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Abstract

Predictable and repeatable execution is the key to ensuring functional cor-
rectness for real-time systems. Scheduling algorithms are designed to generate
schedules that repeat after a certain amount of time has passed. However, this
repeatability is also a vulnerability when side-channel attacks are considered.

Side-channel attacks are attacks based on information gained from the
implementation of a system, rather than on weaknesses in the algorithm.
Side-channel attacks have exploited the predictability of real-time systems to
disrupt their correct behavior.

Schedule Randomization has been proposed as a way to mitigate this
problem. Online, the scheduler selects a schedule among a set of available
ones, trying to achieve an execution trace that is as different as possible
from previous ones, therefore minimizing the amount of information that the
attacker can gather.

This thesis investigates fundamental limitations of schedule randomization
for a generic taskset. We then propose an algorithm to construct a set of
schedules that achieves a differentation level as high as possible, using the
fewest number of schedules, for tasksets with implicit deadlines. The approach
is validated with synthetically generated tasksets and the taskset of an
industrial case study, showing promising results.
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1
Introduction

This chapter introduces the context for this work and presents some back-
ground and motivation.

1.1 Background

The set of operations to be executed on an embedded device, for example
the operations required to run a controller, is often partitioned into tasks
which run concurrently on the hardware. These tasks are assigned attributes,
such as execution time, period, and deadline. Furthermore, it is essential that
the tasks are given computational time equal to their execution time in each
time span from their activation to their deadline. If there exists a resource
distribution such that all tasks meet their corresponding deadline, the taskset
is called schedulable [Årzén, 2014, pp. 145].

Given any schedulable taskset, a schedule could be generated such that
each task is allocated its relative portion of the computational resources.
Utilizing such a schedule has the advantage of the tasks being scheduled
deterministically, assuring each deadline will be met. However, there are
disadvantages to the scheduler being deterministic as well. Every hyperperiod
(the least common multiple of all the task periods in the taskset) the scheduler
will repeat itself and is therefore predictable and vulnerable to timing inference
attacks. Such an attack aims to abuse the temporal execution of the embedded
device to either disrupt the normal behaviour or to extract information from
the device. For instance, if a taskset is transmitting data at a recurring time
interval, disrupting the transmission during this time interval would result
in data being lost. This disruption could be done surreptitiously to avoid
detection from any security system, since a detection task running on the
hardware would be unaware that something has happened. To mitigate this
problem, schedule randomization was proposed.

Given a taskset, a set of schedules (unrelated to one another) could be
generated such that each schedule is valid, i.e. all the tasks meet their deadlines.
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Chapter 1. Introduction

To quantify the randomness of such a schedule set, an entropy-like notion
was introduced. Schedule set "entropy", closely related to physical entropy,
quantifies the diversity among schedules in the set. A natural question then
arises: Is there a finite upper bound on the schedule set entropy accounting
for the temporal execution constraints?

Another problem arises from the fact that embedded devices are often
very limited by their memory size. It is therefore crucial that the size of the
schedule set is minimized.

Generating a schedule set with "entropy" as high as possible using as few
schedules as possible is the goal of this thesis.

1.2 Side-Channel Attacks

In a world with rapidly growing interest in embedded systems, e.g. Internet of
Things, cars, medical equipment, cell phones etc., the need for safe real-time
systems is greater than ever. The growing number of mobile decives have
caused an increase in side-channel attacks aimed toward these [Spreitzer
et al., 2017]. It is essential that these devices are safe to use because errors or
disruptions in the normal task executions might have dire consequences.

Generic side-channel attacks can be classified as all attacks exploiting
information about the system rather than bugs and vulnerabilities in the code
itself. For example, execution information from the scheduler can in the hands
of an attacker impose serious danger on leakage of information or disruption
of certain tasks. In [Spreitzer et al., 2017] the authors state that information
from a system can be surreptitiously extracted by observing power usage,
execution time, cached memory etc. Traditionally these attacks have been
somewhat troublesome to perform for the attacker, since the attacker had to
be located near (Local side-channel attacks) or close by (Vicinity side-channel
attacks) to the victim, e.g., jamming the transmission to or from the system
using electromagnetic fault injections [Spreitzer et al., 2017]. However, the
era of cloud computing connected most embedded systems to the internet
and thereby also expanded the scope of side-channel attacks such that they
could be performed remotely (Remote side-channel attacks). Taking remote
control of an embedded device’s sensors could for example grant you system
information by exploiting your knowledge about the power usage.

There is an urgent need for counter-measures due to the sheer number of
ways to attack these devices. Given this threat, introducing randomization
into an embedded device’s scheduler might increase the resistance against
side-channel attacks. This master’s thesis aims at impeding side-channel
attacks on embedded systems.
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1.3 Related Work

1.3 Related Work

Security in real-time embedded systems has been an increasingly popular
topic in the last couple of years. In [Jiang et al., 2014] the authors discuss the
pre-existing security in pre-emptive earliest-deadline first (EDF) schedulers
and pre-emptive rate-monotonic scheduling (RMS) against differential power
analysis attacks (DPAs). With the attacker model used in the paper, the
execution time of tasks is assumed unknown and therefore introduces a
"random" aspect which helps prevent side-channel attacks. Another related
paper is [Spreitzer et al., 2017] in which the authors discuss and classify
different types of side-channel attacks in the form of a case-study. The authors
are not presenting any solutions but their classification system and discussion
is closely related to what this thesis is trying to solve.

In [Chen et al., 2017] the authors present an algorithm for attacking and
extracting the exact schedule run on a real-time embedded system. With a
high success rate they manage to extract the entire schedule from a fixed-
priority pre-emptive hard real-time system by abusing the periodicity of the
system. This paper gives us insight, regarding how an attacker could try to
exploit the embedded device.

The paper by [Yoon et al., 2016] presents an alternative solution to the
problem presented in this thesis. The authors of that paper introduce the
"upper-approximated entropy", and they present an online based solution
rather than an offline based one. This reports expands their entropy-like
notion by introducing bounds and mathematical proofs as well as an optimal
solution.

1.4 Goals and Contribution

Previous attempts to introduce randomization in real-time embedded systems
scheduling [Yoon et al., 2016; Kruger et al., 2018] have used an algorithmic
approach and tried to compute — in the shortest amount of time possible —
randomized version of the schedule that would strive to maximize the upper-
approximated entropy of the list of schedules used at runtime. This work
takes a complementary approach.

Rather than focusing on the schedule set generation, we first focus on
analytical fundamental limitations of the problem. We analyzed the problem
and found out that we can safely compute an upper bound to the achievable
upper-approximated entropy, taking into account the constraints introduced
by the taskset characteristics. We then analyzed the number of schedules that
we need to introduce in our schedule set to achieve said upper bound.

For a subset of the possible tasksets — i.e., for the tasksets where for
each task, the activation period is equal to the computation deadline — we
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Chapter 1. Introduction

have designed an algorithm that produces a schedule set that reaches both
the mentioned bounds — i.e., an algorithm that uses the minimum number
of schedules to achieve the maximum upper-approximated entropy possible.
Finally, we evaluated our algorithm with synthetically generated tasksets, as
well as for an industrial case study.

