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Theory and implementation of event-triggered stabilization

over digital channels

Mohammad Javad Khojasteh†, Mojtaba Hedayatpour†, Massimo Franceschetti

Abstract— In the context of event-triggered control, the
timing of the triggering events carries information about the
state of the system that can be used for stabilization. At each
triggering event, not only can information be transmitted by
the message content (data payload) but also by its timing. We
demonstrate this in the context of stabilization of a laboratory-
scale inverted pendulum around its equilibrium point over a
digital communication channel with bounded unknown delay.
Our event-triggering control strategy encodes timing informa-
tion by transmitting in a state-dependent fashion and can
achieve stabilization using a data payload transmission rate
smaller than what the data-rate theorem prescribes for classical
periodic control policies that do not exploit timing information.
Through experimental results, we show that as the delay in the
communication channel increases, a higher data payload trans-
mission rate is required to fulfill the proposed event-triggering
policy requirements. This confirms the theoretical intuition that
a larger delay brings a larger uncertainty about the value of the
state at the controller, as less timing information is carried in
the communication. Our results also provide a novel encoding-
decoding scheme to achieve input-to-state practically stability
(ISpS) for nonlinear continuous-time systems under appropriate
assumptions.

I. INTRODUCTION

Event-triggered control has gained significant attention

due to its advantages over conventional control schemes in

cyber-physical systems (CPS). Although periodic control is

the most common and perhaps simplest solution for digital

systems, it can be inefficient in sharing communication

and computation resources [1]–[10]. The central concept of

event-triggered control is to transmit sensory data only when

needed to satisfy the control objective. In addition to utiliz-

ing the distributed resources efficiently, it has been proven

that carefully crafted event-triggered policies outperform the

linear-quadratic (LQ) performance of the periodic control

policies [11]. Another advantage of event-triggered control is

that the timing of the triggering events, effectively revealing

the state of the system, carries information that can be used

for stabilization. This allows achieving stabilization with a

transmission rate lower than that required by periodic control

strategies [12]–[14].

In networked control systems a finite-rate digital com-

munication channel closes the loop between the sensor and

the controller. In this setting, data-rate theorems [15]–[21]

provide the communication channel requirements for stabi-

lization. They state that to ensure stabilization of an unstable
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Fig. 1. An inverted pendulum controlled by thrust force of two propellers.
The pendulum is a plywood sheet of length l. The angle φ of the pendulum
from the vertical line and its rate of change, measured by the sensor and
transmitted to the controller over a digital channel with bounded unknown
delay, are used to determine the left and right thrust forces fL and fR of
the propellers.

linear system, the minimum information rate communicated

over the channel, including both data payload and timing

information, must be at least equal to the entropy rate

of the plant, defined as the sum of the unstable modes

in nats [12], [13]. When information is encoded in the

timing of the transmission events using event-triggered con-

trol, our previous work [22], [23] has shown the existence

of an event-triggering strategy that achieves input-to-state

practically stability (ISpS) [24], [25] for any linear, time-

invariant system subject to bounded disturbance over a digital

communication channel with bounded delay using a data

payload transmission rate lower than the entropy rate. This

is possible because, for small values of the delay, the timing

information is substantial, and the data payload transmission

rate can be lower than the entropy rate of the plant. However,

as the delay increases, a higher data payload transmission

rate is required to satisfy the requirements of the proposed

event-triggering control strategy.

A similar data-rate theorem formulation also holds for

nonlinear systems. The works [26]–[28] for nonlinear sys-

tems are restricted to plants without disturbances and with

a bit-pipe communication channel. The work [26] uses

the entropy of topological dynamical systems to elegantly

determine necessary and sufficient bit rates for local uniform

asymptotic stability. Consequently, the results are only local

and derived under restrictive assumptions. Under appropri-

ate assumptions, the work [27] extends to nonlinear but

locally Lipschitz systems, the zoom-in/zoom-out strategy

of [29]. The sufficient condition proposed in this work is,

however, conservative, and does not match the necessary

condition proposed in [26]. The work [25] further extend
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the results in [27] to linear systems with uncertainty and

under appropriate assumptions to nonlinear systems with

disturbances. Inspired by the Jordan block decomposition

employed in [16] to design an encoder/decoder pair of a

vector system, the work [28] provides a sufficient design for

feed-forward dynamics that matches the necessary condition

proposed in [26]. The recent work in [30] studies the

estimation of a nonlinear system over noisy communication

channels, providing a necessary condition over memoryless

communication channels and a sufficient condition in case

of additive white Gaussian noise channel.

