
D ecneicS retupmoC fo tnemtrape

O metsyS citamgarP n
D gninraeL hguorht ngise
a -noitatnemelpmI dn
o ytilibahcaeR detneir
A sisylan

G sidimatnaiG soigroe

D LAROTCO
T SESEH

A seires noitacilbup ytisrevinU otla
D SESEHT LAROTCO 1 62 /2 320

O hguorht ngiseD metsyS citamgarP n
L detneiro-noitatnemelpmI dna gninrae
R sisylanA ytilibahcae

G sidimatnaiG soigroe

A ecneicS fo rotcoD fo eerged eht rof detelpmoc siseht larotcod
(otlaA eht fo noissimrep eht htiw ,dednefed eb ot)ygolonhceT
U dleh noitanimaxe cilbup a ta ,ecneicS fo loohcS ytisrevin
o .00:51 ta 3202 tsuguA 03 no eniln
R 0704195447/j/su.mooz.otlaa//:sptth :knil noitcennoc etome

A ytisrevinU otla
S ecneicS fo loohc
D ecneicS retupmoC fo tnemtrape

Printed matter
4041-0619

N
O

R
DIC

 SWAN ECOLAB
E

L

Printed matter
1234 5678

S rosseforp gnisivrepu
A dnalniF ,ytisrevinU otlaA ,aksuzrB sirhC rosseforP etaicoss

T srosivda siseh
A ASU ,ytisrevinU nretsaehtroN ,sikapirT sorvatS rosseforP etaicoss
D dnalerI ,ecapsoreA snilloC ,sinnaigasaB sonailytS rotco

P srenimaxe yranimiler
P ylatI ,annA'tnaS eroirepuS aloucS ,elataN iD ocraM rossefor
A eceerG ,ikinolassehT fo ytisrevinU eltotsirA ,sorastaK sitoiganaP rosseforP etaicoss

O tnenopp
A eceerG ,ikinolassehT fo ytisrevinU eltotsirA ,sorastaK sitoiganaP rosseforP etaicoss

A seires noitacilbup ytisrevinU otla
D SESEHT LAROTCO 1 62 /2 320

© 2 320 G sidimatnaiG soigroe

I NBS 9 0-6831-46-259-87)detnirp(
I NBS 9 7-7831-46-259-87)fdp(
I NSS 1 4394-997)detnirp(
I NSS 1 2494-997)fdp(
h :NBSI:NRU/if.nru//:ptt 9 7-7831-46-259-87

U yO aifargin
H iknisle 2 320

F dnalni

A tcartsb
A otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otla w if.otlaa.ww

A rohtu
G sidimatnaiG soigroe
N siseht larotcod eht fo ema
O ytilibahcaeR detneiro-noitatnemelpmI dna gninraeL hguorht ngiseD metsyS citamgarP n
A sisylan

P rehsilbu S ecneicS fo loohc

U tin D ecneicS retupmoC fo tnemtrape

S seire A seires noitacilbup ytisrevinU otla D SESEHT LAROTCO 1 62 /2 320

F hcraeser fo dlei C ecneicS retupmo

M dettimbus tpircsuna 1 2202 tsuguA 7 D ecnefed eht fo eta 3 3202 tsuguA 0

P)etad(detnarg ecnefed cilbup rof noissimre 1 2202 rebotcO 8 L egaugna E hsilgn

M hpargono A siseht elcitr E siseht yass

A tcartsb
T tnedive erom won si smetsys xelpmoc fo ngised eht ni noitacfiirev dna noitazilamrof rof deen eh
t lairtsudni ni tpoda ot gnignellahc eb semitemos nac secitcarp sdohtem lamrof ,revewoH .reve nah
e ehT)a(:defiitnedi eb nac segnellahc fo seirogetac daorb owt ,ralucitrap nI .stnemnorivn
a ot elacs ot smhtirogla dna sloot detaler fo ytiliba eht tuoba si hcihw ,egnellahc cimhtirogl
i metsys lamrof a gniniatbo tuoba si hcihw ,egnellahc gniledom eht)b(dna ,smelborp ezis lairtsudn
m lamrof fo noitargetni gnisae fo dne eht oT .roivaheb sti fo noitacfiiceps lamrof a sa llew sa ledo
m siht ni depoleved si noitulos a ,swoflkrow gnireenigne metsys desab ledom lairtsudni ni sdohte
t fo saera yek ruof ot snoitubirtnoc hguorht egnellahc gniledom eht sserdda pleh ot gnimia siseh
t morf noitcartxe ledom)3(,noitareneg rotinom)2(,noitazilamrof stnemeriuqer)1(:ssecorp eh
e snoitatnemelpmi metsys lacimanyd rof sisylana ytilibahcaer)4(dna ,secart roivaheb elpmax
(.)edoc ++C/C

K sdrowye F ,noitareneG rotinoM ,noitazilamroF stnemeriuqeR ,gninraeL ,sdohteM lamro
R sisylanA ytilibahcae

I)detnirp(NBS 9 0-6831-46-259-87 I)fdp(NBS 9 7-7831-46-259-87

I)detnirp(NSS 1 4394-997 I)fdp(NSS 1 2494-997

L rehsilbup fo noitaco H iknisle L gnitnirp fo noitaco H iknisle Y rae 2 320

P sega 1 08 u nr h :NBSI:NRU/fi.nru//:ptt 9 7-7831-46-259-87

Preface

I would like to thank Prof. Stavros Tripakis for introducing me to the world
of formal methods, giving me the opportunity to study under his guidance,
the insightful discussions leading to new ideas, as well as the honest
feedback required to methodically transmute a half-baked algorithm into
a peer-reviewed publication.

I would also like to thank Prof. Chris Brzuska for the invaluable support
towards the end of my studies and finalization of the thesis; in particular,
the very helpful discussions and feedback throughout preparation of the
final manuscript, as well as the availability and guidance towards swiftly
addressing any arising issues.

Special thanks go to Dr. Stelios Basagiannis for giving me the opportunity
to apply my ongoing research in an industrial environment, as well as his
guidance along the way, including the countless brainstorming sessions in
front of the whiteboard.

I would also like to give very many thanks to Dr. Vassilios Tsachouridis
and Dr. Kostas Kouramas for their immense help, including the many
interesting discussions out of which novel ideas emerged (and some of
which were turned into publications included in this thesis), as well as my
family and friends who supported me in (and some of whom partly shared
with me) this journey.

Special thanks also go to my pre-examiners, as well as my opponent,
Panagiotis Katsaros, for taking the time to carefully go through the thesis
and their valuable feedback.

Finally, I would like to, once again, thank all the above for their superhu-
man patience and making sure to always keep me motivated and focused
towards finalization of my doctoral studies – to paraphrase a well known
quote, I guess it really takes a village to raise a PhD.

August 4, 2023,

Georgios Giantamidis

1

Contents

Preface 1

Contents 3

List of Publications 5

Author’s contributions 7

List of Figures 9

Abbreviations 11

1. Introduction 13
1.1 Background . 13

1.1.1 System Design . 13
1.1.2 Formal Methods - What and Why 15
1.1.3 A Brief History of Formal Methods 15
1.1.4 Formal Methods in Industry Today 16
1.1.5 Learning . 16

1.2 Research Questions and Contributions 17
1.3 Thesis Organization . 19

2. Requirements Formalization 21

3. Monitor Generation 25

4. Model Learning 31

5. Reachability Analysis 37

6. Conclusion and Perspectives 41
6.1 Requirements Formalization 41
6.2 Monitor Generation . 41
6.3 Model Learning . 42
6.4 Reachability Analysis . 42

References 43

Publications 51

3

List of Publications

This thesis consists of an overview and of the following publications which
are referred to in the text by their Roman numerals.

I Georgios Giantamidis, Georgios Papanikolaou, Marcelo Miranda, Gon-
zalo Salinas-Hernando, Juan Valverde-Alcalá, Suresh Veluru, Stylianos
Basagiannis. ReForm: A Tool for Rapid Requirements Formalization.
Electron. Commun. Eur. Assoc. Softw. Sci. Technol., Vol 79, 2020.

II Georgios Giantamidis, Stylianos Basagiannis, Stavros Tripakis. Ef-
ficient Translation of Safety LTL to DFA Using Symbolic Automata
Learning and Inductive Inference. In Computer Safety, Reliability, and
Security, 2020.

III Georgios Giantamidis, Stavros Tripakis, Stylianos Basagiannis. Learn-
ing Moore machines from input–output traces. International Journal on
Software Tools for Technology Transfer, Vol 23, 1-29, 2021.

IV Georgios Giantamidis, Stavros Tripakis. Learning Moore Machines
from Input-Output Traces. In FM 2016: Formal Methods, 2016.

V Vassilios A. Tsachouridis, Georgios Giantamidis, Stylianos Basagian-
nis, Kostas Kouramas. Formal analysis of the Schulz matrix inversion
algorithm: A paradigm towards computer aided verification of general
matrix flow solvers. Numerical Algebra, Control & Optimization, Vol
10(2), 177-206, 2020.

VI Vassilios A. Tsachouridis, Georgios Giantamidis. Computer-aided veri-
fication of matrix Riccati algorithms. In 58th Conference on Decision and
Control, 2019.