1.5 Outline

The thesis starts with introducing side-channel attacks and their categories
in Chapter 2 and continues by presenting the problem formulation in depth
in Chapter 3. Alongside the problem formulation an example is presented,
which will be used to explain new theory.

Following the problem formulation, Chapter 4, new theorems and defini-
tions are presented and proven. The analytical results acquired here will lay
ground to the following chapters. For example, in Chapter 5 we present the
algorithm which has been designed to solve the problem formulated prior.

Results acquired from running a set of benchmark tests are presented in
Chapter 6. The accurracy of the algorithm as well as graphs and plots of the
results are presented here. A discussion about why the results behave as they
do is also provided.

The final chapter (Chapter 7) concludes the report with possible future
research extensions, obstacles faced along the course of the master’s thesis,
and conclusions drawn from the analytical and algorithmic results.

12



2
Side-Channel Attacks

In this chapter we introduce the motivation behind why security measures are
needed in real-time schedules. We describe a classification system, introduced
in [Spreitzer et al., 2017], that classifies different side-channel attacks and
analyzes their scope and scale. A few attack examples are also presented
to clarify what type of attacks we are trying to prevent, and why it is so
important to prevent them.

2.1 Motivation and Classification

[Spreitzer et al., 2017] introduces a classification system of side-channel attacks.
The proposed categorization system uses three attributes.

1. Passive vs active:
An attacker who is passive observes the system without interfering
whereas an active attacker modifies the device and/or its behaviour.

2. Physical properties vs logical properties:
This attribute specifies what kind of property the attacker targets
with his attack. An attacker could target hardware specific information
(physical properties), such as power consumption, sensor data, etc.,
or software specific information (logical properties), such as memory
footprint, cached data, etc.

3. Logical attackers vs vicinity attackers vs remote attackers:
Depending on the location of the attacker, the attack classification is
split even further. Local attackers must be so close to the device that
they can access it directly. Vicinity attackers needs to be close enough
to be able to observe and listen in on the network the device is accessing.
Lastly, remote attackers are only required to run software on the device
or for the device to access a remote server (website or cloud).
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Side-channel attacks
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Figure 2.1 A visualization of the categorization system created by [Spre-
itzer et al., 2017].

This categorization system (seen in Figure 2.1) is used to understand
specific attacks and to analyze what could be done to prevent them. Infor-
mation about the possible attackers an embedded device could encounter
helps us develop countermeasures for certain classes of attackers. Hence, the
categorization system is used to support the identification of threats, and to
support the methods developed to prevent those threats.

2.2 Attacks

There are many side-channel attacks. In this section we will present a few
attacks, that our proposed solution (Chapters 4 and 5) helps preventing.

In [Pietro et al., 2014] the authors discuss different security problems in
wireless ad-hoc networks, e.g., communicating autonomous cars. A wireless
network is constructed of nodes. One problem arises when an attacker tries to
tamper with the sensors in one of the nodes and replace them with malicious
sensors under the control of the attacker. This could result in the attacker
sending erroneous data, stealing data, or shutting down the sensor, which
could all result in hazardous outcomes.

Further research has been done in the area of security for wireless ad-hoc
networks for autonomous cars. A survey authored by [Mejri et al., 2014]
presents similar conclusions to the survey by [Pietro et al., 2014]. In the
survey they claim that jamming attacks are problematic in the sense that
they work as a physical Denial-of-Service (DoS) attack. In other words, an
attacker could transmit a signal at a specific time interval to disrupt the
communication channel. This could render the node isolated and thereby
cause major harm to surrounding nodes. Both of these attacks try to actively
target physical properties of the device. Since, the attacker has to be part
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2.2 Attacks

of, or has access to, the network these attacks would be classified as vicinity
attacks.

The next attack we discuss is the ScheduLeak algorithm [Chen et al., 2017].
The goal of the ScheduLeak algorithm is to leak the entire schedule a device
uses. When an attacker has the schedule, then for example DoS attacks (as
discussed earlier [Mejri et al., 2014]) are easier to carry out, and sensors are
easier to replace. To extract the full scheudle the authors of [Chen et al.,
2017] assume an attacker model where the taskset information is known and
that the attacker has the opportunity to run one or more tasks in the system
if needed. However, the arrival time of each task is assumed unknown. With
the authors’s proposed algorithm, they can extract the entire schedule from a
running system just by observing the busy intervals (an interval where tasks
are executing) of the schedule. Would an attacker acquire the exact schedule
of a system, he could disrupt certain tasks covertly. Classifying the attacker is
now simple: Since the attacker’s objective is to observe the system and extract
the schedule, it is a passive attack. It interacts with physical attributes such
as timing information. Finally, the ScheduLeak algorithm can be executed
from anywhere, resulting it being a remote attack.

Another side-channel attack is the differential power analysis (DPA), as
defined by [Kocher et al., 1999]. DPA uses the power trace from processed
data to extract cryptographic keys. To extract these keys, the attack relies
heavily on a stochastic evaluation of the recurring power trace the attacker
can acquire from the system. The authors propose a few solutions to mitigate
this attack, one of them being temporal obfuscation. Since the attacker has
to be in physical possession of the device and only extracts information about
the physical properties without interfering with the execution, the attack
could be classified as a passive, physical, and local side-channel attack.

A similar attack to the DPA is the differential computation analysis (DCA)
attack [Bos et al., 2016]. The authors present this modern version of the DPA
which targets white-box crypto implementations, a way of embedding the
cryptographic key into the software implementation. In their attack model
they assume the attacker has complete control over the device (not that
uncommon in today’s world of smart cell phone apps). They use dynamic
binary instrumentation (commonly used to "allow one to monitor, modify
and insert instructions in a binary executable" [Bos et al., 2016]) to precisely
monitor the execution of the program and then use DPA to extract the crypto
key. As well as the authors of [Kocher et al., 1999], the authors of [Bos et al.,
2016] propose the use of temporal obfuscation to mitigate the threat of DCA
attacks.
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3
Problem

In this chapter we formalize the problem of randomizing the execution of a
schedulable taskset (composed of periodic tasks) in a platform with limited
storage space. The problem comes from the desire to avoid side-channel
attacks, i.e., attacks in which an attacker can learn (and exploit) the behavior
of the system by observing its execution for a certain amount of time.

3.1 Problem Description

A taskset T = {τ1, τ2, . . . , τm} of m independent, periodic tasks is given. Each
task τi is defined as the tuple τi = {ei, ti, di}, where ei is the execution time to
be given to the task, ti is the task activation period, and di is the task deadline.
We denote with U the taskset utilization, i.e., U =

∑m
i=1

ei/ti. We assume that
the taskset is schedulable; ergo, there exists a resource distribution such that
each task τi meets its corresponding deadline [Årzén, 2014, pp. 145-146]. We
denote with ` the hyper-period of the taskset, i.e., the least common multiple
lcm(·) of the task periods, ` = lcm(t1, . . . , tm).

Classical scheduling algorithms such as earliest deadline first (EDF) and
fixed priority (FP) are applicable in both periodic task models as well as models
where the tasks are aperiodic or sporadic. We assume a task model utilizing
static-cyclic scheduling, i.e., the task model does not consider unknown or
unplanned interrupts [Årzén, 2014].