The majority of results on control under communication

constraints are restricted to theoretical works. Here for the

first time, we examine data-rate theorems in a practical

setting, using an inverted pendulum, a classic example of

an inherently unstable nonlinear plant with numerous prac-

tical applications. Our first contribution is to implement

the event-triggering control design introduced in [22], [23],

and demonstrate the utilization of timing information to

stabilize a laboratory-scale inverted pendulum over a dig-

ital communication channel with bounded unknown delay,

see Fig. 1. A video that illustrates the main ideas and

demonstrates our experimental results can be found at

https://youtu.be/1P0i-tWsPoA. The results of our

experiments show that using the sufficient packet size derived

in [22], [23] on a linearized model of the inverted pendulum

around its unstable equilibrium point, the state estimation

error is sufficiently small and we can stabilize the system. We

show that for small values of the delay the experimental data

payload transmission rate is lower than the entropy rate of the

plant. On the other hand, by increasing the upper bound on

the delay in the communication channel, higher data payload

transmission rates are required to satisfy the requirements of

the proposed control strategy. The event-triggering policy de-

veloped in [22], [23] can only stabilize the pendulum locally

around its equilibrium point, where linearization is possible.

Our second contribution is to address nonlinear systems

directly, and develop a novel event-triggering scheme that

exploits timing information to render a class of continuous-

time nonlinear systems subject to disturbances ISpS.

From the system’s perspective, our set-up is closest to

the one in [25], [27], as we consider locally Lipschitz

nonlinear systems that can be made input-to-state stable

(ISS) [31] with respect to the state estimation error and

system disturbances. Using our encoding-decoding scheme,

we encode the information in timing via event-triggering

control in a state-dependent fashion to achieve input-to-state

practical stability (ISpS) in the presence of unknown but

bounded delay. We also discuss the different approaches to

eliminate the ISS assumption.

Finally, we point out that the work [32] studies event-

triggering stabilization of globally Lipschitz nonlinear sys-

tem without disturbances where the communication delay

is arbitrarily small. Also, the work [33] investigates event-

triggered stabilization of nonlinear system under commu-

nication constraints but it does not explicitly quantify the

effect of quantization in the presence of system disturbances,

nor the timing information carried by the triggering events.

In addition, the recent work [34] utilizes a time-triggered

controller to stabilize a two-wheeled inverted pendulum

around its upright position over IEEE 802.11g (WiFi). Since

the whole bandwidth of this channel is devoted to a two-

wheeled inverted pendulum, the work [34] does not explicitly

examine the effect quantization.

A complete list of notations and proofs of all the results

appear in the Appendix.

II. SYSTEM MODEL

We consider the stabilization of the inverted pendulum

depicted in Fig. 1 around its unstable equilibrium point. The

sensory information for stabilization is sent to the controller

over a digital channel. The block diagram of the control

system is given in Fig. 2. We assume the communication

Plant

Communication

Channel

SensorController

Fig. 2. System model.

channel is capable of transmitting packets composed of a

finite number of bits without error. Each transmitted packet

is subject an unknown delay upper bounded by γ ≥ 0. In

addition to the data payload, the transmission time of the

packets sent over the channel could be utilized to convey

information to the controller. As a result, the encoding

process consists of choosing the timing and data payload

of the packet, as shown in Fig. 3. In other words, in the

sensor block, the quantized version of the state is encoded

in a packet containing data payload as well as its timing. In

our design, the sensor encodes information in timing via an

event-triggering technique in a state-dependent fashion.