5

Author’s contributions

Publication I: “ReForm: A Tool for Rapid Requirements
Formalization”

The author wrote 100% of the article and is the sole core contributor and
current maintainer of the presented workflow and tool. In particular, he
came up with the idea and implemented the initial workflow including
extraction of natural language requirements from documents, requirement
preprocessing, requirement clustering, pattern identification and formal-
ization, monitor generation, consistency checking, as well as the graphical
user interface. Georgios Papanikolaou reimplemented the clustering algo-
rithm in a different language for better performance, and made various
usability improvements on the user interface. Marcelo Miranda imple-
mented a monitor generation algorithm for an additional specification
language added later in the tool. Suresh Veluru wrote some of the NLP
analysis heuristics used in the requirement preprocessing phase. Gonzalo
Salinas-Hernando and Juan Valverde-Alcalá built the Simulink models
used in the industrial case studies and subsequently verified them by
using the monitors generated by the tool and MATLAB’s Simulink Design
Verifier Toolbox. Stylianos Basagiannis tested the tool extensively and
provided useful feedback during development.

Publication II: “Efficient Translation of Safety LTL to DFA Using
Symbolic Automata Learning and Inductive Inference”

The author came up with the idea, designed the algorithm, derived the
theoretical results, wrote nearly 100% of the article, implemented the
proposed approach and conducted the experimental evaluation. The co-
authors contributed with useful feedback on structuring the text and the
experimental evaluation.

7

Author’s contributions

Publication III: “Learning Moore machines from input–output traces”

The author wrote around 90% of the article, designed the proposed algo-
rithm, derived the theoretical results, and implemented the accompanying
code and experimental evaluation. Stavros Tripakis came up with the idea,
wrote part of the paper (mainly introduction section), and together with
Stylianos Basagiannis provided useful feedback on structuring the text
and the experimental evaluation.

Publication IV: “Learning Moore Machines from Input-Output Traces”

The author wrote around 90% of the article, designed the proposed algo-
rithm, derived the theoretical results, and implemented the accompanying
code and experimental evaluation. Stavros Tripakis came up with the idea,
wrote part of the paper (mainly introduction section) and provided useful
feedback on structuring the text and the experimental evaluation.

Publication V: “Formal analysis of the Schulz matrix inversion
algorithm: A paradigm towards computer aided verification of
general matrix flow solvers”

The author wrote around 50% of the article (the section related to verifica-
tion and part of the introduction), implemented the reachability analysis
framework and conducted the experimental evaluation. Vassilios Tsa-
chouridis came up with the idea and derived the theoretical bound formu-
las that were used in the experimental evaluation. Stylianos Basagiannis
and Kostas Kouramas contributed parts of the introduction as well as
overall feedback on the approach.

Publication VI: “Computer-aided verification of matrix Riccati
algorithms”

The author wrote around 50% of the article (the section related to verifi-
cation and part of the introduction), implemented the reachability anal-
ysis framework and conducted the experimental evaluation. Vassilios
Tsachouridis came up with the idea and derived the theoretical bound
formulas that were used in the experimental evaluation.

8

List of Figures

1.1 V-Model system design methodology 14

2.1 Requirements formalization workflow 22

3.1 Monitor generation algorithm 26
3.2 Results on counter formulas 28
3.3 Effect of suffix information on counter formulas 29

4.1 FSM learning algorithm . 33

5.1 Adaptive domain subdivision 39
5.2 Domain splitting heuristics 39

9

Abbreviations

CEGIS CounterExample-Guided Inductive Synthesis

CS Characteristic Sample

CTL Computation Tree Logic

DDL Differential Dynamic Logic

DFA Deterministic Finite Automaton

DMD Data-driven and Model-based Design

DSL Domain Specific Language

FPGA Field Programmable Gate Array

FSM Finite State Machine

LTL Linear Temporal Logic

MBD Model-Based Design

MBSE Model-Based Systems Engineering

ML Machine Learning

NLP Natural Language Processing

ODE Ordinary Differential Equation

PSL Property Specification Language

PTA Prefix Tree Acceptor

SMT Satisfiability Modulo Theories

STL Signal Temporal Logic

11

1. Introduction

Given my interest in both mathematics and computer science from a very
young age, encounter with formal methods was inevitable, as they can
be found at the intersection of the two. To me, formal methods were the
ultimate form of magic: Synthesizing a system in a correct-by-construction
way that guarantees specific behavior expressed in a set of requirements
looked akin to crafting a spell carefully tailored to carry out a specific task.
And this was more than enough motivation to get me involved in the field
and the pursuit of improving the state of the art. While doing so, I realized
that, even though the usefulness of formal methods is well understood,
there are hindrances that prevent widespread adoption in certain parts of
the industry. These can broadly be split into two categories: (a) algorithmic
challenges and (b) modeling challenges. The former are about how well the
underlying procedures scale on systems of realistic size, while the latter
are about the effort required for modeling a system as well as its expected
behavior in terms of requirements. I decided to focus on the latter set of
challenges for my PhD thesis, in order to help others who want to become
wizards too, to do so in an easier way.

1.1 Background

1.1.1 System Design

The variety of system design methodologies in practice today can be cate-
gorized based on several dimensions. One such dimension is the high-level
structured (or not) workflow they may follow. Some examples here are the
traditional waterfall approach [116], the widely used V-model approach
(Figure 1.1) [114], and the more recent agile approach [115], which tends
to be popular among startups. Another important dimension is whether
we move directly from the mind of the designer to a system prototype
(implementation) or whether this transition is gradual and involves build-

13

Introduction

ing (abstract) system models in the process, in which case we talk about
Model-Based Design (MBD) [15, 105, 66, 78, 44, 93, 94, 99, 55, 104]. In
the case where models are used, we can further classify based on whether
these models are built manually or automatically (e.g. from specifications
and / or example behaviours). In addition to that, there is also the question
of which kinds of models are used. These can, for example, be (finite)
state machines, differential equations, hybrid automata [14, 54], neural
networks etc. Some of these models can actually also become part of the
final system implementation; for example, a neural network model could
be used as (part of) the image recognition software module of a self-driving
car. Alternatively, the models can be further refined into more efficient im-
plementations; for example, a neural network model could be implemented
on an FPGA.

Implementation

Unit Testing

Integration
Testing

System Testing

Operation and
Maintenance

Low-level
Design

High-level
Design

Requirements

Concept of
Operations

Figure 1.1. V-Model system design methodology

Regardless of the specifics of a particular system design methodology, it
is well understood today that model-based design offers several concrete
advantages over prototype-based design (where no models are involved)
[107]. In particular, models are safer than prototypes, cheaper and faster
to build, modify and maintain, as well as cheaper and faster to simulate
(e.g. for testing purposes). In addition to that, one can perform more
rigorous types of analysis on models (such as static analysis and formal
verification) that cannot be performed on prototypes.

One disadvantage of the current MBD state of practice is that, more
often than not, these models are typically built by hand, which can be

14

Introduction

quite expensive and error prone. In particular, it requires manual effort
by domain experts, who may need several attempts to build a model
conforming to the given set of requirements. An emerging paradigm w.r.t.
this aspect of system design is the so called Data-driven and Model-based
Design (DMD) [107]. In this context, models are synthesized automatically
from specifications and / or example behaviour [16, 17, 18, 30, 39, 19], the
end goal being to reduce human effort, as well as to obtain correct-by-
construction models, guaranteed to conform to the requirements.

The focus of this thesis w.r.t. the system design aspect is in providing
processes and algorithms to help migrate from the typical MBD setting
into a more DMD-enabled one.

1.1.2 Formal Methods - What and Why

In 1970 Edsger Dijkstra famously stated that “Testing can only show
the presence, not the absence of bugs”; in order to achieve the latter,
a different approach is necessary. Formal methods constitutes such an
approach, consisting of mathematically rigorous ways for specification and
verification of hardware and software.

In the context of formal methods we can distinguish three specific ac-
tivities: (1) modeling, (2) specification and (3) verification. Modeling is
about describing the system, or rather an abstraction of the system, to
be verified using an appropriate formalism, such as state machines (for
finite state systems) or hybrid automata [54] (for cyber-physical systems).
Specification focuses on describing the property to be verified and is typi-
cally done in some form of logic, such as propositional, first order, higher
order, or modal logics, such as Linear Linear Temporal Logic (LTL) [86],
Computation Tree Logic (CTL) [35] and Differential Dynamic Logic (DDL)
[85].

Verification is about taking a model and a specification and applying
a procedure in order to determine whether the model conforms to the
specification. We distinguish two main categories here: Model checking
[36] and deductive verification [51]. The former is an automatic approach
of systematically performing exhaustive exploration of the given model.
The latter is typically carried out with the help of proof assistants and
requires manual effort, but can in principle handle more types of properties
as well as larger models than model checking can.

1.1.3 A Brief History of Formal Methods

One can trace the beginning of formal methods [38] back to 1954, when
Martin Davis developed the first computer generated proof for the theorem
stating that the product of two even numbers is even [80]. Important
milestones since then include the development of the Stanford Pascal

15

Introduction

Verifier (1960s) [70], ACL (1970s) [1], Isabelle [4], Coq [2] and PVS [5]
proof assistants (1980 - 2000) on the deductive verification side, as well
as temporal logics (LTL [86], CTL [35] – 1970s), the first model checking
algorithms (1980s) [34, 87], symbolic model checking (1993) [72], as well
as bounded [33] and probabilistic [63] model checking (1999-2005) on the
model checking side.

1.1.4 Formal Methods in Industry Today

Presently, formal methods are in use by leading hardware vendors [52,
45, 89] (their use was initially facilitated by the advent of symbolic model
checking, which drastically increased the number of system states that
can be explored automatically). Adoption on the software side is also
growing by the day, so that leading software companies now have dedicated
verification groups [77, 31, 21, 90, 29].