A schedule s for the taskset is a sequence of ` elements, that contains
numbers in the set {0, 1, . . . ,m}. Formally,

s = (s1, s2, . . . , s`) ; sj ∈ {0, 1, . . . ,m}. (3.1)

We denote with sj the value of the element in position j, i.e., the task that is
executed according to the schedule s in the j-th time unit. If the element is a
zero, the idle task is executed. If the element is a positive number i, then τi
is executed. Given that the taskset T is schedulable, we can safely assume
that s respects all the constraints that for each task and each activation,
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3.1 Problem Description

the schedule assigns the prescribed execution time before the corresponding
deadline.

It is our objective to determine a set K of k schedules that is as diverse
as possible, keeping k as small as possible. The first part of the problem
is determining the set of all the schedules that satisfy the constraints on
execution times, periods, and deadlines. This set in principle can have high
cardinality, and it may not be possible to store all the schedules in the memory
of the execution platform, e.g., an embedded system may have limited storage
for alternative schedules. Suppose we obtain a set of n valid schedules S for
the given taskset (each of length `), S = {s(1), s(2), . . . , s(n)}. The second part
of the problem is then to select k schedules (from the set S) to include in the
set K, to maximize the diversity of the schedules and avoid the possibility
that the attacker gathers information about the tasks execution.

The diversity of the set of selected schedules K can be measured in different
ways. The authors of [Yoon et al., 2016] propose the use of entropy-like metrics,
the slot entropy and the upper-approximated entropy. In the following part we
first define the slot count Cj,i,K, as the number of occurrences of a task i in a
given scheduling slot j in the set K, and then use that to formally define the
slot entropy Hj(K) and the upper-approximated entropy H̃(K). We denote
with φ(x) the function

φ(x) =

{
0 x ≤ 0

−x · log2(x) x > 0
.

φ(x) is the summand function of the Shannon entropy function H(x) =∑
i φ(xi) [Shannon, 1948]. φ(x) can also be seen in Figure 3.1.

−0.2 0.2 0.4 0.6 0.8 1

−0.2

0.2

0.4

0.6

Figure 3.1 A visualization of the Shannon entropy summand.

Definition 1
Given a set of k valid schedules K = {s(1), s(2), . . . , s(k)} for the taskset T ,
the j-th time unit, and the i-th task τi, we define the slot count Cj,i,K as a
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Chapter 3. Problem

function that counts the occurrences of the task i in the given position j in
the set K. Using the square brackets as the Iverson brackets — that evaluates
to 1 if the proposition inside the bracket is true, and to 0 otherwise — we
can then write Cj,i,K as

Cj,i,K =
∑

s(q)∈K

[
s
(q)
j = i

]
=

k∑
q=1

[
s
(q)
j = i

]
. (3.2)

2

Using the slot count, we can now formally write the slot entropy and the
upper-approximated entropy according to the definitions given in [Yoon et al.,
2016].

Definition 2
The slot entropy Hj(K) can be written as a function of the tasks found in
slot j, i.e.,

Hj(K) =
m∑
i=0

φ

(
Cj,i,K

k

)
=

m∑
i=0

−
Cj,i,K

k
· log2

Cj,i,K

k
(3.3)

2

Definition 3
The upper-approximated entropy is the sum of all the slot entropies in the
hyper-period, i.e.,

H̃(K) =
∑̀
j=1

Hj(K) =
∑̀
j=1

m∑
i=0

−
Cj,i,K

k
· log2

Cj,i,K

k
(3.4)

2

A short explanation of each definition is given. Since Definition 1 solely
defines a variable Cj,i,K which counts occurrences of τi at time slot j, it is
left self-explained.

Definition 2 however might not be quite as self-explanatory. First we
highlight the expression Cj,i,K/k that is frequently occurring. This expression
can be seen as the relative occurrence (or probability) of task τi at time slot j
in the set K. Since the cardinality is |K| = k we get the relative frequency of
task τi at time slot j as the occurrence rate Cj,i,K/k. Secondly, the definition
in [Yoon et al., 2016] is based on Shannon entropy from information theory
which is used to measure the stochasticity of data. This is what is used
together with the relative frequency to give the expression in Definition 2.

Finally, Definition 3, summing up all of the slot entropies gives us a
quantity we can compare to other schedule sets as well as give us an idea of
how diverse the schedule set is. A higher value of the upper-approximated
entropy results in a more diverse schedule set.
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3.2 Example

s(8) 1 0 1 2

s(7) 2 1 0 1

s(6) 1 0 2 1

s(5) 2 1 1 0

s(4) 1 2 1 0

s(3) 0 1 2 1

s(2) 1 2 0 1

s(1) 0 1 1 2

Schedule set S

Taskset T
ei ti di

τ1 1 2 2
τ2 1 4 4

H1(S) = −C1,0,S
n · log2

C1,0,S
n

−C1,1,S
n · log2

C1,1,S
n

−C1,2,S
n · log2

C1,2,S
n

= − 2
8 · log2

2
8 −

4
8 · log2

4
8 −

2
8 · log2

2
8

= − 1
2 · log2

1
4 −

1
2 · log2

1
2 = 1.5

Figure 3.2 Example of slot entropy computation for a given taskset T
and schedule set S.

3.2 Example

Presented below is a very simple example to help visualizing the quantities
just introduced. This example will be used continuously in the remainder of
this thesis.

Suppose we have a taskset T composed of two different tasks, T = {τ1, τ2}.
The first task τ1 has execution time e1 = 1, and period and deadline p1 =
d1 = 2. The second task has execution time e2 = 1 and period and deadline
p2 = d2 = 4. The hyper-period is then ` = 4. The list of valid schedules for
this taskset comprises 8 schedules, S = {s(1), . . . , s(8)}.

Figure 3.2 shows the sequences and the computation of the slot entropy
for the entire set S and the first slot j = 1, H1(S) = 1.5. With analogous
calculations, it can be shown that the slot entropy for the other slots is the
same. The upper-approximated entropy for the set S is then H̃(S) = 4·1.5 = 6.
Computing the power set of S and the upper-approximated entropy for each
of the elements of the power set (the set containing all subsets to S), it is
possible to show that for k = 2, the maximum upper-approximated entropy
achievable is 4. With k = 3 it is possible to reach an upper-approximated
entropy ≈ 5. For k = 4 (and k = 8) the maximum of 6 is reached. With k = 5,
k = 6, and k = 7 it is possible to respectively reach values ≈ 5.786, ≈ 5.837,
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Chapter 3. Problem

and ≈ 5.871.
In this case then, the minimal set of schedules that achieves the highest

upper-approximated entropy has cardinality k = 4. One possible optimal
set is K = {s(1), s(2), s(5), s(6)} = {(0 1 1 2), (1 2 0 1), (2 1 1 0), (1 0 2 1)}. The
4-elements set K that gives the maximum upper-approximated entropy is
not unique. Another alternative would be K = {s(3), s(4), s(7), s(8)}. If the
example is as simple as this one, it is possible to enumerate all the alternatives
and determine optimal solutions with a brute force approach. However, for
tasksets with large hyper-periods, it is infeasible to enumerate all the valid
schedules and to compute the power set of these schedules to determine an
optimal solution.

