteristics w.r.t. amount of training data needed
and amenability to analysis.

In this thesis we focus mainly on the system identification type of learn-
ing, and in particular on white-box (finite state machine) model learning.

1.2 Research Questions and Contributions

Arguably, the earlier formal methods are introduced in the design life-
cycle of a system, the easier this is done. The real challenge lies in legacy
systems that are implemented without best engineering practices in mind
and end up in monolithic implementations that are practically black boxes
(i.e. difficult to reason about or change).

More often than not, the problems in such cases begin with how require-
ments are handled. Typically, requirements are expressed in unstructured,
natural language format, which is prone to ambiguities and prevents
early potential inconsistency detection, as well as analysis and tool sup-
port opportunities in general. In addition, test cases and requirement
monitors, if existent, are typically constructed manually, which is time
consuming and error prone. While formalization of requirements could
address these issues, it is often not performed as simply the vast volume of
legacy requirements makes this prohibitively time consuming.

To facilitate the shift towards proper model based system engineering
practices, including integration of formal methods, in such cases, we would
need ways for rapid requirements formalization as well as model extraction
from black-box systems. Practical verification approaches that can be
applied on implementations (e.g. code) – and not just models – can also
be useful here. In this context, we formulate the following four research
questions which we address in the thesis.

Research Question 1: Approaches for (semi-)automated requirements
formalization typically have two flavours: (a) either go directly from natural
language to a specification language or (b) go from controlled / constrained
natural language to a specification language. In the former case, translation
accuracy is typically not sufficiently high to be of practical use, while the
latter case is typically limited to a particular domain and does not address
the potentially big volume of natural language legacy requirements that
have to be rewritten. Is it possible to employ learning techniques in order to
get the best of both worlds?
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The answer is affirmative and the related contributions can be found in
Chapter 2 and publication I. In particular, the developed requirements
formalization workflow leverages NLP and ML techniques to automati-
cally identify patterns in natural language requirements and, by doing
so, significantly reduce the required formalization effort for both new and
legacy requirements.

Research Question 2: Existing approaches for safety LTL to DFA
translation exhibit issues such as unbounded size of intermediate trans-
lation results and inability to take into account a-priori knowledge about
the target automaton in order to speed up the trnanslation process. Is it
possible to use learning in order to address these shortcomings?

The answer is affirmative and the related contributions can be found in
Chapter 3 and publication II. In particular, the developed monitor gen-
eration algorithm, by leveraging active automata learning techniques,
provides theoretical guarantees about the size of the intermediate trans-
lation results, is able to leverage a-priori knowledge about the target
automaton in order to accelerate the translation process, and manages to
significantly outperform state of the art approaches w.r.t. execution time
and memory consumption in some cases.

Research Question 3: Is it possible to extend the RPNI passive au-
tomata learning algorithm to learn Moore machines, preserving efficiency
(i.e. polynomial complexity) and other properties (e.g. identification in the
limit)?

The answer is affirmative and the related contributions can be found in
Chapter 4 and publications III and IV. In particular, the developed finite
state machine extraction algorithm is accompanied by theoretical results
on convergence as well as an efficient implementation, outperforming the
state of the art w.r.t. execution time and memory consumption.

Research Question 4: Is it possible, in the context of dynamical sys-
tems and, in particular, matrix iterative algorithms, to perform automated
reachability analysis directly on system implementations (e.g. C++ code)
without the need to manually generate corresponding abstract models? And
if so, what are the benefits of doing so over alternative approaches (e.g.
translation of the code to model checker / theorem prover input)?

The answer is affirmative and the related contributions can be found
in Chapter 5 and publications V and VI. The developed workflow enables
instrumentation of C/C++ code describing the behavior of a dynamical
system towards performing automated reachability analysis without the
need of deriving a separate model of the system. The developed approach
is demonstrated through application of the workflow on iterative matrix
algorithms, viewed as dynamical systems, where it enables a-priori com-
putation of convergence bounds for given initial matrix ranges, for which
existing theoretical (i.e. closed form) approaches are not able to provide an
answer.
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1.3 Thesis Organization

In this thesis, we present a solution towards aiding re-engineering of legacy
systems using model based design best practices. This is done through
contributions in four key areas: requirements formalization (Chapter 2),
automated monitor generation (Chapter 3), model learning from examples
(Chapter 4), and practical reachability analysis for system implementations
(Chapter 5). Finally (Chapter 6), we conclude and discuss possible future
extensions of the developed workflows and algorithms.