At each triggering event, occurring at times {tks}k∈N, the

sensor transmits a packet p(tks ) of length g(tks ) over the

communication channel. Packets arrive at the controller at

times {tkc}k∈N. When referring to a generic triggering or

reception time, we skip the super-script k in tks and tkc .

Since the delay in the communication channel is upper

bounded by γ ≥ 0, the communication delays represented

by ∆k = tkc − tks (k ∈ N) must satisfy

∆k ≤ γ. (1)

By defining the kth triggering interval as ∆′
k = tk+1

s − tks ,

the information transmission rate (the rate at which sensor

transmits data payload over the channel) can be defined as

Rs = lim sup
N→∞

∑N
k=1 g(t

k
s )

∑N
k=1 ∆

′
k

. (2)

A. Plant Dynamics

We consider a linearized version of the two-dimensional

problem of balancing an inverted pendulum with two pro-

pellers, where the motion of the pendulum is constrained

in a plane and its position can be measured by an angle φ

https://youtu.be/1P0i-tWsPoA


Encoder

Timing Data Payload

Fig. 3. Representation of information transmission using data payload
and transmission time of the packet in a digital channel. The encoding
process consists of choosing the data payloads and their transmission times.
Here, the sensor determines the transmission time using our event-triggering
strategy in a state-dependent manner.

representing small deviations from the upright position of the

pendulum, as depicted in Fig. 1. The inverted pendulum has

mass m1 and length l. The propellers are identical and are

attached to two motors of mass m2. m and I respectively

represent the total mass of the system and its moment of

inertia. Therefore, a nonlinear equation of the system can be

written as follows

Iφ̈ = mgl sinφ(t) + ξ(t)l + noise, (3)

where g is the gravitational acceleration, and ξ(t) is the

resultant thrust force of the propellers (fL and fR as shown

in Fig. 1) generating a moment about the axis of rotation of

the pendulum. Note that in this nonlinear equation the effect

of the friction is included in the additive noise. The force ξ(t)
can be estimated as a linear function of the control input ũ(t),
applied to the motors, with some proportionality constant kξ
(found from experiments), namely ξ(t) = kξũ(t).

We derive the linearized equations of motion using a

small angle approximation. This linearization is only valid

for sufficiently small values of the delay upper bound γ
in the communication channel. Linearizing (3) around the

equilibrium point results in the following dynamics

Iφ̈ = mglφ(t) + kξlũ(t) + noise.

By defining the state variable x̃xx = (φ, φ̇)T , the state-space

equations can be written as follows

˙̃xxx = Ãx̃xx+ B̃ũ(t) + w̃ww(t), (4)

where

Ã =

[

0 1
mgl
I 0

]

, B̃ =

[

0
kξl
I

]

.

In our prototype shown in Fig. 1, the pendulum is a plywood

sheet of size 0.18× 0.073× 0.005 m and mass m1 = 0.030
kg. The motors are of mass m2 = 0.010 kg. Also, l =
0.180 m, and g = 9.81 m/s2. Using first principles, one can

find the moment of inertia of the pendulum about its axis of

rotation to be I = 3.57× 10−4 kg/m2. By experiments, we

approximate kξ = 0.001. Therefore, the system (4) can be

rewritten as follows

˙̃xxx =

[

0 1
53.58 0

]

x̃xx+

[

0
0.50

]

ũ(t) + w̃ww(t). (5)

Using (4) it follows w̃1(t) = 0. Also, by experiments we

deduce |w2(t)| is upper bounded by 0.02.

Now using the eigenvector matrix

P =

[

0.1354 −0.1354
0.9908 0.9908

]

of matrix Ã we consider a canonical transformation to

diagonalize the system (5) as follows

ẋxx = Axxx(t) + Bu(t) +www(t), (6)

where A = P−1ÃP, B = P−1B̃, xxx(t) = P−1x̃xx(t) and www(t) =
P−1w̃ww(t). Therefore, for the diagonalized system (6) we have

A =

[

λ1 0
0 λ2

]

=

[

7.3198 0
0 −7.3198

]

,

B =

[

0.2523
0.2523

]

, xxx =

[

3.6940φ+ 0.5046φ̇

0.5046φ̇− 3.6940φ

]

,

|wi(t)| ≤M = 0.0470 for i ∈ {1, 2},

where the upper bound M on the |wi(t)| for i ∈ {1, 2} is

found by taking the maximum of upper bounds of all the

elements in www(t).
We now define a modified version of input-to-state prac-

tically stablity (ISpS) [24], [25], which is suitable for our

event-triggering setup with the unknown but bounded delay

in the digital communication channel.