3.3 Problem Formulation

It is now possible to formally state the objective of minimizing the risk
that an attacker would be able to extract and effectively use information to
compromise the system. Given a taskset T and the set of all the valid schedules
S, what is the smallest subset of S that maximises the upper-approximated
entropy?

Mathematically, this problem can be written as the following optimization
problem.

Problem 1
Given a taskset T and a valid set of schedules S, solve

K∗ = arg min
K⊆S

|K|

s.t. H̃(K) = max
L⊆S

H̃(L).
2

Here L is any generic subset of S. We are searching for the set K with
the minimum cardinality that achieves the maximum upper-approximated
entropy. This problem consists of two main aspects. First we must determine
the maximum upper-approximated entropy; that is we must solve

H̃∗ = max
L⊆S

H̃(L).

Then we must find the smallest subset K∗ ⊆ S with upper-approximated
entropy H̃(K∗) = H̃∗.
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4
Analytical Investigation

In this chapter we show that the properties of the taskset T create fundamental
limits both on H̃∗, and on the cardinality of the optimal subsets K∗ ⊆ S. These
limits will help us exclude a lot of subsets, hence pruning the search space for
an optimal schedule set K∗. Practically this will give us the dimensions and
constraints on the schedule set, making it possible to generate in a feasible
amount of time.

4.1 Fundamental Limits

Problem 1 could be approached by an exhaustive search. If one calculated
the upper-approximated entropy for every element in the power set of S, the
optimal solution to Problem 1 could be obtained by choosing the smallest
subset that achieved H̃∗. However since the cardinality of S is typically large,
this will be infeasible in practice. Such an approach is also naïve. After all it
seems improbable that the solution to Problem 1 would have cardinality one,
so we could rule those subsets out of our exhaustive search.

One natural questions then arises: Are there any fundamental limits on
the achievable maximum upper-approximated entropy or the cardinality of
K? The remainder of this section is devoted to answering this question. We
show that the properties of the taskset T impose fundamental limits both on
H̃∗, and on the cardinality of the subsets that can achieve this bound.

Entropy Bound
The fact that each task in the taskset T must be executed with a certain
frequency imposes a fundamental limit on the maximum upper-approximated
entropy. The intuitive explanation for this is as follows: Our objective is to
select a set of schedules that minimizes the information an attacker can obtain
by observing the execution of any individual task. We therefore want it to
appear as if each task was allocated randomly to each given slot. However we
cannot necessarily make this allocation appear random with equal probability
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Chapter 4. Analytical Investigation

(for each task), because we are required to execute tasks for given time units
a certain number times in each hyper-period. Therefore the best we can do
is make each task appear with probability specified by its relative frequency
in the hyper-period. This relative frequency can be seen as the utilization
ui = ei/ti of task τi. The entropy of the corresponding random variable then
specifies an upper bound on the upper-approximated entropy of any set of
schedules K ⊆ S.
Theorem 1
Given any schedule set K ⊆ S, with |K| = k,

H̃(K) ≤ ` ·
m∑
i=0

φ (ei/ti) .

Proof When x > 0, the function φ(x) = −x · log2(x) is continuous and
concave. The concavity implies that 1/p

∑p
i=1 φ(xi) ≤ φ (1/p

∑p
i=1 xi).

Applying this inequality to the expression in Equation (3.4), we obtain

1

`

∑̀
j=1

m∑
i=0

φ

(
Cj,i,K

k

)
≤

m∑
i=0

φ

1

`

∑̀
j=1

Cj,i,K

k

 ,

where the expression
∑`

j=1
Cj,i,K

k counts – for all the schedules in K – the
amount of occurrences of each task in the hyper-period, and can be written as∑̀

j=1

Cj,i,K

k
= ` ·

(
k · ei
ti
·
1

k

)
= ` ·

ei

ti
,

thus leading to

H̃(K)
`

=
1

`

∑̀
j=1

m∑
i=0

φ

(
Cj,i,K

k

)
≤

m∑
i=0

φ

(
`

`

ei

ti

)
=

m∑
i=0

φ

(
ei

ti

)
.

Knowing that ` > 0, we then derive the upper bound

H̃(K) ≤ ` ·
m∑
i=0

φ (ei/ti) = H̃ub, (4.1)

for the achievable upper-approximated entropy. 2

The bound in Equation (4.1) is denoted with H̃ub for simplicity reasons. Two
additional results can be found following the same methodology. The first one
is a more relaxed bound (i.e., a quantity that upper bounds H̃ub). The second,
on the contrary, tightens H̃ub when at least for one task i in the taskset the
period ti is not equal to the deadline di. This second bound is equivalent to
H̃ub when all the deadlines are equal to the periods.
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4.1 Fundamental Limits

Corollary 1
Given any schedule set K ⊆ S,

H̃(K) ≤ ` ·
m∑
i=0

φ (ei/ti) ≤ −` · log2 (1/(1 + m)) = ` · log2 (1 +m) . (4.2)
2

This bound directly comes from applying the same principle used to prove
Theorem 1 to Equation (4.1). The expression in Equation (4.2) is not always
reachable, depending on the characteristics of the taskset. This leads us to
consider the taskset characteristics. In particular, we can compute a bound
that takes into account the utilization U of the taskset, leading to the following
corollary.

Corollary 2
Given any schedule set K ⊆ S,

H̃(K) ≤ ` · {−(1− U) · log2(1− U)− U · log2(U/m)}. (4.3)
2

The contribution of the idle task to the upper-approximated entropy is equal
to ` · {−(1 − U) · log2(1 − U)}, recall that 1 =

∑m
i=0

ei/ti = U + e0/t0. The
maximum value for the upper-approximated entropy is reached when the
utilizations of the tasks allow them to be evenly distributed. The contribution
of each of them is then −` · U/m · log2(U/m). Deriving the expression in
Equation (4.3) allows us to also study when we can be closer to the bound
in Equation (4.2) — and when we can expect to reach the maximum upper-
approximated entropy reachable for a set of m tasks, depending on the task
characteristics. With respect to the utilization U =

∑m
i=1

ei/ti, the upper-
approximated entropy can reach its maximum when the utilization of the
system is equal to U = m/(1 + m).

Corollary 3
Given any schedule set K ⊆ S,

H̃(K) ≤
∑̀
j=1

φ (1− U) + ` ·
m∑
i=1

di

ti
· φ (ei/di) ≤ H̃ub. (4.4)

2

The bound in Equation (4.4) takes into account the additional deadline
information. When di = ti, ∀τi ∈ T , then the equality is strict, and the bound
in Equation (4.4) is precisely equal to H̃ub. On the contrary, if ∃τi, s.t. di 6= ti,
then the bound in Equation (4.4) is tighter than H̃ub. The case of ∃τi, s.t. di 6=
ti is not examined in more detail in this thesis. However, future work could,
and should, explore the properties of such tasksets further.
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Cardinality Bound
We will now show that a given schedule set K ⊆ S can only achieve an
upper-approximated entropy of H̃ub if it has cardinality of at least

`

gcd(ei/ti · `)
.