19





2. Requirements Formalization

Managing requirements in industrial environments is typically done in
unstructured, natural language format, which prevents the adoption of au-
tomated analysis that can improve both quality and speed of development
by e.g. detecting inconsistencies early in the design phase. In addition,
requirement monitors and test cases are typically created manually, which,
apart from being time consuming, is error prone. Formalization of require-
ments can provide a solution here, however the sheer volume of legacy
requirements often makes this prohibitively time consuming. In order to
address these issues, we developed an end-to-end workflow and tool for
rapid requirements formalization, starting from natural language require-
ments and going all the way down to automatically generated monitors.
Specifically, by using NLP and ML techniques for requirement pattern ex-
traction, we accelerate formalization for both legacy and new requirements.
Formalized requirements can then be used for consistency checking (in
order to prevent early design error propagation), as well as for automatic
test-case and monitor generation.

Approaches for automatic requirement formalization (natural language
to formal language) have been explored before and generally fall into two
broad categories. In particular, there are approaches that (a) translate
from natural language to a specification language, e.g. [79, 53] and ap-
proaches that (b) translate from controlled natural language (typically
domain specific) to a specification language, e.g. [23, 43, 3]. In the for-
mer case, the reported translation accuracy is generally not sufficiently
high to be of practical use, particularly when applied on data that differ
non-trivially from those used for training. In the latter case, while the
approach is adequate for introducing new requirements, it does not enable
efficient handling of the potentially big volume of legacy requirements that
have to be rewritten.

The novelty of our approach lies in the fact that it combines useful parts
from both worlds by essentially learning a controlled natural language (the
extracted requirement patterns) from legacy requirements. And while the
formalization part is manual, the overall workload is reduced drastically,
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since the engineer only needs to formalize the (typically small) set of
extracted patterns. To the best of our knowledge, the work closest to
ours here is [23], the main differences being as follows: (i) They focus on
continuous time properties by making use of Signal Temporal Logic (STL),
while we focus on discrete time properties. (ii) They focus on requirements
specified in a template-based constrained natural language, while we
focus on automatically discovering such templates / patterns by analyzing
unconstrained natural language requirements.

Legacy

Requirements

New

Requirements

Requirements

Editor

Formalized

Requirements

NLP Preprocessing
Hierarchical

Clustering

Pattern

Library / Grammar

Consistency

Checking
Monitor

Generation

Simulink

Monitors

Figure 2.1. Requirements formalization workflow

The developed workflow is outlined in Figure 2.1. Legacy natural lan-
guage requirements are preprocessed using off the shelf NLP tools [57, 71],
as well as our own heuristics, in order to identify and abstract away do-
main entities and details (such as actual signal names and mathematical
expressions) not relevant to pattern discovery. Abstract requirements
are then clustered into groups using a hierarchical clustering algorithm.
Several approaches have been explored here to define similarity between
two requirements (necessary for the clustering algorithm to work), based
on purely syntactic information, on purely semantic information, as well
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as on combinations of the two, along with additional heuristics. Once the
abstract requirements are placed into clusters, individual representatives
of each cluster are essentially the patterns we are looking for. These
patterns are formalized manually, however we reduce the required effort
by employing several high level specification languages, namely PSL [7],
SpeAR DSL [43] and SALT DSL [24]. Legacy requirements are formalized
in batch during this process; once a pattern is formalized, all requirements
following that particular pattern are automatically formalized as well.