We can identify two broad categories of challenges that need to be ad-
dressed in order to increase adoption of formal methods in the industry:
the algorithmic challenge and the modeling challenge. The former is re-
lated to the (in)ability of tools and algorithms used for verification to scale
to industrial size problems – the so called state explosion issue of model
checking is a representative example. Potential solutions here include
abstraction and compositional verification approaches [36, 106].

The modeling challenge is about system model definition and require-
ment formalization. The algorithms used to conduct verification require
a formal model of the system as well as a formal specification of the ex-
pected behavior. Generating each of these artefacts typically requires
expert manual effort, the volume of which can sometimes be prohibitive in
cases of legacy systems. Potential solutions here include automatic model
extraction approaches, verification algorithms able to work on actual sys-
tem implementations , as well as approaches for automatic requirement
formalization. In this thesis, the focus is on providing solutions for the
modeling challenge, primarily from an industrial point of view.

1.1.5 Learning

One can encounter several different forms of learning in the current state
of practice; to name a few, consider system identification [69] and machine
learning [75]. The goal of the former is to extract information about
structure and / or parameters of an unknown system, while the latter is
typically linked with artificial intelligence [91] and focuses on solving a
variety of related problems, such as (image) classification, optical character
recognition, natural language processing / understanding, etc.

Within each of these two categories, one can identify more refined parti-
tions, based on the amount of training data needed, the learned model type,

16

Introduction

as well as how easy the learned model is to analyze. For example, in the
system identification category, the learned model could be a (finite) state
machine, a dynamical system or a hybrid system, each of which would
typically need more training data and be more difficult to analyze than the
previous model type. Correspondingly, in the machine learning category,
the learned model could be a decision tree, a random forest or a neural
network, with similar characteristics w.r.t. amount of training data needed
and amenability to analysis.

In this thesis we focus mainly on the system identification type of learn-
ing, and in particular on white-box (finite state machine) model learning.

1.2 Research Questions and Contributions

Arguably, the earlier formal methods are introduced in the design life-
cycle of a system, the easier this is done. The real challenge lies in legacy
systems that are implemented without best engineering practices in mind
and end up in monolithic implementations that are practically black boxes
(i.e. difficult to reason about or change).

More often than not, the problems in such cases begin with how require-
ments are handled. Typically, requirements are expressed in unstructured,
natural language format, which is prone to ambiguities and prevents
early potential inconsistency detection, as well as analysis and tool sup-
port opportunities in general. In addition, test cases and requirement
monitors, if existent, are typically constructed manually, which is time
consuming and error prone. While formalization of requirements could
address these issues, it is often not performed as simply the vast volume of
legacy requirements makes this prohibitively time consuming.

To facilitate the shift towards proper model based system engineering
practices, including integration of formal methods, in such cases, we would
need ways for rapid requirements formalization as well as model extraction
from black-box systems. Practical verification approaches that can be
applied on implementations (e.g. code) – and not just models – can also
be useful here. In this context, we formulate the following four research
questions which we address in the thesis.

Research Question 1: Approaches for (semi-)automated requirements
formalization typically have two flavours: (a) either go directly from natural
language to a specification language or (b) go from controlled / constrained
natural language to a specification language. In the former case, translation
accuracy is typically not sufficiently high to be of practical use, while the
latter case is typically limited to a particular domain and does not address
the potentially big volume of natural language legacy requirements that
have to be rewritten. Is it possible to employ learning techniques in order to
get the best of both worlds?

17

Introduction

The answer is affirmative and the related contributions can be found in
Chapter 2 and publication I. In particular, the developed requirements
formalization workflow leverages NLP and ML techniques to automati-
cally identify patterns in natural language requirements and, by doing
so, significantly reduce the required formalization effort for both new and
legacy requirements.

Research Question 2: Existing approaches for safety LTL to DFA
translation exhibit issues such as unbounded size of intermediate trans-
lation results and inability to take into account a-priori knowledge about
the target automaton in order to speed up the trnanslation process. Is it
possible to use learning in order to address these shortcomings?

The answer is affirmative and the related contributions can be found in
Chapter 3 and publication II. In particular, the developed monitor gen-
eration algorithm, by leveraging active automata learning techniques,
provides theoretical guarantees about the size of the intermediate trans-
lation results, is able to leverage a-priori knowledge about the target
automaton in order to accelerate the translation process, and manages to
significantly outperform state of the art approaches w.r.t. execution time
and memory consumption in some cases.

Research Question 3: Is it possible to extend the RPNI passive au-
tomata learning algorithm to learn Moore machines, preserving efficiency
(i.e. polynomial complexity) and other properties (e.g. identification in the
limit)?

The answer is affirmative and the related contributions can be found in
Chapter 4 and publications III and IV. In particular, the developed finite
state machine extraction algorithm is accompanied by theoretical results
on convergence as well as an efficient implementation, outperforming the
state of the art w.r.t. execution time and memory consumption.

Research Question 4: Is it possible, in the context of dynamical sys-
tems and, in particular, matrix iterative algorithms, to perform automated
reachability analysis directly on system implementations (e.g. C++ code)
without the need to manually generate corresponding abstract models? And
if so, what are the benefits of doing so over alternative approaches (e.g.
translation of the code to model checker / theorem prover input)?

The answer is affirmative and the related contributions can be found
in Chapter 5 and publications V and VI. The developed workflow enables
instrumentation of C/C++ code describing the behavior of a dynamical
system towards performing automated reachability analysis without the
need of deriving a separate model of the system. The developed approach
is demonstrated through application of the workflow on iterative matrix
algorithms, viewed as dynamical systems, where it enables a-priori com-
putation of convergence bounds for given initial matrix ranges, for which
existing theoretical (i.e. closed form) approaches are not able to provide an
answer.

18

Introduction

1.3 Thesis Organization

In this thesis, we present a solution towards aiding re-engineering of legacy
systems using model based design best practices. This is done through
contributions in four key areas: requirements formalization (Chapter 2),
automated monitor generation (Chapter 3), model learning from examples
(Chapter 4), and practical reachability analysis for system implementations
(Chapter 5). Finally (Chapter 6), we conclude and discuss possible future
extensions of the developed workflows and algorithms.

19

2. Requirements Formalization

Managing requirements in industrial environments is typically done in
unstructured, natural language format, which prevents the adoption of au-
tomated analysis that can improve both quality and speed of development
by e.g. detecting inconsistencies early in the design phase. In addition,
requirement monitors and test cases are typically created manually, which,
apart from being time consuming, is error prone. Formalization of require-
ments can provide a solution here, however the sheer volume of legacy
requirements often makes this prohibitively time consuming. In order to
address these issues, we developed an end-to-end workflow and tool for
rapid requirements formalization, starting from natural language require-
ments and going all the way down to automatically generated monitors.
Specifically, by using NLP and ML techniques for requirement pattern ex-
traction, we accelerate formalization for both legacy and new requirements.
Formalized requirements can then be used for consistency checking (in
order to prevent early design error propagation), as well as for automatic
test-case and monitor generation.

Approaches for automatic requirement formalization (natural language
to formal language) have been explored before and generally fall into two
broad categories. In particular, there are approaches that (a) translate
from natural language to a specification language, e.g. [79, 53] and ap-
proaches that (b) translate from controlled natural language (typically
domain specific) to a specification language, e.g. [23, 43, 3]. In the for-
mer case, the reported translation accuracy is generally not sufficiently
high to be of practical use, particularly when applied on data that differ
non-trivially from those used for training. In the latter case, while the
approach is adequate for introducing new requirements, it does not enable
efficient handling of the potentially big volume of legacy requirements that
have to be rewritten.

The novelty of our approach lies in the fact that it combines useful parts
from both worlds by essentially learning a controlled natural language (the
extracted requirement patterns) from legacy requirements. And while the
formalization part is manual, the overall workload is reduced drastically,

21

Requirements Formalization

since the engineer only needs to formalize the (typically small) set of
extracted patterns. To the best of our knowledge, the work closest to
ours here is [23], the main differences being as follows: (i) They focus on
continuous time properties by making use of Signal Temporal Logic (STL),
while we focus on discrete time properties. (ii) They focus on requirements
specified in a template-based constrained natural language, while we
focus on automatically discovering such templates / patterns by analyzing
unconstrained natural language requirements.

Legacy

Requirements

New

Requirements

Requirements

Editor

Formalized

Requirements

NLP Preprocessing
Hierarchical

Clustering

Pattern

Library / Grammar

Consistency

Checking
Monitor

Generation

Simulink

Monitors

Figure 2.1. Requirements formalization workflow

The developed workflow is outlined in Figure 2.1. Legacy natural lan-
guage requirements are preprocessed using off the shelf NLP tools [57, 71],
as well as our own heuristics, in order to identify and abstract away do-
main entities and details (such as actual signal names and mathematical
expressions) not relevant to pattern discovery. Abstract requirements
are then clustered into groups using a hierarchical clustering algorithm.
Several approaches have been explored here to define similarity between
two requirements (necessary for the clustering algorithm to work), based
on purely syntactic information, on purely semantic information, as well

22

Requirements Formalization

as on combinations of the two, along with additional heuristics. Once the
abstract requirements are placed into clusters, individual representatives
of each cluster are essentially the patterns we are looking for. These
patterns are formalized manually, however we reduce the required effort
by employing several high level specification languages, namely PSL [7],
SpeAR DSL [43] and SALT DSL [24]. Legacy requirements are formalized
in batch during this process; once a pattern is formalized, all requirements
following that particular pattern are automatically formalized as well.