This bound is important, since it shows that if we want to achieve the upper
bound on the upper-approximated entropy from Theorem 1, we must use a
schedule set of at least the size given above.

Theorem 2
Given any schedule set K ⊆ S, if

|K| < `

gcd (ei/ti · `)
,

then the inequality in Equation (4.1) is strict. 2

Proof To achieve the upper bound H̃ub, the contribution to the upper-
approximated entropy of each slot should be maximized. This happens when
the slot entropy Hj is equal to Hj =

∑m
i=0 φ(

ei/ti) for each slot, i.e. each
task has a chance to occur equal to its relative frequency (Theorem 1). The
contribution of each task to the slot entropy should then be related to the
task utilization ei/ti. To find a lower bound for k, we can then look at a
single slot j. The problem of finding |K∗| = k∗ can then be formulated as an
optimization problem.

Minimize:
k∈Z+

Cj,i,K∈Z+

k

Subject to: Cj,i,K =
ei

ti
· k, ∀i ∈ {0, . . . ,m}

(4.5)

This means that we have a positive integer number of schedules in the set
K which allows Cj,i,K (the number of times task i appears in slot j in set
K) to be a positive integer number for each task τi. We perform a variable
substitution and define y = `/k. Minimizing k now becomes equivalent to
maximizing y. Temporarily relaxing the requirement that k be an integer, the
problem in Equation (4.5) is reformulated as

Maximize:
Cj,i,K∈Z+

y

Subject to: Cj,i,K =
ei

ti
·
`

y
, ∀i ∈ {0, . . . ,m}

(4.6)

24



4.2 Example

The solution of the problem in Equation (4.6) is that y should be equal to the
greatest common divisor of the utilizations multiplied by the hyper-period,
y = gcd(ei/ti · `), which yields to

k∗ =
`

gcd (ei/ti · `)
. (4.7)

For this to be the solution of the optimization problem in Equation (4.5), k∗
must be an integer number. It is known that the utilizations of the taskset
(including the idle task) sum to one,

∑m
i=0

ei/ti = 1, the constraint for the
idle task in the optimization problem of Equation (4.6) can also be written as

Cj,0,K = (1− U) ·
`

y
=

(
`

y
−
`

y
· U

)
.

The solution of problem (4.6) ensures that `
y ·

e1
t1

+ . . .+ `
y ·

em
tm

= `
y · U ∈ Z+

due to the m constraints for the non idle tasks in the taskset. The value of
`/y (equal to k∗) must then be a positive integer number, since `

y · U and
Cj,0,K are positive integers. This implies that the solution of the problem
in Equation (4.6) is also a solution of the problem in Equation (4.5) and
k∗ ∈ Z+. 2

Corollary 4
A simple modification of the proof of Theorem 2 shows that for any K ⊆ S, if

|K| mod
`

gcd(ei/ti · `)
6= 0,

then H̃(K) < H̃ub. This means that the cardinality of K must be a multiple
of `

gcd(ei/ti·`)
in order to achieve the bound in Theorem 2. 2

4.2 Example

Applying Theorems 1 and 2 to the example presented in Section 3.2 gives us:

H̃ub = ` ·
m∑
i=0

φ (ei/ti) = 4 · {φ(1/2) + φ(1/4) + φ(1/4)} = 6,

and

k∗ =
`

gcd (ei/ti · `)
=

4

gcd (4/2, 4/4, 4/4)
= 4.
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5
Schedule Set Generation for
Implicit Deadline Tasksets

This chapter presents an algorithm which aims to generate a solution K∗
to Problem 1 for a taskset T where tasks have implicit deadlines, i.e., for
a taskset where ∀τi ∈ T , di = ti. With constraints corresponding to the
fundamental limits proposed in Chapters 3 and 4, a minimum-size solution
maximizing the upper-approximated entropy is found, using a Constraint
Programming solver.

Pseudocode
Algorithm 1: The generate_schedules function which generates an
optimal schedule set for a particular task set.
1 Function generate_schedules(Taskset ts)
2 solver = ConstraintSolver()
3 grid = initialize_grid(ts)
4 for row ← 0 to nbr_schedules do
5 foreach task in ts do
6 solver.add(ScheduleConstraint(grid, row, task))
7 end
8 end
9 for col ← 0 to hyperperiod do

10 foreach task in ts do
11 solver.add(SlotConstraint(grid, col, task))
12 end
13 end
14 solver.add(FixConstraint(grid, ts))
15 solution = solver.Solve()
16 return solution
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5.1 Notation

5.1 Notation

• The optimal schedule set is defined as a schedule set (K∗ as described
in Problem 1) which reaches the upper bound on the upper-approximated
entropy using as few schedules as possible.

• The optimal number of occurrences of a task τi for a slot j is
defined as n∗i = k · ei/ti (as stated in Equation (4.5)).

5.2 Fundamental Algorithm Idea

The core of Algorithm 1 relies on a Constraint Optimization (also called Con-
straint Programming or CP for short) solver. Unlike "ordinary" programming,
CP does not specify how or in which order a sequence of instructions should
be executed rather than specifying constraints on a solution. One can think
of it as the following mathematical problem

Maximize: f(x)

Subject to: g(x) ≤ 0

h(x) = 0.

A constraint programming problem is very similar to a mathematical opti-
mization problem. Constraints in the form of logical constraints, e.g. "True"
or "False" statements, can be seen as equality constraints in mathemat-
ics, h(x) = 0 above. The inequality constraints in mathematics, g(x) ≤ 0
above, can be represented in CP using linear constraints, e.g. "sum of x < 5"
statements.

Constraint programming defines the domain in which a solution is located,
rather than finding an algorithmic solution to the problem. The idea behind
Algorithm 1 is then to properly characterize the domain of the solution, such
that we will find an optimal schedule set, K∗. A grid of size k × `, where
k = k∗ and ` is the hyperperiod of the taskset, is created. This grid will be
the foundation upon which we add our constraints.

As presented in Equation (4.5) we need n∗i = k · ei/ti number of each
task τi occurring in each slot to achieve optimality. This is introduced as a
constraint. Another constraint introduced is the fundamental limitation of
each task τi = {ei, ti, di} having to appear ei times for each period ti to
ensure that the schedule is valid.
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5.3 In Depth

Initialization
Looking at Algorithm 1 the first thing that happens is that we create our
solver. The solver used for this thesis is the constraint_solver from Google’s
Operations Research tools (abbreviated OR-tools) [Google Optimization Tools,
2018]. The solver will keep track of the constraints on each grid point as well
as solve the constrained system when the solution is sought.

A grid of size k × ` is created in the form of a dictionary. Each key is
the position (i, j) in the grid, in the form of a tuple, and each key’s value
corresponds to the tasks that could exist in this position (the domain). This
could be thought of as a k × ` matrix where each element (i, j) corresponds
to a schedule i and a slot j and the value is the variable domain.

Example
For the taskset, T , from Section 3.2 we already know that k∗ = ` = 4. The
grid is therefore initialized as a dictionary with 16 elements (4 · 4), each
domain containing all possible tasks (τ0, τ1 and τ2)

(0, 0) : [0, 1, 2]
(0, 1) : [0, 1, 2]

. . .
(3, 2) : [0, 1, 2]
(3, 3) : [0, 1, 2]

 .