Definition 1: The plant (6) is ISpS if both of its coordi-

nates x1(0) and x2(0) are ISpS. Also, x1(t) is ISpS if there

exist β ∈ KL, ψ ∈ K∞(0), d ∈ R≥0, χ ∈ K∞(d), d′ ∈ R≥0

and ζ ∈ K2
∞(0, d′) such that for all t ≥ 0

|x1(t)|≤β (|x1(0)|, t)+ψ (|w1|t)+χ(γ)+ζ(|w1|t, γ).
Note that, for a fixed γ, this definition reduces to the standard

notion of ISpS. Given that the initial condition, delay, and

system disturbances are bounded, ISpS implies that the state

must be bounded at all times beyond a fixed horizon.

Since λ2 in (6) is negative, the second coordinate is inher-

ently stable, and we do not need to transmit updates about the

second coordinate to the controller via the communication

channel. However, since λ1 is positive, the uncertainty about

the first coordinate grows exponentially at the controller,

hence the sensor needs to communicate information to the

controller about the state of the first coordinate to render the

plant ISpS [22].

A brief description of the event-triggered control ap-

proach in our previous work [22], [23] which determines

the sequence of transmission times {tks}k∈N and packets

{p(tks)}k∈N to achieve ISpS for the first coordinate of the

dynamics (6) is available at Appendix B.

III. IMPLEMENTATION AND SYSTEM ARCHITECTURE

We now present the details of the implementation of the

proposed event-triggered control scheme on a real system,

along with experimental results validating the theory. The

prototype used is an inverted pendulum system built using

off-the-shelf components. The body of the system is made

of plywood sheets, as depicted in Fig. 1. For sensors, we

use InvenSense MPU6050 MEMS sensor which has a 3-

axis accelerometer and a 3-axis gyroscope, and we use a

complementary filter to read the angle and angular velocity



Fig. 4. Architecture and components of the prototype.

of the pendulum. We choose Raspberry Pi Model 3 for

the computation unit and the controller in the system. For

actuation, we use two small DC motors equipped with two

identical propellers. Fig. 4 depicts the different components

of the system.

Using the plant dynamics introduced in (6), we implement

the event-triggered control scheme proposed in Appendix B

on the prototype system. While our theory is developed

for continuous-time plants, the experiments are performed

on digital systems and in discrete-time domain with small

enough sampling time δ to make the discrete-time model as

close to the continuous-time model as possible. Because of

this discretization, the minimum upper bound for the channel

delay is equal to two sampling times. A delay of at most one

sampling time exists from the time that a triggering occurs

to the time that the sensor takes a sample from the plant

state and another delay of at most one sampling time exists

from the time that the packet is received to the time the

control input is applied to the plant. In the experiments, a

triggering occurs as soon as z1 is equal or greater than J
and the controller has received the previous packet, in this

way since the sampling time is small, at the triggering time,

equation (31) will be valid approximately.

To simulate the digital channel between the sensor and the

controller, we send packets composed of a finite number of

bits from the sensor to the controller with a delay, that is a

multiple of the sampling time δ, upper bounded by γ.

IV. EXPERIMENTAL RESULTS

In this section, experimental results for various scenarios

are presented. In all the experiments, the sampling time δ
is 0.003 seconds, which is the smallest sampling time that

the measurements from our sensors permit. Also we set

ρ0 = 0.01, b = 1.00001, and J = M
λ1ρ0

(eλ1γ − 1) + 0.1.

In the first set of experiments, we evaluate the performance

of the controller for different values of γ. In Fig. 6, the

first row presents the results when γ = 0.006 seconds

or two sampling times and the second row presents the

results when γ = 0.015 seconds or five sampling times.