New requirements can then be formalized using existing patterns through
an editor supporting pattern and signal name autocompletion, as well as
syntax checking using a context free grammar automatically derived by
the set of identified patterns. In case no existing pattern is suitable, going
through the same process as with legacy requirements to derive new pat-
terns is always possible. Once a formalized set of requirements is obtained,
consistency checking and monitor generation can be performed automat-
ically. Consistency checking works across the supported specification
languages by translating them into LTL or past LTL and then employing
an existing algorithm [47] adapted to support linear arithmetic expres-
sions as atomic propositions by leveraging the Z3 SMT solver [40]. Monitor
generation currently targets Simulink models [41]. However, additional
targets are not difficult to add, since we first generate a target-agnostic
intermediate representation.

The developed approach has been applied on two industrial case stud-
ies: (a) Low-level requirements for the FPGA specification of Airbus A350
ETRAC (Electrical Thrust Reverser Actuation Controller), and (b) High-
level requirements for the brake control unit of Mitsubishi Regional Jet. In
the first case study, the entire workflow was used, from natural language
requirements all the way down to formal verification of the Space Vector
Modulation (SVM) subsystem of the design. We were able to fit 40% of
the 750 requirements into 25 clusters, and formalized the 100 require-
ments related to the SVM subsystem using only 6 patterns. In the second
case study, only the parsing and clustering parts of the workflow were
applied, in order to demonstrate that our approach provides benefits (e.g.
facilitating mapping of requirements to more structured representations)
even for high-level requirements that cannot be easily mapped to Simulink
monitors. In particular, we were able to fit 50% of the 700 requirements
into 15 clusters.
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Safety properties are ubiquitus in model based design. Capturing the
notion that ‘nothing bad should ever happen’, they are typically expressed
in Safety LTL and can be used for formal verification, runtime monitoring,
test-case generation, as well as consistency checking. The first step in
the aforementioned processes is translating the property at hand into an
automaton. One drawback of existing approaches for this is that the size of
intermediate tranlsation results can be significantly larger than the final
automaton. In addition, to the best of our knowledge, existing implementa-
tions are unable to make use of a priori information about the translation
target that may be available. In this work, we develop a novel approach for
Safety LTL to symbolic DFA translation that addresses these limitations.
In particular, our algorithm returns a minimal automaton (w.r.t. number
of states) and provides theoretical guarantees that all intermediate results
contain strictly fewer states than the learned automaton. In addition,
the algorithm is able to incorporate a priori knowledge about the target
automaton for a significant performance gain.

The problems of translating LTL to automata and specifically Safety LTL
to DFA have received a lot of attention over the years [65, 12, 61, 46, 20].
To the best of our knowledge, the state of the art in the former case is Spot
[12] and Rabinizer [61], while in the latter case we have scheck [65]. The
problems of automata learning and grammatical inference, in general, have
also been studied extensively [39]. While we do not claim to advance the
state of the art in symbolic automata learning, note that in our extension
of an existing learning algorithm we make specific assumptions about the
nature of the automaton to be learned, which allows us to provide a more
efficient approach than we could have done otherwise.

In particular, we focus on translating from the Syntactic Safety subset of
LTL [100] into symbolic DFA [37] by adapting Angluin’s L* algorithm for
active automata learning [19]. In this setting, a learner tries to identify an
automaton by submitting queries to a teacher. These can be membership
queries, where the learner submits a word and gets back an ‘accept’ or
‘reject’ answer, or equivalence queries, where a hypothesis automaton is
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submitted and either the process ends with success or a counterexample is
generated that drives more subsequent queries.

An overview of our algorithm is shown in Figure 3.1. A data structure
called the observation table is used throughout the algorithm to collect
information made from membership queries. Once enough information is
available, a hypothesis automaton is generated and submitted through
an equivalence query to the teacher. In our case, membership queries are
implemented by recursive traversal on the LTL formula to be translated,
while for equivalence queries we employ the NuSMV symbolic model
checker [32].