New requirements can then be formalized using existing patterns through
an editor supporting pattern and signal name autocompletion, as well as
syntax checking using a context free grammar automatically derived by
the set of identified patterns. In case no existing pattern is suitable, going
through the same process as with legacy requirements to derive new pat-
terns is always possible. Once a formalized set of requirements is obtained,
consistency checking and monitor generation can be performed automat-
ically. Consistency checking works across the supported specification
languages by translating them into LTL or past LTL and then employing
an existing algorithm [47] adapted to support linear arithmetic expres-
sions as atomic propositions by leveraging the Z3 SMT solver [40]. Monitor
generation currently targets Simulink models [41]. However, additional
targets are not difficult to add, since we first generate a target-agnostic
intermediate representation.

The developed approach has been applied on two industrial case stud-
ies: (a) Low-level requirements for the FPGA specification of Airbus A350
ETRAC (Electrical Thrust Reverser Actuation Controller), and (b) High-
level requirements for the brake control unit of Mitsubishi Regional Jet. In
the first case study, the entire workflow was used, from natural language
requirements all the way down to formal verification of the Space Vector
Modulation (SVM) subsystem of the design. We were able to fit 40% of
the 750 requirements into 25 clusters, and formalized the 100 require-
ments related to the SVM subsystem using only 6 patterns. In the second
case study, only the parsing and clustering parts of the workflow were
applied, in order to demonstrate that our approach provides benefits (e.g.
facilitating mapping of requirements to more structured representations)
even for high-level requirements that cannot be easily mapped to Simulink
monitors. In particular, we were able to fit 50% of the 700 requirements
into 15 clusters.

23

3. Monitor Generation

Safety properties are ubiquitus in model based design. Capturing the
notion that ‘nothing bad should ever happen’, they are typically expressed
in Safety LTL and can be used for formal verification, runtime monitoring,
test-case generation, as well as consistency checking. The first step in
the aforementioned processes is translating the property at hand into an
automaton. One drawback of existing approaches for this is that the size of
intermediate tranlsation results can be significantly larger than the final
automaton. In addition, to the best of our knowledge, existing implementa-
tions are unable to make use of a priori information about the translation
target that may be available. In this work, we develop a novel approach for
Safety LTL to symbolic DFA translation that addresses these limitations.
In particular, our algorithm returns a minimal automaton (w.r.t. number
of states) and provides theoretical guarantees that all intermediate results
contain strictly fewer states than the learned automaton. In addition,
the algorithm is able to incorporate a priori knowledge about the target
automaton for a significant performance gain.

The problems of translating LTL to automata and specifically Safety LTL
to DFA have received a lot of attention over the years [65, 12, 61, 46, 20].
To the best of our knowledge, the state of the art in the former case is Spot
[12] and Rabinizer [61], while in the latter case we have scheck [65]. The
problems of automata learning and grammatical inference, in general, have
also been studied extensively [39]. While we do not claim to advance the
state of the art in symbolic automata learning, note that in our extension
of an existing learning algorithm we make specific assumptions about the
nature of the automaton to be learned, which allows us to provide a more
efficient approach than we could have done otherwise.

In particular, we focus on translating from the Syntactic Safety subset of
LTL [100] into symbolic DFA [37] by adapting Angluin’s L* algorithm for
active automata learning [19]. In this setting, a learner tries to identify an
automaton by submitting queries to a teacher. These can be membership
queries, where the learner submits a word and gets back an ‘accept’ or
‘reject’ answer, or equivalence queries, where a hypothesis automaton is

25

Monitor Generation

submitted and either the process ends with success or a counterexample is
generated that drives more subsequent queries.

An overview of our algorithm is shown in Figure 3.1. A data structure
called the observation table is used throughout the algorithm to collect
information made from membership queries. Once enough information is
available, a hypothesis automaton is generated and submitted through
an equivalence query to the teacher. In our case, membership queries are
implemented by recursive traversal on the LTL formula to be translated,
while for equivalence queries we employ the NuSMV symbolic model
checker [32].

LTL
Formula

Membership
Queries

Observation
Table

Hypothesis
Generation

Candidate
Automaton

Equivalence
Query

Counterexample

Learned
Automaton

✔

✘

Figure 3.1. Monitor generation algorithm

Regarding the properties of the extended algorithm, minimality of the
learned automaton, as well as theoretical guarantee that the intermediate
hypothesis automata are strictly smaller than the learned automaton,
directly follow from the properties of the L* algorithm. Regarding compu-
tational complexity, the L* algorithm is guaranteed to terminate after at
most N equivalence queries and a number of membership queries bounded
by a polynomial quadratic on N and linear on M , where N is the number
of states of the learned automaton and M the maximum length of any
counterexample returned by the teacher. In addition, the complexity of
a membership query is polynomial on the trace length and exponential
on the formula length, while the worst-case complexity of an equivalence
query is at least doubly exponential on the length of the formula to be
translated.

The query complexity results for equivalence queries motivated the

26

Monitor Generation

Table 3.1. Counter property families

N Counter family A Counter family B

1 G(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr)) G(¬p ∨X(¬q ∨ r))

2 G(¬p ∨X(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr))) G(¬p ∨X(¬q ∨ (r ∧Xr)))

3 G(¬p ∨X(¬p ∨X(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr)))) G(¬p ∨X(¬q ∨ (r ∧X(r ∧Xr))))

search for a modified approach that eliminates this type of queries al-
together. It turns out that this is possible to do if we have some sort of a
priori knowledge about the target automaton, which is relatively straight-
forward to obtain in cases where we deal with property families with
members of increasing length such as these 1 shown in Table 3.1.

We implemented the proposed algorithm and compared against scheck
v1.2 [65], Spot v2.6.1 [12] and Rabinizer v4 [61] on (i) 500 randomly gen-
erated syntactically safe LTL formulas, (ii) 54 formulas from the Spot
benchmarks [6], as well as (iii) the 2 counter formula families from Table
3.1 and their conjunction. The results are summarized in Table 3.2 and
Figures 3.2 and 3.3 (memory consumption generally closely follows running
time in all cases). It can be seen that the proposed approach is comparable
with existing ones for formulas of small size. Moreover, by guaranteeing
that intermediate results do not explode in size, it outperforms existing
approaches in long instances of the property families in Table 3.1, by orders
of magnitude. In addition, unlike existing approaches, it can take into
account a priori information about the target automaton, which leads to
even better performance.

Table 3.2. Execution times (in seconds) for 500 random and 54 Spot formulas

Algorithm
500 random formulas 54 Spot formulas

Average Median Average Median

Proposed 0.0693 0.0457 0.1262 0.0545

Spot 0.0397 0.0373 0.0406 0.0401

scheck 0.0082 0.0065 0.0161 0.0072

Rabinizer 1.4821 1.3668 1.8128 1.6885

1These formulas, in particular, come from industrial requirements for aerospace
domain digital hardware verification, a domain where formulas of this kind with
many (typically > 50) nested next operators, expressing timing requirements for
FPGAs, appear quite frequently.

27

Monitor Generation

(a) Counter family A

(b) Counter family B

(c) Counter family conjunction

Figure 3.2. Results on counter formulas

28

Monitor Generation

(a) Counter family A

(b) Counter family B

(c) Counter family conjunction

Figure 3.3. Effect of suffix information on counter formulas

29

4. Model Learning

In the area of system design, and in particular within a DMD context,
an important problem is automatically obtaining models from data [109,
107]. Depending on the type of models to be learned, as well as the
provided input data and other assumptions or constraints, several variants
of this problem exist. For example, there is the classic field of system
identification [68], but also more recent works on generating programs,
controllers, or other artifacts from examples [101, 50, 96, 16, 18, 107].
The motivation and objectives for this type of work include, but are not
limited to, reduction of human effort in model creation, which in turn can
reduce design errors and accelerate iteration times, as well as, at the same
time, harness the abundance of available data being constantly generated
by (potentially safety-critical) systems in an efficient way, in order to
enable kinds of analyses not possible otherwise [76]. Another potential
application for model generation from data is system reimplementation,
particularly in cases where we have undocumented, essentially black-
box, legacy systems not built with best MBSE practices in mind and, as
a result, are difficult to modify and extend. In such a context, a first
step could be employing model learning approaches able to also take into
account requirements the learned model should satisfy, and use them to
generate abstract models that (a) faithfully capture the interface between
the various system components, as well as between the system and its
environment, and (b) satisfy the desired requirements by construction.

Model learning from examples has been studied for several types of state
machines, including DFA, Mealy machines, probabilistic automata, regis-
ter automata, extended Mealy machines and subsequential transducers.
Related work in this area can be classified into active learning, i.e., learn-
ing from (examples and) queries [19, 97, 60, 30, 10, 58, 9] and passive
learning, i.e., learning only from examples. In the latter category we can
also distinguish between exact approaches, which learn the smallest ma-
chine, w.r.t. number of states [56, 108] and heuristic approaches, which
do not necessarily learn the smallest machine [49, 81, 42, 64, 82, 26, 111,
113, 102, 11, 28, 74, 110].