The grid could also be visualized as a matrix. If every grid point in the
dictionary was represented with a corresponding matrix position, the matrix
would look like 

[0, 1, 2] [0, 1, 2] [0, 1, 2] [0, 1, 2]
[0, 1, 2] [0, 1, 2] [0, 1, 2] [0, 1, 2]
[0, 1, 2] [0, 1, 2] [0, 1, 2] [0, 1, 2]
[0, 1, 2] [0, 1, 2] [0, 1, 2] [0, 1, 2]

 .

Schedule Constraints
After the initialization of the solver and the grid, we would like to start adding
constraints to the solver. It is crucial that the constraints are well thought
through and that they result in an optimal solution. Fortunately for us, the
necessary constraints are logical and do not warrant any explanation aside
from the arguments provided in Chapters 3 and 4.

The fundamental constraint that each task τi = {ei, ti, di} has to execute
ei times each period ti is imposed on us by the schedulability requirement from
Chapter 3. Hence, for each schedule we extract the grid points corresponding
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5.3 In Depth

to that schedule. Then, for each task τi, we add a constraint that it has to
occur ei number times for each period ti of those grid points. These constraints
will force the solver to adjust to the schedulability criteria.

Example (contd.)

For each schedule we want to impose constraints. We represent schedule 0
with the grid points corresponding to this schedule

(0, 0) : [0, 1, 2]
(0, 1) : [0, 1, 2]
(0, 2) : [0, 1, 2]
(0, 3) : [0, 1, 2]

 .

We know that task τ1 = {e1, t1, d1} = {1, 2, 2} has to execute once every
two time slots. This is introduced into the solver by the following constraints

{(0, 0) : [0, 1, 2], (0, 1) : [0, 1, 2]} ← τ1 exist once.
{(0, 2) : [0, 1, 2], (0, 3) : [0, 1, 2]} ← τ1 exist once.

The constraint is applied for task τ0 and τ2 as well, except in these cases for
the entire schedule (since t0 = t2 = 4 = `).

Slot Constraints
The next constraint we introduce comes from the fact that we need the
optimal number of occurrences n∗i for each task τi in each slot to achieve
the upper bound on the upper-approximated entropy, H̃ub (see Theorem 2
with corresponding proof). This is done in a similar fasion to the schedule
constraints: by fixating the occurrence rates of the tasks over the grid points
in a slot. With this constraint we are sure to achieve an optimal slot entropy,
see Equation (4.5).

Example (contd.)

Once again we extract grid points. This time the ones corresponding to a slot,
e.g. slot 0 

(0, 0) : [0, 1, 2]
(1, 0) : [0, 1, 2]
(2, 0) : [0, 1, 2]
(3, 0) : [0, 1, 2]

 .

We know that (n∗0, n∗1, n∗2) = (1, 2, 1) which implies that
(0, 0) : [0, 1, 2]
(1, 0) : [0, 1, 2]
(2, 0) : [0, 1, 2]
(3, 0) : [0, 1, 2]


← τ0 exist once,
← τ1 exist twice,
← τ2 exist once.

This constraint is repeated for each slot in the hyperperiod.
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Fix Constraints
The final constraint we introduce is not necessary for optimality, but helps
the solver prune the search tree such that the search algorithm will find a
solution faster.

We force a task τi into the grid such that it achieves its optimal number
of occurrences, n∗i , for each slot. By doing this the search tree gets one less
task to consider. We approach this insertion as a boolean constraint where
the task with the smallest value of n∗i is considered the initial task and is
constrained to certain positions in the grid, such that it will exist n∗i times in
each slot and still meet its deadline. In case of a tie where n∗i = n∗j , i < j we
pick n∗i . We are choosing the least occurring task as the initial task since it
will have the least amount of positions it can be placed in.

Example (contd.)

We impose the constraint that the task with the smallest n∗i should be
constrained to certain positions. For T we see that (n∗0, n

∗
1, n
∗
2) = (1, 2, 1).

Since n∗0 = n∗2, we constrain task τ0 such that it has n∗0 = 1 number of
occurrences in each slot and exists e0 = 1 times over each schedule. This is
easiest done by inserting τ0 into all the diagonal elements

(0, 0) : [0, 1, 2]
(0, 1) : [0, 1, 2]

. . .
(2, 3) : [0, 1, 2]
(3, 3) : [0, 1, 2]


← (0, 0) = 0,
← (1, 1) = 0,
← (2, 2) = 0,
← (3, 3) = 0.

Search and Solve
The necessary constraints are now added to the solver and the last thing
to be done is to let the solver find a solution. The solver creates a binary
search tree (also called binary decision tree) and uses the tree to search for a
solution. As a root node, the empty grid is choosen.

The search algorithm starts off at the root node by pruning the search
tree with regards to the fixed constraints. Thereafter, we choose to use either
a possible value, vi, or not to use that value for the first empty position in
the grid. In each node it makes the same distinction: either choose to use a
value, vi, or not using that value. After each decision, the branches are pruned
such that the algorithm does not explore invalid paths. Once a solution that
satisfies our constraints is found, the algorithm stops and returns it as our
solution. The value vi is choosen randomly from the domain in each node.

If something goes wrong, another path in the binary search tree is choosen.
This way we traverse the search tree until a solution is found.
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5.3 In Depth

[X0,0, X1,0, X2,0, . . .
, X1,3, X2,3, X3,3]

[0, X1,0, X2,0, . . .
, X1,3, X2,3, 0]

[0, 1, X2,0, . . .
, X1,3, 1, 0]

[0, 1, 1, . . .
, X1,3, 1, 0]

...
...

X2,0 = 1

[0, 1, X2,0, . . .
, X1,3, 1, 0]

[0, 1, 2, . . .
, X1,3, 1, 0]

...
...

X2,0 = 2

[0, 1, X2,0, . . .
, X1,3, 1, 0]

X2,0 6= 2

X2,0 6= 1

(0, 0) = 0, . . . , (3, 3) = 0

Figure 5.1 A visualization of the search tree the solver uses to search for
a solution to the example in Section 3.2.

Example (contd.)

To demonstrate the idea behind the solver, denote the unassigned grid points
(i, j) with the variable names Xi,j . This way the grid can be written as an
array X = [X0,0, X1,0, . . . , X2,3, X3,3]. The root node is initialized to contain
the empty grid X. As we have a constraint claiming that X0,0 = X1,1 =
X2,2 = X3,3 = 0 we insert these numbers and prune the search tree. Since
X1,1 = 0 and we have a constraint that τ1 has to execute once every period
of two time slots, X1,0 has to contain 1 (as well as for e.g. X2,3).

We then have to make a decision: Do we want to assign X2,0 = 1 or not
(1 is here randomly selected from the domain [1, 2])? If we do, we traverse
the left branch in Figure 5.1, otherwise we traverse the right branch.