LTL
Formula

Membership
Queries

Observation
Table

Hypothesis
Generation

Candidate
Automaton

Equivalence
Query

Counterexample

Learned
Automaton

✔

✘

Figure 3.1. Monitor generation algorithm

Regarding the properties of the extended algorithm, minimality of the
learned automaton, as well as theoretical guarantee that the intermediate
hypothesis automata are strictly smaller than the learned automaton,
directly follow from the properties of the L* algorithm. Regarding compu-
tational complexity, the L* algorithm is guaranteed to terminate after at
most N equivalence queries and a number of membership queries bounded
by a polynomial quadratic on N and linear on M , where N is the number
of states of the learned automaton and M the maximum length of any
counterexample returned by the teacher. In addition, the complexity of
a membership query is polynomial on the trace length and exponential
on the formula length, while the worst-case complexity of an equivalence
query is at least doubly exponential on the length of the formula to be
translated.

The query complexity results for equivalence queries motivated the
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Table 3.1. Counter property families

N Counter family A Counter family B

1 G(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr)) G(¬p ∨X(¬q ∨ r))

2 G(¬p ∨X(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr))) G(¬p ∨X(¬q ∨ (r ∧Xr)))

3 G(¬p ∨X(¬p ∨X(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr)))) G(¬p ∨X(¬q ∨ (r ∧X(r ∧Xr))))

search for a modified approach that eliminates this type of queries al-
together. It turns out that this is possible to do if we have some sort of a
priori knowledge about the target automaton, which is relatively straight-
forward to obtain in cases where we deal with property families with
members of increasing length such as these 1 shown in Table 3.1.

We implemented the proposed algorithm and compared against scheck
v1.2 [65], Spot v2.6.1 [12] and Rabinizer v4 [61] on (i) 500 randomly gen-
erated syntactically safe LTL formulas, (ii) 54 formulas from the Spot
benchmarks [6], as well as (iii) the 2 counter formula families from Table
3.1 and their conjunction. The results are summarized in Table 3.2 and
Figures 3.2 and 3.3 (memory consumption generally closely follows running
time in all cases). It can be seen that the proposed approach is comparable
with existing ones for formulas of small size. Moreover, by guaranteeing
that intermediate results do not explode in size, it outperforms existing
approaches in long instances of the property families in Table 3.1, by orders
of magnitude. In addition, unlike existing approaches, it can take into
account a priori information about the target automaton, which leads to
even better performance.

Table 3.2. Execution times (in seconds) for 500 random and 54 Spot formulas

Algorithm
500 random formulas 54 Spot formulas

Average Median Average Median

Proposed 0.0693 0.0457 0.1262 0.0545

Spot 0.0397 0.0373 0.0406 0.0401

scheck 0.0082 0.0065 0.0161 0.0072

Rabinizer 1.4821 1.3668 1.8128 1.6885

1These formulas, in particular, come from industrial requirements for aerospace
domain digital hardware verification, a domain where formulas of this kind with
many (typically > 50) nested next operators, expressing timing requirements for
FPGAs, appear quite frequently.
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(a) Counter family A

(b) Counter family B

(c) Counter family conjunction

Figure 3.2. Results on counter formulas
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(a) Counter family A

(b) Counter family B

(c) Counter family conjunction

Figure 3.3. Effect of suffix information on counter formulas
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4. Model Learning

In the area of system design, and in particular within a DMD context,
an important problem is automatically obtaining models from data [109,
107]. Depending on the type of models to be learned, as well as the
provided input data and other assumptions or constraints, several variants
of this problem exist. For example, there is the classic field of system
identification [68], but also more recent works on generating programs,
controllers, or other artifacts from examples [101, 50, 96, 16, 18, 107].
The motivation and objectives for this type of work include, but are not
limited to, reduction of human effort in model creation, which in turn can
reduce design errors and accelerate iteration times, as well as, at the same
time, harness the abundance of available data being constantly generated
by (potentially safety-critical) systems in an efficient way, in order to
enable kinds of analyses not possible otherwise [76]. Another potential
application for model generation from data is system reimplementation,
particularly in cases where we have undocumented, essentially black-
box, legacy systems not built with best MBSE practices in mind and, as
a result, are difficult to modify and extend. In such a context, a first
step could be employing model learning approaches able to also take into
account requirements the learned model should satisfy, and use them to
generate abstract models that (a) faithfully capture the interface between
the various system components, as well as between the system and its
environment, and (b) satisfy the desired requirements by construction.