The first column is the evolution of the absolute value of

the state estimation error (30) (red) in time along with the

triggering threshold (blue). As the absolute value of this error

is greater than or equal to the triggering function, a triggering

occurs and the sensor transmits a packet to the controller.

However, due to the random delay (upper bounded by γ) in

the communication channel, this error could grow beyond
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Fig. 5. Information transmission rate in experiments compared with the
entropy rate of the system. Note that the rate calculated from experiments
does not start at zero worst-case delay because the minimum channel delay
upper bound is equal to two sampling times (0.006 seconds). The entropy
rate of the system is equal to λ1/ ln 2 = 10.56 bits/sec while the minimum
transmission rate for worst-case delay equal to two sampling time in the
experiments is equal to 8.66 bits/sec.

the triggering function. This growth, of course, can become

larger as γ increases which is shown in the first column of

Fig. 6. The first column also shows, more triggering occurred

when the channel delay is upper bounded with five sampling

times.

The second column in Fig. 6 presents the evolution of the

state x1 (blue) corresponding to the unstable pole in the

diagonalized system (6) and its estimate x̂1 (red) in time.

The last column shows the evolution of the actual states of

the system, namely the angle of the pendulum in radians

and its rate of change in radians/sec. It can be seen that |φ|
remains less than 0.2 radians which ensures the linearization

of (3) remains valid and is a good approximation.

We repeat the experiments for different values of γ and

calculate the sufficient transmission rate using (2). According

to the data-rate theorem, to stabilize the plant, the informa-

tion rate communicated over the channel in data payload

and timing should be larger than the entropy rate of the

plant [12], [13]. In our experiments, when γ = 2δ the

timing information is substantial, therefore, the information

transmission rate becomes smaller than the entropy rate of

the plant which is shown in Fig. 5. Furthermore, according

to the theory developed in [22], [23] as γ increases, more

information has to be sent via data payload for stabilization

since larger delay corresponds to more uncertainties about

the value of the states at the controller and less timing

information.

Remark 1: Similar to our analysis in [22], we assume the

plant disturbance is random but bounded. In most of our

experiments, we successfully stabilized inverted pendulum

around its equilibrium point. Disturbances outside the pre-

scribed limits occur rarely, but can still happen occasionally.

Assuming that the disturbances are unbounded one might be

able to extend the second-moment stability results of [35]

to our setup. Similarly, the case where the delay in the

communication channel becomes unbounded with a positive

probability is another interesting research problem. •

V. EXTENSION TO NONLINEAR SYSTEMS

The results developed in [22], [23] are restricted to linear

systems, and they can only stabilize the pendulum (3)
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Fig. 6. Experimental results for stabilizing the inverted pendulum over a digital channel with random delay upper bounded by two sampling times (first
row) and five sampling times (second row). When γ = 2δ, the packet size is 1 bit and when γ = 5δ, the packet size becomes 7 bits.

locally, where the linear approximation is valid. Thus, now

we develop a novel event-triggering scheme that encodes

information in timing and under appropriate assumptions ren-

ders a continuous-time nonlinear system with disturbances

ISpS. Clearly, the results of this section compare to the

results of [22], [23] are more sophisticated to analyze and

implement.

We consider sensor, communication channel, controller

system depicted in Fig. 2, and a continuous nonlinear plant

ẋ = f(x(t), u(t), w(t)), (7)

where x, u, and w are real numbers representing the plant

state, control input, and plant disturbance. Furthermore, we

assume that for all time t ≥ 0

|w(t)| ≤M. (8)

As in (29), the controller constructs the state estimation

x̂, which evolves during the inter-reception times as

˙̂x = f(x̂(t), u(t), 0) t ∈ (tkc , t
k+1
c ), (9)

starting at x̂(tk+c ) that is constructed by the controller using

information received up to time tk+c . The explicit way to

construct x̂(tk+c ) will be explained later in this section

(see (25)). As discussed in Appendix B, we assume the

sensor can also calculate the controller’s state estimate x̂(t).
The state estimation error is defined as (30), thus for t ∈