After each decision, the search tree is pruned based on our decision. If
we choose X2,0 = 1 we can neither add task τ1 to the remaining elements of
this slot, since we have constrained τ1 to appear twice every slot, nor can we
add it to X2,1, since we constrained τ1 to appear once every two grid points
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in a schedule. This allows us to prune τ1 from all the concerned grid points,
reducing the number of paths in the search tree.

Assume we choose X2,0 6= 1, we then have to choose another value instead.
The only task left to insert is 2 so if we do not choose this value for X2,0 we
have no more branches to traverse and an optimal solution to this taskset can
not be found. Hence, the rightmost node has got no children. Important to
note is that this can never happen for our problem (since we will have found
an optimal solution long before we have traversed the entire tree) but the
search algorithm works this way.

This tree traversal and pruning algorithm is what the solver does in its
final step. There could be, and probably is, many solutions to the constraint
programming problem (as stated in Section 3.2). However, we are only inter-
ested in one of them. Therefore, as soon as we find one solution, it is returned
and the tree traversal is stopped.
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6
Experimental Results

This chapter presents a summary of our experimental results. We apply our
algorithm to both synthetic tasksets and an industrial case study, validating
our approach and measuring its performance.

6.1 Synthetic Tasksets

We tested the algorithm presented in Chapter 5 with synthetic tasksets,
composed of 2, 3, 4, and 5 tasks (not including the idle task). For the taskset
generation, we used the UUniFast algorithm [Bini and Buttazzo, 2005].

We divided the utilization U into ten groups. For each group g = [0, 1, . . . 9],
we generated 100 random numbers Ui ∈ [0.02 + 0.1 · g, 0.08 + 0.1 · g], to cover
a wide spectrum of utilization values. A common maximum hyperperiod
length `max = 100 was specified, such that all synthetic tasksets Ti had
shorter or equal hyperperiod length to the specified one, `i ≤ `max. Each
task τj = {ej , tj , dj} ∈ Ti was assigned a randomized portion (uj) of the
utilization Ui, based on the UUniFast algorithm [Bini and Buttazzo, 2005].
Thereafter, the periods tj for each task τj ∈ Ti were randomized such that
`i ≤ `max. Since implicit deadlines were used, we assigned dj = tj . Finally,
the execution times were constructed from the already randomized periods tj
and task utilizations uj as

ej = max (1, buj · tjc) .

If Ti did not achieve an utilization U =
∑

j
ej/tj sufficiently close to Ui, the

task utilizations uj and the task periods tj were recalculated until U was
sufficiently close to Ui. Sufficiently close in this context means within two
bounds, 0.02 + 0.1 · g ≤ U ≤ 0.08 + 0.1 · g.

We computed the upper-approximated entropy H̃ub, for the taskset ac-
cording to Theorem 1. We then computed the average contribution of each slot
H̃ub/`, to be able to compare taskset with different hyperperiods. Finally, we
ran our algorithm to generate the schedule set K, with the lowest cardinality
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Figure 6.1 Average Slot Entropy of random sets composed of 2 tasks.
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Figure 6.2 Average Slot Entropy of random sets composed of 3 tasks.

k∗ given by Theorem 2. The test was executed on an Intel Core i7-3520M
CPU @ 2.90GHz.

In principle, the algorithm could run for a long time to find the maximum,
so we limited the duration the algorithm was allowed to run with a budget
of one minute to compute the schedule set. We found that for all the sets
with 2 and 3 tasks, the algorithm was able to return an optimal schedule set
within the given time. For the tasksets composed of 4 tasks, only in 7 cases
(out of 1000 attempts) the algorithm was not able to find an optimal schedule
set within the one minute limit. For the tasksets composed of 5 tasks, the
number of failed attempts was 23 out of 1000.

Figures 6.1, 6.2, 6.3, and 6.4 show the average contribution of each slot to
the upper-approximated entropy H̃ub/`, respectively in the case of tasksets
composed of 2, 3, 4, and 5 tasks. The dots in the figure show the maximum
upper-approximated slot entropy, the constant, red lines represent the (non-
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Figure 6.3 Average Slot Entropy of random sets composed of 4 tasks.
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Figure 6.4 Average Slot Entropy of random sets composed of 5 tasks.

tight) bound introduced by Corollary 1, while the dashed line represents the
(not tight) bound discussed in Corollary 2, Equation (4.3). As can be seen,
for some of the tasksets, the constraints imposed by the execution times and
the periods allow the upper-approximated entropy to reach this bound, but
in other cases the bound presented in Theorem 1 is tighter. This is due to
the fact that we could have a skewed distribution of the taskset utilization Ui

over the individual tasks. For example, given a taskset composed of 2 tasks
and total utilization Ui = 0.5 distributed such that task τ1 has a utilization
of 0.45 and task τ2 has a utilization of 0.05. The upper-approximated entropy
will then be relatively low since τ2 has a low occurence rate.

One can also notice that when the utilization increases, the variance in the
achieved upper-approximated entropy increases. This is because a higher uti-
lization introduces tighter constraints on the achievable upper-approximated
entropy. Another important result, taken from Figures 6.1, 6.2, 6.3, and 6.4,
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is the fact that the upper-approximated entropy reaches the maximum of the
bound discussed in Corollary 2 for m/(m + 1) – marked with the dashed, red,
vertical line – m being the number of tasks. Consequently, it is not optimal
(from a randomization point of view) to maximize the utilization of your
taskset. Having the taskset utilization U =

∑m
i=1

ei/ti = m/(m + 1), would
benefit the randomization. This might be a very important feature in how we
try to balance our taskset utilization in future schedules.

Finally, In most cases, the bound given by Corollary 1 is unreachable,
due to the constraints introduced by the tasks characteristics. In fact, it is
only reachable for when the utilization of the taskset is m/(m + 1). We know
the bound from Corollary 1, log2(m + 1), and we know that the highest
upper-approximated entropy we could reach occurs when U = m/(m + 1), or in
other words when all tasks could have equal probability of appearing. Given a
taskset with m tasks where each task has a relative frequency of uj = 1/(m + 1),
the bound from Equation (4.2) in Corollary 1 coincides with the bound from
Equation (4.3) in Corollary 2

H̃cor1

`
= − (1− U) · log2(1− U)− U · log2

(
U

m

)
=

[
U =

m

m+ 1

]
=

= −

(
1

m+ 1

)
· log2

(
1

m+ 1

)
−

m

m+ 1
· log2

(
1

m+ 1

)
=

=
1

m+ 1
· (log2(m+ 1) +m · log2(m+ 1)) =

= log2(m+ 1) =
H̃cor2

`
.

6.2 Case Study

We have also tested our algorithm with a real-world case study. For this,
we have used the Research Open-Source Avionics and Control Engineering
(ROSACE) case study [Pagetti et al., 2014]. ROSACE is a multi-periodic
extension of the mono-periodic longitudinal controller presented in [Gervais
et al., 2012]. ROSACE implements a simple, but representative, longitudinal
flight controller. The controller is designed to ensure that the aircraft maintains
average cruise conditions for the flight, in terms of altitude and speed. We
have extracted the task parameters for the case study.