Model learning from examples has been studied for several types of state
machines, including DFA, Mealy machines, probabilistic automata, regis-
ter automata, extended Mealy machines and subsequential transducers.
Related work in this area can be classified into active learning, i.e., learn-
ing from (examples and) queries [19, 97, 60, 30, 10, 58, 9] and passive
learning, i.e., learning only from examples. In the latter category we can
also distinguish between exact approaches, which learn the smallest ma-
chine, w.r.t. number of states [56, 108] and heuristic approaches, which
do not necessarily learn the smallest machine [49, 81, 42, 64, 82, 26, 111,
113, 102, 11, 28, 74, 110].
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In this thesis, we focus on the problem of learning deterministic and
complete Moore machines, from input-output traces. Despite this being
a basic problem, it appears to not have received a lot of attention in
the literature so far, however it is nevertheless worth studying as such
state machines have many applications; for example, they can be used
to represent digital circuits and controllers. In addition, the algorithms
we propose can be used as building blocks for learning more complex
types of models, such as hybrid automata [73]. The authors of [73], in
particular, employ an active Mealy machine learning algorithm but adapt it
to operate on a passive learning setting (i.e. only by examining the provided
traces) and also postprocess the learned machine in order to ensure that no
state has multiple incoming edges that produce different outputs. These
modifications together imply that a passive learning approach that learns
Moore machines, such as the one we provide here, would be a much better
fit for this purpose.

Specifically, in our work, which is situated in the heuristic approach
subcategory of the passive learning area, we formally define the problem
of learning Moore machines from input-output traces, develop three algo-
rithms, MooreMI, PRPNI and PTAP, that solve the problem, study their
theoretical properties and compare them through experimental evaluation.
In addition, we adapt MooreMI, our best algorithm, to learn Mealy ma-
chines and conduct a performance comparison against LearnLib [88] and
flexfringe [112].

The input to all three algorithms we propose is a set of input-output
traces, each trace being a pair of an input word and an output word, and
each word being a finite sequence of symbols. The output of all three
algorithms is a deterministic and complete Moore machine. An overview
of our MooreMI algorithm is shown in Figure 4.1. The algorithm consists
of two main phases, much like the RPNI [81] algorithm for learning DFA,
of which it is a natural extension. Initially, the provided set of traces
is converted into a more compact, tree based representation, called the
Prefix Tree Acceptor (PTA). Subsequently, an iterative merging phase
follows where nodes / states of the PTA compatible with each other are
merged together in order to reduce the number of states in the learned
state machine. Our PRPNI algorithm directly uses the RPNI algorithm
as a building block, by decomposing the given input-output traces into
N = ⌈log2|O|⌉ (where O is the set of distinct output symbols appearing
in the traces) sets of positive and negative examples (which can be used
as input for RPNI), invoking RPNI N times, and then computing and
completing the product of the N learned DFA in order to obtain the learned
Moore machine. Finally, our PTAP algorithm, being the simplest of the
three approaches, simply computes the prefix tree acceptor, completes it
and returns it as the learned Moore machine.

All three algorithms exhibit polynomial complexity w.r.t. to the total
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Figure 4.1. FSM learning algorithm

symbol length of the training set (input-output traces), and are guaranteed
to return machines consistent with the training set, meaning that when
fed with an input word from any of the training traces, they will return
the corresponding output word. Our MooreMI algorithm also has the
identification in the limit property [48]. This ensures that the algorithm
will eventually learn the correct machine when provided with a sufficiently
large set of examples. In our case, we also formally define ‘sufficiently
large’ by extending the notion of characteristic sample, which is known
for DFA [39], in the context of Moore machines. Experimental evaluation
shows that MooreMI is superior to PTAP and PRPNI not only in theory,
but also in practice, as shown in Tables 4.2, 4.3, 4.4, 4.5 (a dash indicates
timeout). In particular, one can observe that MooreMI outperforms the
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other two algorithms in terms of execution time, number of states in the
learned machine, as well as three notions of accuracy we introduce in this
thesis. Finally, our MealyMI algorithm (adaptation of MooreMI to learn
Mealy machines) outperforms LearnLib [88] and flexfringe [112] in both
execution time and memory consumption, as shown in Table 4.1.