31

Model Learning

In this thesis, we focus on the problem of learning deterministic and
complete Moore machines, from input-output traces. Despite this being
a basic problem, it appears to not have received a lot of attention in
the literature so far, however it is nevertheless worth studying as such
state machines have many applications; for example, they can be used
to represent digital circuits and controllers. In addition, the algorithms
we propose can be used as building blocks for learning more complex
types of models, such as hybrid automata [73]. The authors of [73], in
particular, employ an active Mealy machine learning algorithm but adapt it
to operate on a passive learning setting (i.e. only by examining the provided
traces) and also postprocess the learned machine in order to ensure that no
state has multiple incoming edges that produce different outputs. These
modifications together imply that a passive learning approach that learns
Moore machines, such as the one we provide here, would be a much better
fit for this purpose.

Specifically, in our work, which is situated in the heuristic approach
subcategory of the passive learning area, we formally define the problem
of learning Moore machines from input-output traces, develop three algo-
rithms, MooreMI, PRPNI and PTAP, that solve the problem, study their
theoretical properties and compare them through experimental evaluation.
In addition, we adapt MooreMI, our best algorithm, to learn Mealy ma-
chines and conduct a performance comparison against LearnLib [88] and
flexfringe [112].

The input to all three algorithms we propose is a set of input-output
traces, each trace being a pair of an input word and an output word, and
each word being a finite sequence of symbols. The output of all three
algorithms is a deterministic and complete Moore machine. An overview
of our MooreMI algorithm is shown in Figure 4.1. The algorithm consists
of two main phases, much like the RPNI [81] algorithm for learning DFA,
of which it is a natural extension. Initially, the provided set of traces
is converted into a more compact, tree based representation, called the
Prefix Tree Acceptor (PTA). Subsequently, an iterative merging phase
follows where nodes / states of the PTA compatible with each other are
merged together in order to reduce the number of states in the learned
state machine. Our PRPNI algorithm directly uses the RPNI algorithm
as a building block, by decomposing the given input-output traces into
N = ⌈log2|O|⌉ (where O is the set of distinct output symbols appearing
in the traces) sets of positive and negative examples (which can be used
as input for RPNI), invoking RPNI N times, and then computing and
completing the product of the N learned DFA in order to obtain the learned
Moore machine. Finally, our PTAP algorithm, being the simplest of the
three approaches, simply computes the prefix tree acceptor, completes it
and returns it as the learned Moore machine.

All three algorithms exhibit polynomial complexity w.r.t. to the total

32

Model Learning

Input-Output
Traces

Preprocessing

Prefix Tree
Acceptor

Merging Phase

Learned Finite
State Machine

aa ➞ 020
baa ➞ 0122
bba ➞ 0122

abaa ➞ 02220
abba ➞ 02220

q1
1

q2
2

q0
0

q3
2

b

b

a,b

a,b

a

a

qε
0qb

1

qa
2

qaa
0

qba
2 qab

2

qbb
2qbaa

2 qbba
2 qabb

2

qaba
2

qabba
0

qabaa
0

a

b

b

aa

a

b

a

b

a
a

a

Figure 4.1. FSM learning algorithm

symbol length of the training set (input-output traces), and are guaranteed
to return machines consistent with the training set, meaning that when
fed with an input word from any of the training traces, they will return
the corresponding output word. Our MooreMI algorithm also has the
identification in the limit property [48]. This ensures that the algorithm
will eventually learn the correct machine when provided with a sufficiently
large set of examples. In our case, we also formally define ‘sufficiently
large’ by extending the notion of characteristic sample, which is known
for DFA [39], in the context of Moore machines. Experimental evaluation
shows that MooreMI is superior to PTAP and PRPNI not only in theory,
but also in practice, as shown in Tables 4.2, 4.3, 4.4, 4.5 (a dash indicates
timeout). In particular, one can observe that MooreMI outperforms the

33

Model Learning

other two algorithms in terms of execution time, number of states in the
learned machine, as well as three notions of accuracy we introduce in this
thesis. Finally, our MealyMI algorithm (adaptation of MooreMI to learn
Mealy machines) outperforms LearnLib [88] and flexfringe [112] in both
execution time and memory consumption, as shown in Table 4.1.

Table 4.1. Performance comparison results with existing tools that learn Mealy machines.

Tool
Time (s) Peak Memory

Usage (GB)Parsing Learning Total

LearnLib 3.851 7.143 11.994 1.8

flexfringe 13.806 181.032 194.838 2.8

MealyMI 3.062 2.891 5.953 1.1

34

Model Learning

Table 4.2. avg training set size: 140.9 (50 states), 109.0 (150 states), avg input word len:
8.0513 (50 states), 10.0227 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 0.0059 1000 0.031 25.614 28.785 0.0067 1000 0.04 20.18 23.339

mdn 0.0058 1000 0.03 25.545 28.765 0.0062 1000 0.04 20.265 23.43

sdv 0.0008 0 0.003 0.2731 0.3421 0.001 0 0 0.2297 0.276

PRPNI
avg — — — — — — — — — —

mdn — — — — — — — — — —

sdv — — — — — — — — — —

MooreMI
avg 0.0218 65.9 0.534 31.938 35.374 0.0277 93.3 0.04 21.158 24.408

mdn 0.0199 65.5 0.515 31.885 35.42 0.0273 92 0.04 21.24 24.475

sdv 0.0035 2.8089 0.0684 0.4904 0.408 0.0024 5.1391 0 0.2906 0.3032

Table 4.3. avg training set size: 1594.4 (50 states), 1184.7 (150 states), avg input word len:
8.0028 (50 states), 10.0325 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 0.0752 10000 0.371 34.737 37.492 0.0688 10000 0.399 27.547 30.413

mdn 0.0701 10000 0.37 34.705 37.49 0.0678 10000 0.4 27.585 30.41

sdv 0.0146 0 0.003 0.0986 0.1179 0.0031 0 0.003 0.1116 0.1341

PRPNI
avg — — — — — — — — — —

mdn — — — — — — — — — —

sdv — — — — — — — — — —

MooreMI
avg 0.1911 125.5 51.989 79.065 80.207 1.1478 354.2 0.489 31.123 34.16

mdn 0.1825 126 52.95 79.635 80.71 1.1425 352 0.49 31.145 34.16

sdv 0.0443 13.025 9.1848 4.5481 4.2777 0.051 5.2498 0.0094 0.304 0.311

35

Model Learning

Table 4.4. avg training set size: 18104.9 (50 states), 13019.5 (150 states), avg input word
len: 8.0061 (50 states), 10.0076 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 0.8065 100000 4.131 45.378 47.605 0.7858 100000 4.366 36.522 39.03

mdn 0.755 100000 4.13 45.385 47.64 0.7801 100000 4.36 36.555 39.01

sdv 0.1354 0 0.0104 0.0935 0.1763 0.0342 0 0.0162 0.1211 0.1621

PRPNI
avg 3.5585 24651.7 98.637 99.562 99.683 — — — — —

mdn 2.2394 3073 98.88 99.66 99.745 — — — — —

sdv 3.9425 68215.5 1.4605 0.4823 0.3457 — — — — —

MooreMI
avg 0.3631 50 100 100 100 1.1815 220.4 95.923 98.439 98.508

mdn 0.3622 50 100 100 100 1.0768 223.5 95.84 98.4 98.47

sdv 0.0144 0 0 0 0 0.3627 34.1532 2.0841 0.7941 0.76

Table 4.5. avg training set size: 210700.0 (50 states), 144881.0 (150 states), avg input
word len: 8.0059 (50 states), 9.9993 (150 states)

50 states 150 states

Algorithm Time (s) States
Accuracy (%)

Time (s) States
Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP
avg 10.2782 1000000 47.558 74.448 75.448 10.9528 1000000 48.463 69.195 70.392

mdn 9.9208 1000000 47.55 74.445 75.44 10.7495 1000000 48.46 69.195 70.4

sdv 1.8331 0 0.0352 0.0655 0.0953 2.4395 0 0.0215 0.0385 0.0673

PRPNI
avg 27.8298 50 100 100 100 30.8077 11420 99.941 99.98 99.987

mdn 27.5391 50 100 100 100 29.7683 150 100 100 100

sdv 3.3386 0 0 0 0 3.819 13846 0.0779 0.0261 0.0168

MooreMI
avg 3.5939 50 100 100 100 4.2064 150 100 100 100

mdn 3.5039 50 100 100 100 4.1011 150 100 100 100

sdv 0.2197 0 0 0 0 0.2373 0 0 0 0

36

5. Reachability Analysis

Iterative matrix algorithms are fundamental components in many real-
time control systems and, as such, have been studied extensively by control
and applied mathematicians [83, 84], as well as embedded systems engi-
neers [62]. Such components can be part of safety-critical systems (e.g.
in avionics), which explains the interest in development and application
of relevant V&V approaches [92, 25]. In this thesis, we present such
an approach and demonstrate its application on the Schulz generalized
matrix inversion algorithm as well as the discrete time matrix algebraic
Riccati equation, both of which are fundamental building blocks in several
approaches for optimization and control [27, 67, 98]. In particular, we
are interested in performing reachability analysis for these algorithms
in order to determine number of steps required for convergence given an
initial matrix range. We do so by treating the algorithms as (discrete time)
dynamical systems (or equivalently, hybrid systems with trivial dynam-
ics where the actual computation takes place on mode transitions) and
employing a reachability analysis framework we develop to handle such
systems implemented in C++ code.