(tkc , t
k+1
c ) we have

ż = f(x(t), u(t), w(t)) − f(x̂(t), u(t), 0). (10)

A triggering occurs at time

tks = k(α+ γ) (11)

and the sensor transmits a packet p(ts) of length g(ts) to the

controller if

|z1(t
k
s )| ≥ J, (12)

where J and α are non-negative real numbers, γ is the upper

bound on the channel delay, k ∈ N, and t0s = 0. We choose

g(ts) such that after decoding we have

|z(tk+c )| ≤ J. (13)

Clearly, the periodic event-triggering scheme (11) and (12)

does not exhibit Zeno behavior, meaning that there cannot

be infinitely many triggering events in a finite time interval.

In fact, we have

∆′
k = tk+1

s − tks ≥ α+ γ. (14)

Assumption 1: The dynamic (7) satisfies the Lipschitz

property

|f(x, u, w)− f(x̂, u, 0)| ≤ Lx|x− x̂|+ Lw|w|, (15)

where Lx > 0, Lw > 0, and

|z(t)| = |x(t)− x̂(t)| ≤ Υ(γ). (16)

Here for all 0 ≤ ϑ ≤ γ, Υ(ϑ) is defined as follows

Υ(ϑ) := JeLx(α+γ+ϑ) +
LwM

Lx

(

eLx(α+γ+ϑ) − 1
)

. (17)

The reason for choosing the specific value for Υ(γ) in (16)

will become clear by looking at the following Lemma. If a

triggering occurs at time tks , we define

tk = inf
{

t ∈ (tk−1
s , tks ] ; |z(t)| = J

}

. (18)

By continuity of z during the inter-reception time, and

using (10) and (13), we see that tk is well defined. This

definition is used in the next Lemma.

Lemma 1: Consider the plant-sensor-channel-controller

model with plant dynamics (7) satisfying Lipschitz prop-

erty (15), estimator dynamics (9), triggering strategy (11),

and (12). Assume |z(0)| = |x(0)−x̂(0)| < J and (13) occurs

at all reception times {tkc}k∈N. Then for all time t ∈ [tk, tkc ),
where ϑ = t− tks , we have

|z(t)| ≤ (19)



Υw(ϑ) := JeLx(α+γ+ϑ) +
Lw|w|t
Lx

(

eLx(α+γ+ϑ) − 1
)

.

Lem. 1 has two important implications. First, if a triggering

event does not occur at tks for all t ∈ (tk−1
s , tks ] we have

|z(t)| ≤ J , hence using (13), under the assumptions of

Lem. 1 for all time t ≥ 0 we have

|z(t)| ≤ Υw(ϑ)
(a)

≤ Υw(γ)
(b)

≤ Υ(γ), (20)

where (a) follows from ϑ ≤ γ, and (b) follows from (8)

and (17). Also, this last inequality explains why we defined

the Lipschitz property as (16). The second important impli-

cation of Lem. 1 is that for all k ∈ N we have

z(tks ) ∈ [−Υ(0),Υ(0)].

To construct the packet p(ts) of length g(ts), we uniformly

quantize the interval [−Υ(0),Υ(0)] into 2g(ts) equal intervals

of size 2γ(0)/2g(ts). Once the controller receives the packet,

it determines the correct sub-interval and selects its center

point as the estimate of z(tks), which is represented by z̄(ts).
In this case, we have

|z(ts)− z̄(ts)| ≤ Υ(0)/2g(ts). (21)

By (30) we have x(ts) = z(ts) + x̂(ts), thus using z̄(ts)
the controller can construct an estimate of x(ts) which we

denote by x̄(ts) as follows

x̄(ts) = z̄(ts) + x̂(ts). (22)

By (21) we deduce that

|x̄(ts)− x(ts)| ≤ Υ(0)/2g(ts). (23)

For all t ∈ [ts, tc] consider the differential equation

˙̄x = f(x̄(t), u(t), 0) (24)

with initial condition x̄(ts) given in (22), and let its solution

at time tc be equal to x̂(t+c ), namely

x̂(t+c ) = x̄(ts) +

∫ tc

ts

f(x̄(t), u(t), 0). (25)