Table 4.1. Performance comparison results with existing tools that learn Mealy machines.

Tool
Time (s) Peak Memory

Usage (GB)Parsing Learning Total

LearnLib 3.851 7.143 11.994 1.8

flexfringe 13.806 181.032 194.838 2.8

MealyMI 3.062 2.891 5.953 1.1
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Table 4.2. avg training set size: 140.9 (50 states), 109.0 (150 states), avg input word len:
8.0513 (50 states), 10.0227 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 0.0059 1000 0.031 25.614 28.785 0.0067 1000 0.04 20.18 23.339

mdn 0.0058 1000 0.03 25.545 28.765 0.0062 1000 0.04 20.265 23.43

sdv 0.0008 0 0.003 0.2731 0.3421 0.001 0 0 0.2297 0.276

PRPNI
avg — — — — — — — — — —

mdn — — — — — — — — — —

sdv — — — — — — — — — —

MooreMI
avg 0.0218 65.9 0.534 31.938 35.374 0.0277 93.3 0.04 21.158 24.408

mdn 0.0199 65.5 0.515 31.885 35.42 0.0273 92 0.04 21.24 24.475

sdv 0.0035 2.8089 0.0684 0.4904 0.408 0.0024 5.1391 0 0.2906 0.3032

Table 4.3. avg training set size: 1594.4 (50 states), 1184.7 (150 states), avg input word len:
8.0028 (50 states), 10.0325 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 0.0752 10000 0.371 34.737 37.492 0.0688 10000 0.399 27.547 30.413

mdn 0.0701 10000 0.37 34.705 37.49 0.0678 10000 0.4 27.585 30.41

sdv 0.0146 0 0.003 0.0986 0.1179 0.0031 0 0.003 0.1116 0.1341

PRPNI
avg — — — — — — — — — —

mdn — — — — — — — — — —

sdv — — — — — — — — — —

MooreMI
avg 0.1911 125.5 51.989 79.065 80.207 1.1478 354.2 0.489 31.123 34.16

mdn 0.1825 126 52.95 79.635 80.71 1.1425 352 0.49 31.145 34.16

sdv 0.0443 13.025 9.1848 4.5481 4.2777 0.051 5.2498 0.0094 0.304 0.311
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Table 4.4. avg training set size: 18104.9 (50 states), 13019.5 (150 states), avg input word
len: 8.0061 (50 states), 10.0076 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 0.8065 100000 4.131 45.378 47.605 0.7858 100000 4.366 36.522 39.03

mdn 0.755 100000 4.13 45.385 47.64 0.7801 100000 4.36 36.555 39.01

sdv 0.1354 0 0.0104 0.0935 0.1763 0.0342 0 0.0162 0.1211 0.1621

PRPNI
avg 3.5585 24651.7 98.637 99.562 99.683 — — — — —

mdn 2.2394 3073 98.88 99.66 99.745 — — — — —

sdv 3.9425 68215.5 1.4605 0.4823 0.3457 — — — — —

MooreMI
avg 0.3631 50 100 100 100 1.1815 220.4 95.923 98.439 98.508

mdn 0.3622 50 100 100 100 1.0768 223.5 95.84 98.4 98.47

sdv 0.0144 0 0 0 0 0.3627 34.1532 2.0841 0.7941 0.76

Table 4.5. avg training set size: 210700.0 (50 states), 144881.0 (150 states), avg input
word len: 8.0059 (50 states), 9.9993 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 10.2782 1000000 47.558 74.448 75.448 10.9528 1000000 48.463 69.195 70.392