While there is no shortage of state set representations and corresponding
propagation algorithms for identification of reachable states [13], one major
characteristic of such approaches that hinders adoption in industry is that
they require formal models (e.g. hybrid automata [14, 54]) of the system at
hand to operate on. In particular, translation of the system model to an
appropriate representation introduces an additional step in the verification
process and concerns about preservation of semantics, which makes it more
difficult to convince certification authorities to accept the results of the
approach as evidence for system safety. For example, the translation step
might involve some sort of abstraction that may not be wanted; in the
case of dynamical systems, in particular, it may abstract away the specific
method used for solving of the involved ODEs (e.g. Runge-Kutta method),
which widens the gap between the model being verified and the actual
implementation. The alternative approach of C++ code instrumentation
we propose here addresses these concerns, since it is able to operate on the

37

Reachability Analysis

same level of abstraction as the final system implementation.
Approaches involving code instrumentation for checking behavior cor-

rectness have been explored before, but the focus there is typically in test
case generation [95, 22]. To the best of our knowledge, the work closest to
ours is [117]. They develop an Affine arithmetic [103] based framework for
instrumentation of SystemC code towards reachability analysis, but the
focus is on extending Affine arithmetic to be able to handle hybrid behavior
(i.e. including mode switching), while we focus on dynamical systems (in
particular, matrix iterative algorithms) and use Affine arithmetic as a
building block (without extending it). Specifically, we develop a framework
for C++ code instrumentation towards reachability analysis of dynamical
systems and, in particular, matrix iterative algorithms, by providing ma-
trix data types and associated operations (e.g. multiplication, inversion,
determinant and norm computation etc.), convergence criteria for the two
algorithms we study (Schulz matrix inversion and discrete time algebraic
Riccati equation), as well as an adaptive domain subdivision procedure
together with two domain splitting heuristics.

In implementing an instrumentation framework for reachability analysis,
we distinguish two key components, in general: First, a state set represen-
tation and associated propagation algorithm implemented in the language
of choice (C++ in our case). Second, domain-specific utility data structures
and procedures that facilitate minimally intrusive instrumentation of the
system implementation and corresponding simulation / integration scheme
(e.g. Runge-Kutta method) to enable reachability analysis. In principle,
any state set representation and corresponding propagation algorithm can
be used but, to keep things simple in our initial implementation, we opted
for an Affine arithmetic [103] solution, since C++ libraries for it already
exist [8] and, by virtue of making it easy to maintain a reachable set for
each state variable, also simplifies the instrumentation step.

The bulk of the work in our implementation was building the instru-
mentation infrastructure. Since the initial application of the framework
was iterative matrix algorithms viewed as dynamical systems, appropriate
matrix data types had to be defined, supporting all relevant operations
in safe (i.e. conservative w.r.t. reachable state set computation) ways. In
addition to that, we had to provide safe implementations for a few domain
specific bound computations (that served as stopping / convergence criteria
for the iterative matrix algorithms under analysis), as well as an adap-
tive domain subdivision scheme (Figure 5.1), along with two associated
domain splitting heuristics (Figure 5.2), in order to partially counteract
the conservativeness of Affine arithmetic and provide tighter (but still safe)
analysis results. In particular, in the context of the two iterative matrix
algorithms we studied, there were cases where, given the same initial
matrix range, the algorithm would diverge without domain subdivision,
but converge when subdivision was performed (Figure 5.1). In addition,

38

Reachability Analysis

no splitting heuristic of the two we tried was strictly better than the other
– there were problem instances where the first performed better (smaller
total number of subdivisions, as well as shorter execution time) and other
problem instances where the second performed better (Figure 5.2).

✔✔

✘

✘

[0.0,1.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.5,1.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,0.5][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,1.0][1.0,2.0]

[2.0,3.0][3.0,3.5]
[0.0,1.0][1.0,2.0]

[2.0,3.0][3.5,4.0]

1st subdivision

2nd subdivision

convergence

divergence
✔
✘✔

Figure 5.1. Adaptive domain subdivision scheme – when the iterative algorithm diverges,
subdivide the domain and rerun on the resulting matrices

[0.0,8.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,4.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,2.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,1.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,8.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,4.0][1.0,2.0]

[2.0,3.0][3.0,4.0]

[0.0,4.0][1.0,1.5]

[2.0,3.0][3.0,4.0]

[0.0,4.0][1.0,1.5]

[2.0,2.5][3.0,4.0]

Figure 5.2. Domain splitting heuristics – always subdivide wider matrix element (left) vs
subdivide all matrix elements in order (right)

39

6. Conclusion and Perspectives

In this thesis, we present a solution towards aiding re-engineering of legacy
systems using model based design best practices through contributions in
the areas of requirements formalization, automated monitor generation,
model learning from examples, and practical reachability analysis for
system implementations.

6.1 Requirements Formalization

The developed workflow for requirements formalization leverages NLP and
ML methods for pattern identification from legacy requirements, which
in turn accelerates formalization of both legacy and new requirements.
A variety of formal languages is supported and, once requirements are
formalized, consistency checking and automatic monitor generation can
be performed as well. The approach has been tested on industrial case
studies with several hundreds of requirements in each case and the results
have been very promising.

One limitation here is that the approach currently only focuses on func-
tional requirements (i.e. system behavior). Therefore, a direction worth
exploring in the future is handling non-functional requirements as well
(e.g. timing and architectural constraints). Another interesting direction
for future development would be extending the tool with more specifica-
tion languages and monitor generation targets in order to enable further
interoperability with other tools and ease adoption from industrial users.

6.2 Monitor Generation

The developed approach for monitor generation of safety LTL properties
is comparable performance-wise with existing ones for formulas of small
size. Moreover, by providing theoretical guarantees (through leveraging
of an active automata learning technique) that intermediate results do

41

Conclusion and Perspectives

not explode in size, it outperforms the state of the art in translation
times for certain property families, by orders of magnitude. In addition,
unlike implementations of existing approaches, it can take into account
a-priori information about the target automaton, which leads to even better
performance.

Interesting directions for future work here include using more optimized
versions of the underlying learning algorithm, employing incremental
model checking approaches for equivalence queries, as well as extending
the work to translation of general (not just safety) LTL properties to Büchi
automata.

6.3 Model Learning

The developed algorithm for finite state machine learning from examples
has desirable theoretical properties (it converges to the ‘correct’ machine
if given ‘enough’ example traces) as well as competitive performance com-
pared to existing approaches.

Apart from further experimentation w.r.t. learning various types of black-
box systems, an interesting direction to explore in the future would be
extending the algorithm to also take into account requirements the learned
machine should satisfy, by employing e.g. a CEGIS [59] outer loop.

6.4 Reachability Analysis

The developed framework for reachability analysis of dynamical system
implementations has been successfully applied on analysis of iterative
matrix algorithms, enabling derivation of convergence related results that
were not possible through analytical (i.e. closed form) means.

In the context of iterative matrix algorithms, exploring different domain
splitting heuristics would be an interesting direction for future work. In a
more general view, we believe it would be worth exploring integration with
different reachability analysis algorithms, as well as extension of the work
to be able to handle hybrid systems too.

42

References

[1] A Computational Logic for Applicative Common Lisp (ACL2). https://www.

cs.utexas.edu/users/moore/acl2/. Accessed: 2021-06-01.

[2] Coq formal proof management system. https://coq.inria.fr/. Accessed:
2021-06-01.

[3] FRET: Formal Requirements Elicitation Tool. https://github.com/

NASA-SW-VnV/fret/. Accessed: 2022-08-08.

[4] Isabelle generic proof assistant. https://isabelle.in.tum.de/. Accessed: 2021-
06-01.

[5] Prototype Verification System (PVS). https://pvs.csl.sri.com/. Accessed:
2021-06-01.

[6] Spot 1.0 benchmarks. https://www.lrde.epita.fr/~adl/ijccbs/.

[7] IEEE Standard for Property Specification Language (PSL). IEEE Std
1850-2010 (Revision of IEEE Std 1850-2005), pages 1–182, 2010.

[8] aaflib - An Affine Arithmetic C++ Library. http://aaflib.sourceforge.net,
2019. [Online; accessed 9-August-2022].

[9] Fides Aarts, Paul Fiterau-Brostean, Harco Kuppens, and Frits W. Vaan-
drager. Learning Register Automata with Fresh Value Generation. In
Theoretical Aspects of Computing - ICTAC, volume 9399 of LNCS, pages
165–183, 2015.

[10] Fides Aarts and Frits Vaandrager. Learning I/O Automata. In CONCUR,
pages 71–85. Springer, 2010.

[11] A. V. Aleksandrov, S. V. Kazakov, A. A. Sergushichev, F. N. Tsarev, and
A. A. Shalyto. The use of evolutionary programming based on training
examples for the generation of finite state machines for controlling objects
with complex behavior. J. Comput. Sys. Sc. Int., 52(3):410–425, 2013.

[12] Alexandre Duret-Lutz and Alexandre Lewkowicz and Amaury Fauchille
and Thibaud Michaud and Etienne Renault and Laurent Xu. Spot 2.0 — a
framework for LTL and ω-automata manipulation. In Proceedings of the
14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science,
pages 122–129. Springer, oct 2016.

[13] Matthias Althoff, Goran Frehse, and Antoine Girard. Set Propagation
Techniques for Reachability Analysis. Annual Review of Control, Robotics,
and Autonomous Systems, 4, 05 2021.

43

 https://www.cs.utexas.edu/users/moore/acl2/
 https://www.cs.utexas.edu/users/moore/acl2/
 https://coq.inria.fr/
 https://github.com/NASA-SW-VnV/fret/
 https://github.com/NASA-SW-VnV/fret/
 https://isabelle.in.tum.de/
 https://pvs.csl.sri.com/
https://www.lrde.epita.fr/~adl/ijccbs/
http://aaflib.sourceforge.net

References

[14] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138(1):3–34, 1995. Hybrid Systems.