The taskset is composed of eight independent, periodic tasks, T =
{τ1, τ2, . . . , τ8}. The case study provides a specification of the taskset pa-
rameters in terms of periods and execution times. The deadline of each task
is assumed to be equal to its period, making this a good case study for our
implicit deadline taskset algorithm. The eight tasks of the controller have
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ei ti di

τ1 1 100 100
τ2 1 100 100
τ3 1 100 100
τ4 1 100 100
τ5 1 100 100
τ6 1 200 200
τ7 1 200 200
τ8 1 200 200

Table 6.1 Periods and execution times (expressed in time units, where
one time unit corresponds to 0.1ms) for the taskset of the ROSACE case
study

activation frequencies that belong to two groups: 50Hz and 100Hz, correspond-
ing to periods of 20ms and 10ms respectively. In the following we assume
that a time unit for our scheduler is 0.1ms, i.e., we generate schedules where
each slot corresponds to a time interval of 0.1ms. With this assumption, the
parameters of the ROSACE case study are given in Table 6.1.

With the given parameters from Table 6.1, the hyper-period ` of the
taskset corresponds to 200 time units, ` = 200. The maximum achievable
upper-approximated entropy is computed using Equation (4.1) (according to
Theorem 1) and results in H̃ub = 107.502. Using Theorem 2 (Equation (4.7))
we can compute the minimum number of schedules needed to obtain a schedule
set reaching the mentioned upper bound. The result k∗ = 200 was obtained.

Our algorithm is able to find the optimal solution in 3.44 seconds on an
Intel Core i5-3337U CPU @ 1.80GHz, demonstrating that our approach is
viable to use also in industrially relevant case studies.
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7
Conclusion and Future
Work

This chapter concludes the thesis. We summarize the results obtained and
highlight future research directions.

7.1 Summary

Considering the rapid increase in real-time embedded applications, the grow-
ing threat from side-channel attacks exploiting system information to disrupt
or jam the systems must be impeded. With upper-approximated entropy mea-
suring the diversity of a schedule set, we introduce schedule set randomization
in order to impede temporal inference from surreptitious attackers as well as
keep the schedulability. Based on this premise, we have established analytical
and mathematical bounds on the upper-approximated entropy of a schedule
set and designed an algorithm to create a schedule set that reaches these
bounds. With the analytically acquired results we aim to provide a foundation
for future research within the field of embedded security systems.

7.2 Future Work

Security is an important concern for modern real-time and embedded systems
and recent research has only begun to scratch the surface. It is imperative
that more focus is put on this area of security, given the prominence and
importance of embedded devices in many aspects of life, from the Internet of
Things to cell phones and cars. This has generated an increase in targeted
attacks towards such systems.

This thesis has provided analytical results on how to optimally mitigate
side-channel attack. An example of how this work could be combined with
other security measures is provided here. Message Authentication Codes
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(MACs) are used to authenticate that the messages acquired by an embedded
system are valid and not falsified by a corrupted sensor or an attacker,
checking whether the message has been tampered with. However, MACs are
immensely time consuming and are therefore often avoided in embedded
systems with hard real-time constraints. A solution to this problem has
been suggested by the authors of [Lesi et al., 2017]. They propose a method
that instead of authenticating every message to an embedded system (often
making schedulability infeasible) only authenticates some tasks, ensuring
schedulability in each hyperperiod. Given the schedule set randomization
method presented in this thesis, the idle task is used to further increase
the upper-approximated entropy, but other than that it does not affect our
system. Using the idle task in the schedule set randomization method as a
time slot where the constrained MACs (as described in [Lesi et al., 2017])
can execute combines two different security measures. This approach might
impede attackers from using corrupted sensor signals as well as side-channels
to disrupt the system.

Based on the results of this thesis, there is still a lot to explore. This
report barely touched the subject of what happens when the deadlines are
not implicit, or in other words when di 6= ti. It is a generalization of what
has been presented in this thesis and it would be interesting to see how the
theory presented here could be applied to the general case. The assumption
that the optimal probability that a task τi appears in each slot j is equal to
ei/ti is no longer valid and would have to be revisited. If similar bounds to the
ones presented in Chapter 4 could be found for the non-implicit deadline case,
the number of tasksets possible to obfuscate would be significantly increased.
This would also open up for research regarding randomization of tasksets
including task latency, assumptions regarding arrival time, jitter, etc.

In reality, there could be a hard constraint that a task in some cases
has to access the CPU at a given precise moment. In that case, we could
for example combine schedules, from the feasible set (especially for tasksets
with harmonic periods). By merging two feasible schedules, and mixing part
of another schedule that satisfies the hard constraint of a task accessing
the CPU at precise time instants, we might preserve the properties that we
have obtained in terms of upper-approximated scheduling entropy with a
modification of the proposed technique. Context switches and their costs were
also not considered in this work, as well as the presence of interrupts and
interrupt service routines.

In this thesis – as well as in previous work [Yoon et al., 2016; Kruger
et al., 2018] – we have assumed that the vulnerability to side-channel attacks
is reduced when schedule randomization is employed. This is in most cases
a reasonable assumption. However, in control applications, e.g. embedded
controllers, the control performance is reduced when jitter (deviation from the
true period) is introduced [Cervin et al., 2003]. The performance degredation
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we acquire from using schedule randomization in an embedded controller might
be worth looking further into. Tools for analyzing this type of performance has
been developed by the authors of [Cervin et al., 2003], called Jitterbug and
TrueTime. Future work might want to utilize these tools to analyze whether
or not schedule randomization is a valid method to use in embedded control
systems.

Applying the theory presented in this thesis to a multiprocessing setup
would also be an interesting research area. To apply the schedule set idea to
a multiprocessing environment might increase stochasticity and widen the
applicability of our proposal. Scheduling tasks, using the schedule set method
presented in this thesis over a fixed number of cores is not an improbable
idea, and might prevent attacks on multi-core embedded systems as well.

The proposal developed in this master thesis project might need improve-
ments as well. Even though it works well enough for our benchmark tests, the
algorithm might get better with some additional clever constraint to prune
the search space even further. The solver itself might also not be optimal.
There are a few constraint programming toolboxes on the market that might
be worth benchmarking against one another to see which one gives the best
results. OR-Tools LCG1, JaCoP2, Choco 43, and Opturion CPX4 are some of
the toolboxes that have performed the best in the last couple of years and it
might be a good idea to test them.

7.3 Conclusion

A minimum-size schedule set maximizing the upper-approximated entropy
has been found analytically using only the taskset characteristics. Hence,
minimizing side-channel attack vulnerability is possible and has been shown
to work. Bounds on the entropy-like notion of upper-approximated entropy
as well as on the minimum schedule set size has been provided and discussed.
These bounds provide a foundation upon which future security measures
against side-channel attacks could be based. Furthermore, given these bounds,
a proposal of how to generate an optimal schedule set has also been discussed.
Although analytical results have been provided, they have not been tested in an
attack simulation. Furthermore, research treating non-implicit deadlines has
yet to be conducted. Given the results presented in this thesis, the designers
of future real-time systems have acquired additional tools in designing safety
critical systems.

1 https://developers.google.com/optimization/
2 https://osolpro.atlassian.net/wiki/spaces/JACOP/pages/24248331/JaCoP+
Download

3 http://www.choco-solver.org/
4 https://www.opturion.com/
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