mdn 9.9208 1000000 47.55 74.445 75.44 10.7495 1000000 48.46 69.195 70.4

sdv 1.8331 0 0.0352 0.0655 0.0953 2.4395 0 0.0215 0.0385 0.0673

PRPNI
avg 27.8298 50 100 100 100 30.8077 11420 99.941 99.98 99.987

mdn 27.5391 50 100 100 100 29.7683 150 100 100 100

sdv 3.3386 0 0 0 0 3.819 13846 0.0779 0.0261 0.0168

MooreMI
avg 3.5939 50 100 100 100 4.2064 150 100 100 100

mdn 3.5039 50 100 100 100 4.1011 150 100 100 100

sdv 0.2197 0 0 0 0 0.2373 0 0 0 0
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5. Reachability Analysis

Iterative matrix algorithms are fundamental components in many real-
time control systems and, as such, have been studied extensively by control
and applied mathematicians [83, 84], as well as embedded systems engi-
neers [62]. Such components can be part of safety-critical systems (e.g.
in avionics), which explains the interest in development and application
of relevant V&V approaches [92, 25]. In this thesis, we present such
an approach and demonstrate its application on the Schulz generalized
matrix inversion algorithm as well as the discrete time matrix algebraic
Riccati equation, both of which are fundamental building blocks in several
approaches for optimization and control [27, 67, 98]. In particular, we
are interested in performing reachability analysis for these algorithms
in order to determine number of steps required for convergence given an
initial matrix range. We do so by treating the algorithms as (discrete time)
dynamical systems (or equivalently, hybrid systems with trivial dynam-
ics where the actual computation takes place on mode transitions) and
employing a reachability analysis framework we develop to handle such
systems implemented in C++ code.

While there is no shortage of state set representations and corresponding
propagation algorithms for identification of reachable states [13], one major
characteristic of such approaches that hinders adoption in industry is that
they require formal models (e.g. hybrid automata [14, 54]) of the system at
hand to operate on. In particular, translation of the system model to an
appropriate representation introduces an additional step in the verification
process and concerns about preservation of semantics, which makes it more
difficult to convince certification authorities to accept the results of the
approach as evidence for system safety. For example, the translation step
might involve some sort of abstraction that may not be wanted; in the
case of dynamical systems, in particular, it may abstract away the specific
method used for solving of the involved ODEs (e.g. Runge-Kutta method),
which widens the gap between the model being verified and the actual
implementation. The alternative approach of C++ code instrumentation
we propose here addresses these concerns, since it is able to operate on the
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same level of abstraction as the final system implementation.
Approaches involving code instrumentation for checking behavior cor-

rectness have been explored before, but the focus there is typically in test
case generation [95, 22]. To the best of our knowledge, the work closest to
ours is [117]. They develop an Affine arithmetic [103] based framework for
instrumentation of SystemC code towards reachability analysis, but the
focus is on extending Affine arithmetic to be able to handle hybrid behavior
(i.e. including mode switching), while we focus on dynamical systems (in
particular, matrix iterative algorithms) and use Affine arithmetic as a
building block (without extending it). Specifically, we develop a framework
for C++ code instrumentation towards reachability analysis of dynamical
systems and, in particular, matrix iterative algorithms, by providing ma-
trix data types and associated operations (e.g. multiplication, inversion,
determinant and norm computation etc.), convergence criteria for the two
algorithms we study (Schulz matrix inversion and discrete time algebraic
Riccati equation), as well as an adaptive domain subdivision procedure
together with two domain splitting heuristics.

In implementing an instrumentation framework for reachability analysis,
we distinguish two key components, in general: First, a state set represen-
tation and associated propagation algorithm implemented in the language
of choice (C++ in our case). Second, domain-specific utility data structures
and procedures that facilitate minimally intrusive instrumentation of the
system implementation and corresponding simulation / integration scheme
(e.g. Runge-Kutta method) to enable reachability analysis. In principle,
any state set representation and corresponding propagation algorithm can
be used but, to keep things simple in our initial implementation, we opted
for an Affine arithmetic [103] solution, since C++ libraries for it already
exist [8] and, by virtue of making it easy to maintain a reachable set for
each state variable, also simplifies the instrumentation step.