[15] Rajeev Alur. Principles of Cyber-Physical Systems. The MIT Press, 2015.

[16] Rajeev Alur, Milo M. K. Martin, Mukund Raghothaman, Christos Stergiou,
Stavros Tripakis, and Abhishek Udupa. Synthesizing Finite-State Protocols
from Scenarios and Requirements. In Eran Yahav, editor, Hardware and
Software: Verification and Testing - 10th International Haifa Verification
Conference, HVC 2014, Haifa, Israel, November 18-20, 2014. Proceedings,
volume 8855 of Lecture Notes in Computer Science, pages 75–91. Springer,
2014.

[17] Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis,
and Abhishek Udupa. Automatic Completion of Distributed Protocols with
Symmetry. In Daniel Kroening and Corina S. Pasareanu, editors, Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture
Notes in Computer Science, pages 395–412. Springer, 2015.

[18] Rajeev Alur and Stavros Tripakis. Automatic Synthesis of Distributed
Protocols. SIGACT News, 48(1):55–90, mar 2017.

[19] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[20] Tomás Babiak, Mojmír Kretínský, Vojtech Rehák, and Jan Strejcek. LTL
to Büchi Automata Translation: Fast and More Deterministic. CoRR,
abs/1201.0682, 2012.

[21] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM
and Static Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft. In Eerke A. Boiten, John Derrick, and Graeme Smith, editors,
Integrated Formal Methods, pages 1–20, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[22] Thomas Ball and Jakub Daniel. Deconstructing Dynamic Symbolic Execu-
tion. In Dependable Software Systems Engineering, 2015.

[23] Alessio Balsini, Marco Di Natale, Marco Celia, and Vassilios Tsachouridis.
Generation of Simulink monitors for control applications from formal re-
quirements. In 2017 12th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 1–9. IEEE, 2017.

[24] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT—Structured
Assertion Language for Temporal Logic. volume 4260, pages 757–775, 11
2006.

[25] Christine M. Belcastro. Validation and Verification (V&V) of Safety-Critical
Systems Operating under Off-Nominal Conditions, pages 399–419. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[26] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishna-
murthy. Inferring Models of Concurrent Systems from Logs of Their Be-
havior with CSight. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 468–479, New York, NY, USA,
2014. ACM.

[27] D. Boley and B. N. Datta. Numerical Methods for Linear Control Systems.
In Christopher I. Byrnes, Biswa N. Datta, Clyde F. Martin, and David S.
Gilliam, editors, Systems and Control in the Twenty-First Century, pages
51–74, Boston, MA, 1997. Birkhäuser Boston.

44

References

[28] I. P. Buzhinsky, V. I. Ulyantsev, D. S. Chivilikhin, and A. A. Shalyto. Induc-
ing finite state machines from training samples using ant colony optimiza-
tion. J. Comput. Sys. Sc. Int., 53(2):256–266, 2014.

[29] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim
Purbrick, and Dulma Rodriguez. Moving Fast with Software Verification.
In Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods, pages 3–11, Cham, 2015. Springer International Publish-
ing.

[30] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Learning
Extended Finite State Machines. In Dimitra Giannakopoulou and Gwen
Salaün, editors, Software Engineering and Formal Methods, pages 250–264,
Cham, 2014. Springer International Publishing.

[31] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Fe-
lipe R. Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael
Tautschnig, and Mark R. Tuttle. Code-Level Model Checking in the Soft-
ware Development Workflow. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’20, page 11–20, New York, NY, USA, 2020. Association
for Computing Machinery.

[32] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Com-
puter Aided Verification, pages 359–364, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[33] E. Clarke, Armin Biere, R. Raimi, and Y. Zhu. Bounded Model Checking
Using Satisfiability Solving. Formal Methods in System Design, 19:7–34,
2001.

[34] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of
Finite State Concurrent System Using Temporal Logic Specifications: A
Practical Approach. In Proceedings of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’83, page
117–126, New York, NY, USA, 1983. Association for Computing Machinery.

[35] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Dexter Kozen,
editor, Logics of Programs, pages 52–71, Berlin, Heidelberg, 1982. Springer
Berlin Heidelberg.

[36] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of Model Checking. Springer Publishing Company,
Incorporated, 1st edition, 2018.

[37] Loris D’Antoni and Margus Veanes. The Power of Symbolic Automata and
Transducers. In CAV, 2017.

[38] Ashish Darbari. A Brief History of Formal Verification. https://www.eeweb.

com/a-brief-history-of-formal-verification/, 2019. Accessed: 2021-06-01.

[39] Colin de la Higuera. Grammatical Inference: Learning Automata and
Grammars. Cambridge University Press, New York, NY, USA, 2010.

[40] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems, 4963:337–340,
04 2008.

45

 https://www.eeweb.com/a-brief-history-of-formal-verification/
 https://www.eeweb.com/a-brief-history-of-formal-verification/

References

[41] Simulink Documentation. Simulation and Model-Based Design, 2020.

[42] Pierre Dupont. Incremental regular inference. In ICGI-96, pages 222–237,
1996.

[43] Aaron Fifarek, Lucas Wagner, Jonathan Hoffman, Benjamin Rodes,
M. Aiello, and Jennifer Davis. SpeAR v2.0: Formalized Past LTL Spec-
ification and Analysis of Requirements. In NASA Formal Methods, pages
420–426, 04 2017.

[44] Amit Fisher, Clas A. Jacobson, Edward A. Lee, Richard M. Murray, Alberto
Sangiovanni-Vincentelli, and Eelco Scholte. Industrial Cyber-Physical
Systems – iCyPhy. In Marc Aiguier, Frédéric Boulanger, Daniel Krob, and
Clotilde Marchal, editors, Complex Systems Design & Management, pages
21–37, Cham, 2014. Springer International Publishing.

[45] Arthur Flatau, Matt Kaufmann, David Reed, David Russinoff, Eric Smith,
and Rob Sumners. Formal Verification of Microprocessors at AMD. 01 2002.

[46] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Translation.
In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Computer
Aided Verification, pages 53–65, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[47] Nicola Gigante, Angelo Montanari, and Mark Reynolds. A One-Pass Tree-
Shaped Tableau for LTL+Past. In Thomas Eiter and David Sands, editors,
LPAR-21. 21st International Conference on Logic for Programming, Artifi-
cial Intelligence and Reasoning, volume 46 of EPiC Series in Computing,
pages 456–473. EasyChair, 2017.

[48] E. Mark Gold. Language Identification in the Limit. Information and
Control, 10(5):447–474, 1967.

[49] E. Mark Gold. Complexity of Automaton Identification from Given Data.
Information and Control, 37(3):302–320, 1978.

[50] Sumit Gulwani. Automating string processing in spreadsheets using input-
output examples. In 38th POPL, pages 317–330, 2011.

[51] Reiner Hähnle and Marieke Huisman. Deductive Software Verification:
From Pen-and-Paper Proofs to Industrial Tools, pages 345–373. Springer
International Publishing, Cham, 2019.

[52] John Harrison. Formal Verification at Intel. In Proceedings of the 18th
Annual IEEE Symposium on Logic in Computer Science, LICS ’03, page 45,
USA, 2003. IEEE Computer Society.

[53] He, Jie and Bartocci, Ezio and Ničković, Dejan and Isakovic, Haris and
Grosu, Radu. DeepSTL - From English Requirements to Signal Temporal
Logic. In 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), pages 610–622, 2022.

[54] Thomas A. Henzinger. The Theory of Hybrid Automata, pages 265–292.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[55] Thomas A. Henzinger and Joseph Sifakis. The Discipline of Embedded
Systems Design. Computer, 40(10):32–40, 2007.

[56] Marijn J. Heule and Sicco Verwer. Software Model Synthesis Using Satisfi-
ability Solvers. Empirical Softw. Engg., 18(4):825–856, August 2013.

[57] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane
Boyd. spaCy: Industrial-strength Natural Language Processing in Python.
https://doi.org/10.5281/zenodo.1212303, 2020.

46

https://doi.org/10.5281/zenodo.1212303

References

[58] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring
Canonical Register Automata. In VMCAI 2012, Proceedings, pages 251–266,
2012.

[59] Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via Induc-
tive Learning. Acta Inf., 54(7):693–726, November 2017.

[60] Bengt Jonsson. Learning of Automata Models Extended with Data. In SFM
2011, Advanced Lectures, pages 327–349, 2011.

[61] Jan Křetínský, Tobias Meggendorfer, Salomon Sickert, and Christopher
Ziegler. Rabinizer 4: From LTL to Your Favourite Deterministic Automaton.
In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Veri-
fication, pages 567–577, Cham, 2018. Springer International Publishing.

[62] Gurrala Ajay Kumar, Thadigotla Venkata Subbareddy, Bommepalli Mad-
hava Reddy, N Raju, and V Elamaran. An approach to design a matrix
inversion hardware module using FPGA. In 2014 International Conference
on Control, Instrumentation, Communication and Computational Technolo-
gies (ICCICCT), pages 87–90, 2014.

[63] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Computer Aided Verification, pages 585–591,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[64] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the
Abbadingo One DFA Learning Competition and a New Evidence-Driven
State Merging Algorithm. In ICGI-98, pages 1–12, 1998.

[65] Timo Latvala. Efficient Model Checking of Safety Properties. In Thomas
Ball and Sriram K. Rajamani, editors, Model Checking Software, pages
74–88, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[66] Insup Lee, Joseph Y-T. Leung, and Sang H. Son. Handbook of Real-Time
and Embedded Systems. Chapman amp; Hall/CRC, 1st edition, 2007.