We use the above quantization policy to find a sufficient

packet size in the next Theorem.
Theorem 1: Consider the plant-sensor-channel-controller

model with plant dynamics (7) with Lipschitz property (15),
estimator dynamics (9), triggering strategy (11), and (12).
Assume |z(0)| = |x(0) − x̂(0)| < J , then there exists a
quantization policy that achieves (13) for all reception times
{tkc}k∈N with any packet size

g(ts) ≥ max

{

0, log

(

Υ(0)eLxγ

J −
LwM

Lx
(eLxγ − 1)

)}

, (26)

provided

J ≥
LwM

Lx

(

eLxγ − 1
)

. (27)

In the next assumption we restrict the class of nonlinear

systems.

Assumption 2: There exists a control policy u(t) =
U(x̂) = U(x − z) which renders the dynamics (7) (ẋ =
f(x,U(x−z), w)) ISS with respect to z(t) and w(t), that is,

there exists β′ ∈ KL, Π′ ∈ K∞(0), and ψ′ ∈ K∞(0) such

that for all t ≥ 0

|x(t)| ≤ β′ (|x(0)|, t) + Π′ (|z|t) + ψ′ (|w|t) .
Corollary 1: Under the assumptions of Thm. 1 and As-

sumption 2 for any packet size lower bounded as (26) there

exists a control policy which renders the dynamics (7) ISpS.

Using (14) the triggering rate, the frequency at which trig-

gering occurs, is trivially upper bounded by (α+γ)−1. As a

result, under assumptions of Corollary 1 we deduce that for

any information transmission rate (2)

Rs ≥
1

α+ γ
max

{

0, log

(

Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)

)}

,(28)

there exists a control law that renders the dynamic (7) ISpS.

The interested reader can find some additional remarks and

simulations for the nonlinear systems in Appendix F and G.

VI. FUTURE WORK

On the theoretical side, future work will explore the theory

and implementation of multivariate nonlinear system with

uncertainty in its parameters. On the practical validation side,

we also plan to test the proposed nonlinear scheme on our

inverted pendulum prototype.
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APPENDIX

A. Notation

Throughout the paper, we use the following notation.

We represent the set of real, non-negative real, and natural

numbers by R, R+, and N, respectively. Base 2 and natural

logarithms are represented by log and ln respectively. Vectors

are represented by boldface italic letters and matrices are

represented by regular and capital boldface letters. We use

regular lowercase letters to represent scalars. To represent an

element of a vector, we use the vector name accompanied by

the element’s index as its subscript. For a function f : R →
R

n and t ∈ R, the right-hand limit of f at t or lims→t+ f(s)
is represented by f(t+). Also, the nearest integer less (resp.

greater) than or equal to x is represented by ⌊x⌋ (resp. ⌈x⌉).

The remainder after division of x by y is indicated by the

modulo function as mod(x, y) and sign(x) returns the sign

of x. For a scalar continuous-time signal w(t), we define

|w|t = sups∈[0,t] |w1(s)|. Finally, to formulate the stability

properties, for non-negative constants d and d′ we define

K(d) := {f : R≥0 → R≥0|f continuous,

strictly increasing, and f(0) = d},

K∞(d) := {f ∈ K(d)|f unbounded},

K2
∞(0, d′) := {f : R≥0 × R≥0 → R≥0|

∀t ≥ 0, f(., t) ∈ K∞(0), and ∀r > 0 f(r, .) ∈ K∞(d′)}

L := {f : R≥0 → R≥0|f continuous,

strictly decreasing, and lim
s→∞

f(s) = 0},

KL := {f : R≥0 × R≥0 → R≥0|f continuous,

∀t ≥ 0, f(., t) ∈ K(0), and ∀r > 0 f(r, .) ∈ L}.

B. Event-triggering control design

We start with a brief description of the event-triggered con-

trol approach in our previous work [22], [23] that achieves

ISpS for the first coordinate of the dynamics (6). We have

ẋ1 = λ1x1(t) + b1u(t) + w1(t).