The bulk of the work in our implementation was building the instru-
mentation infrastructure. Since the initial application of the framework
was iterative matrix algorithms viewed as dynamical systems, appropriate
matrix data types had to be defined, supporting all relevant operations
in safe (i.e. conservative w.r.t. reachable state set computation) ways. In
addition to that, we had to provide safe implementations for a few domain
specific bound computations (that served as stopping / convergence criteria
for the iterative matrix algorithms under analysis), as well as an adap-
tive domain subdivision scheme (Figure 5.1), along with two associated
domain splitting heuristics (Figure 5.2), in order to partially counteract
the conservativeness of Affine arithmetic and provide tighter (but still safe)
analysis results. In particular, in the context of the two iterative matrix
algorithms we studied, there were cases where, given the same initial
matrix range, the algorithm would diverge without domain subdivision,
but converge when subdivision was performed (Figure 5.1). In addition,
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no splitting heuristic of the two we tried was strictly better than the other
– there were problem instances where the first performed better (smaller
total number of subdivisions, as well as shorter execution time) and other
problem instances where the second performed better (Figure 5.2).
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Figure 5.1. Adaptive domain subdivision scheme – when the iterative algorithm diverges,
subdivide the domain and rerun on the resulting matrices
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39





6. Conclusion and Perspectives

In this thesis, we present a solution towards aiding re-engineering of legacy
systems using model based design best practices through contributions in
the areas of requirements formalization, automated monitor generation,
model learning from examples, and practical reachability analysis for
system implementations.

6.1 Requirements Formalization

The developed workflow for requirements formalization leverages NLP and
ML methods for pattern identification from legacy requirements, which
in turn accelerates formalization of both legacy and new requirements.
A variety of formal languages is supported and, once requirements are
formalized, consistency checking and automatic monitor generation can
be performed as well. The approach has been tested on industrial case
studies with several hundreds of requirements in each case and the results
have been very promising.

One limitation here is that the approach currently only focuses on func-
tional requirements (i.e. system behavior). Therefore, a direction worth
exploring in the future is handling non-functional requirements as well
(e.g. timing and architectural constraints). Another interesting direction
for future development would be extending the tool with more specifica-
tion languages and monitor generation targets in order to enable further
interoperability with other tools and ease adoption from industrial users.

6.2 Monitor Generation

The developed approach for monitor generation of safety LTL properties
is comparable performance-wise with existing ones for formulas of small
size. Moreover, by providing theoretical guarantees (through leveraging
of an active automata learning technique) that intermediate results do
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not explode in size, it outperforms the state of the art in translation
times for certain property families, by orders of magnitude. In addition,
unlike implementations of existing approaches, it can take into account
a-priori information about the target automaton, which leads to even better
performance.

Interesting directions for future work here include using more optimized
versions of the underlying learning algorithm, employing incremental
model checking approaches for equivalence queries, as well as extending
the work to translation of general (not just safety) LTL properties to Büchi
automata.

6.3 Model Learning

The developed algorithm for finite state machine learning from examples
has desirable theoretical properties (it converges to the ‘correct’ machine
if given ‘enough’ example traces) as well as competitive performance com-
pared to existing approaches.

Apart from further experimentation w.r.t. learning various types of black-
box systems, an interesting direction to explore in the future would be
extending the algorithm to also take into account requirements the learned
machine should satisfy, by employing e.g. a CEGIS [59] outer loop.

6.4 Reachability Analysis

The developed framework for reachability analysis of dynamical system
implementations has been successfully applied on analysis of iterative
matrix algorithms, enabling derivation of convergence related results that
were not possible through analytical (i.e. closed form) means.

In the context of iterative matrix algorithms, exploring different domain
splitting heuristics would be an interesting direction for future work. In a
more general view, we believe it would be worth exploring integration with
different reachability analysis algorithms, as well as extension of the work
to be able to handle hybrid systems too.
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