[67] W.S. Levine. The Control Handbook. CRC Press, 2011.

[68] Lennart Ljung. System Identification: Theory for the User. Prentice Hall, 2
edition, 1999.

[69] Lennart Ljung. System Identification: An Overview, pages 1–20. 01 2014.

[70] David C. Luckham, Steven M. German, Friedrich W. von Henke, Richard A.
Karp, P. W. Milne, Derek C. Oppen, Wolfgang Polak, and William L. Scherlis.
Stanford Pascal Verifier User Manual. Technical report, Stanford, CA, USA,
1979.

[71] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven
Bethard, and David McClosky. The Stanford CoreNLP Natural Language
Processing Toolkit. 01 2014.

[72] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, USA, 1993.

[73] Ramy Medhat, S. Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeis-
ter. A framework for mining hybrid automata from input/output traces. In
2015 International Conference on Embedded Software (EMSOFT), pages
177–186, 10 2015.

47

References

[74] Karl Meinke. CGE: A Sequential Learning Algorithm for Mealy Automata.
In Grammatical Inference: Theoretical Results and Applications, 10th Inter-
national Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010.
Proceedings, pages 148–162, 2010.

[75] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1 edition,
1997.

[76] Elisa Negri, Luca Fumagalli, and Marco Macchi. A Review of the Roles of
Digital Twin in CPS-based Production Systems. Procedia Manufacturing,
11:939–948, 12 2017.

[77] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. How Amazon Web Services Uses Formal Methods.
Commun. ACM, 58(4):66–73, mar 2015.

[78] Gabriela Nicolescu and Pieter Mosterman. Model-Based Design for Embed-
ded Systems. 09 2018.

[79] Allen Nikora and Galen Balcom. Automated Identification of LTL Patterns
in Natural Language Requirements. In 2009 20th International Symposium
on Software Reliability Engineering, 11 2009.

[80] Eugenio G. Omodeo and Alberto Policriti, editors. Martin Davis on Com-
putability, Computational Logic, and Mathematical Foundations, volume 10
of Outstanding Contributions to Logic. Springer, 2016.

[81] Jose Oncina and Pedro Garcia. Identifying Regular Languages In Polyno-
mial Time. In Advances in Structural and Syntactic Pattern Recognition,
pages 99–108, 1992.

[82] José Oncina, Pedro García, and Enrique Vidal. Learning Subsequential
Transducers for Pattern Recognition Interpretation Tasks. IEEE Trans.
Pattern Anal. Mach. Intell., 15(5):448–458, 1993.

[83] P. Hr. Petkov, N. D. Christov, and M. M. Konstantinov. Computational
Methods for Linear Control Systems. Prentice Hall International (UK) Ltd.,
GBR, 1991.

[84] Marko D. Petković and Predrag S. Stanimirović. Generalized Matrix In-
version is Not Harder than Matrix Multiplication. J. Comput. Appl. Math.,
230(1):270–282, aug 2009.

[85] André Platzer. Differential Dynamic Logic for Hybrid Systems. J. Autom.
Reason., 41(2):143–189, August 2008.

[86] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 46–57, 1977.

[87] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari,
editors, International Symposium on Programming, pages 337–351, Berlin,
Heidelberg, 1982. Springer Berlin Heidelberg.

[88] Harald Raffelt and Bernhard Steffen. LearnLib: A Library for Automata
Learning and Experimentation. FMICS’05 - Proceedings of the Tenth In-
ternational Workshop on Formal Methods for Industrial Critical Systems,
3922:377–380, 03 2006.

[89] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David
Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali
Zaidi. End-to-End Verification of Processors with ISA-Formal. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification, pages
42–58, Cham, 2016. Springer International Publishing.

48

References

[90] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza John-
son, and Ben Laurie. Towards making formal methods normal: meeting
developers where they are, October 2020. Accepted at HATRA 2020.

[91] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, USA, 3rd edition, 2009.

[92] T. Samad and A.M. Annaswamy. The Impact of Control Technology, 2nd Edi-
tion. http://ieeecss.org/impact-control-technology-2nd-edition, 2014. [On-
line; accessed 9-August-2022].

[93] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded system
design for automotive applications. Computer, 40(10):42–51, 2007.

[94] Alberto Sangiovanni-Vincentelli, Haibo Zeng, Marco Di Natale, and Peter
Marwedel. Embedded systems development. Springer, 2015.

[95] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing
engine for C. SIGSOFT Software Engineering Notes, 30:263–272, 09 2005.

[96] S. A. Seshia. Sciduction: Combining induction, deduction, and structure for
verification and synthesis. In DAC, pages 356–365, June 2012.

[97] Muzammil Shahbaz and Roland Groz. Inferring Mealy Machines. In FM
2009, pages 207–222, 2009.

[98] V. Sima. Algorithms for Linear-Quadratic Optimization. Chapman and
Hall/CRC, 1996.

[99] A Sindico, M Di Natale, and A Sangiovanni-Vincentelli. An industrial
application of a system engineering process integrating model-driven archi-
tecture and model based design. In ACM/IEEE 15th MODELS Conference,
Innsbruck, Austria, volume 10, pages 978–3, 2012.

[100] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal
Aspects of Computing, 6(5):495–511, Sep 1994.

[101] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.

[102] M. Spichakova. An approach to inference of finite state machines based on
gravitationally-inspired search algorithm. Proc. of Estonian Acad. of Sci.,
62(1):39–46, 2013.

[103] Jorge Stolfi, L. FIGUEIREDO, and Estrada Dona. An Introduction to Affine
Arithmetic. TEMA. Tendências em Matemática Aplicada e Computacional,
4, 12 2003.

[104] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer,
30(4):110–111, 1997.

[105] Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Nicholas Kotten-
stette, Panos Antsaklis, Vijay Gupta, Bill Goodwine, John Baras, and Shige
Wang. Toward a Science of Cyber–Physical System Integration. Proceedings
of the IEEE, 100(1):29–44, 2012.

[106] Stavros Tripakis. Compositionality in the Science of System Design. Pro-
ceedings of the IEEE, 104(5):960–972, 2016.

[107] Stavros Tripakis. Data-driven and model-based design. 2018 IEEE Indus-
trial Cyber-Physical Systems (ICPS), pages 103–108, 2018.

49

http://ieeecss.org/impact-control-technology-2nd-edition

References

[108] Vladimir Ulyantsev, Ilya Zakirzyanov, and Anatoly Shalyto. BFS-Based
Symmetry Breaking Predicates for DFA Identification. In Language and
Automata Theory and Applications (LATA), volume 8977 of LNCS, pages
611–622. Springer, 2015.

[109] Frits Vaandrager. Model Learning. Commun. ACM, 60(2):86–95, January
2017.

[110] L. P. J. Veelenturf. Inference of Sequential Machines from Sample Compu-
tations. IEEE Trans. Computers, 27(2):167–170, 1978.

[111] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A Likelihood-Ratio
Test for Identifying Probabilistic Deterministic Real-Time Automata from
Positive Data. In José M. Sempere and Pedro García, editors, Grammatical
Inference: Theoretical Results and Applications, pages 203–216, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[112] Sicco Verwer and Christian Hammerschmidt. flexfringe: A Passive Automa-
ton Learning Package. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 638–642, 09 2017.

[113] Neil Walkinshaw, Ramsay Taylor, and John Derrick. Inferring extended
finite state machine models from software executions. Empirical Software
Engineering, 03 2015.

[114] Wikipedia contributors. V-Model (software development) — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=V-Model_

(software_development)&oldid=1050067631, 2021. [Online; accessed 29-March-
2022].

[115] Wikipedia contributors. Agile software development — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Agile_software_

development&oldid=1078799901, 2022. [Online; accessed 29-March-2022].

[116] Wikipedia contributors. Waterfall model — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Waterfall_model&oldid=

1075719146, 2022. [Online; accessed 29-March-2022].

[117] Carna Zivkovic and Christoph Grimm. Symbolic Simulation of SystemC
AMS Without Yet Another Compiler. In 2018 Forum on Specification Design
Languages (FDL), pages 5–16, 09 2018.

50

https://en.wikipedia.org/w/index.php?title=V-Model_(software_development)&oldid=1050067631
https://en.wikipedia.org/w/index.php?title=V-Model_(software_development)&oldid=1050067631
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=1078799901
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=1078799901
https://en.wikipedia.org/w/index.php?title=Waterfall_model&oldid=1075719146
https://en.wikipedia.org/w/index.php?title=Waterfall_model&oldid=1075719146

A
-o

tl
a

D
T

1
6

2
/2

 3
2

0

9
 +a

gidb
e*GM

FTSH

I NBS 9 0-6831-46-259-87)detnirp(

I NBS 9 7-7831-46-259-87)fdp(

I NSS 1 4394-997)detnirp(

I NSS 1 2494-997)fdp(

A ytisrevinU otla

S ecneicS fo loohc

D ecneicS retupmoC fo tnemtrape

w fi.otlaa.ww

B + SSENISU
E YMONOC

A + TR
D + NGISE
A ERUTCETIHCR

S + ECNEIC
T YGOLONHCE

C REVOSSOR

D LAROTCO
T SESEH

	Aalto_DD_2023_126_Giantamidis_verkkoversio
	Aalto_DD_2023_126_Giantamidis_verkkoversio.pdf
	Abstract
	1. Introduction
	1.3 Thesis Organization