At the controller, the estimated state is represented by x̂1
and evolves during the inter-reception times as

˙̂x1(t) = λ1x̂1(t) + b1u(t), t ∈ (tkc , t
k+1
c ), (29)

starting at x̂1(t
k+
c ), as the estimate of the state at the

controller is updated with the information received up to time

tk+c . x̂1(t
k+
c ) is found by decoding the received packet, as

explained later in this section. We assume that the sensor can

also construct the estimate x̂1(t) generated by the controller.

Remark 2: As shown in [22], [23], if the sensor has causal

knowledge of the delay in the communication channel, it

can use x̂(0) to compute x̂(t) at all times t. This causal

knowledge can be obtained without assuming an additional

communication channel in the feedback loop via “acknowl-

edgment through the control input” [36]. •

For the unstable coordinate in (6), the state estimation

error is defined as

z1(t) = x1(t)− x̂1(t). (30)

This error is used by the sensor to determine the triggering

events.

We define the triggering events as follows: for J ≥ 0, a

triggering occurs, and the sensor transmits a packet to the



controller at time tk+1
s ≥ 0 when

|z1(t
k+1
s )| = J, (31)

where tkc ≤ tk+1
s for k ∈ N and t1s ≥ 0. Thus, a new

transmission occurs only if the previous packets have been

already delivered to the controller.

Using (31), at each triggering event, the sensor transmits

the packet p(ts) of size g(ts) bits to the controller which

contains the data payload and carries the timing information.

The details of our quantization policy to encode data payload

into packet p(ts) is discussed in our previous work [22], [23].

Using the data payload and the timing of the packet p(ts)
the controller estimates z1(tc) as follows

z̄1(tc) = sign(z1(ts))Je
λ1(tc−q(ts)),

where q(ts) is the best estimate of ts constructed at the

controller after reception of the packet p(ts).
To update the estimate of the state after decoding the

packet, we define the following jump strategy

x̂1(t
+
c ) = z̄1(tc) + x̂1(tc). (32)

For a given design parameter 0 < ρ0 < 1, the packet size

g(ts) = max

{

1,

⌈

1 + log
λ1bγ

ln(1 + ρ0−(M/Jλ1)(eλ1γ−1)
eλ1γ )

⌉}

,

(33)

ensures that

|z1(t
k+
c )| = |z1(t

k
c )− z̄1(t

k
c )| ≤ ρ0J, (34)

at all reception times {tkc}k∈N inside the closed interval

[tks , t
k
s + γ], provided that J > M

λ1ρ0
(eλ1γ − 1) and |z1(0)| ≤

J . It then follows that for all t we have

|z1(t)| ≤ Jeλ1γ +
M

λ1

(

eλ1γ − 1
)

. (35)

The proof and derivation of (33), (34), and (35) can be found

in our previous work [22], [23].

We set the control input to be u(t) = −Kx̂xx(t). In our

example, we have K = (225, 11), and K is chosen such

that (A − BK) is Hurwitz. Here, x̂1(t) is generated based

on (29) and jump strategy (32). Since λ2 < 0, the controller

does not need any update from the sensor to construct x̂2(t).
Therefore, as mentioned in [22], using (35), one can prove

that the plant (5) is ISpS. We can then conclude that as long

as the linear approximation holds, the nonlinear plant (3) is

also ISpS.

In [22], [23] we have also shown that the proposed event-

triggered scheme does not exhibit “Zeno behavior,” meaning

that there cannot be infinitely many triggering events in a

finite time interval. In fact, the time between consecutive

triggers is uniformly lower bounded as follow

∆′
k = tk+1

s − tks ≥
1

λ1
ln
( J + M

λ1

ρ0J + M
λ1

)

.

C. Proof of Lemma 1

Proof: For all time t ∈ [tk, tkc ) the state estimation error

evolves according to (10) with the initial condition z(tk) =

J , where tk is defined as (18). Thus, for all t ∈ [tk, tkc )

|z(t)| ≤ JeLx(t−tk) + Lw

∫ t

tk
|w(t)eLx(t−tk)|dt (36a)

≤ JeLx(t−tk) +
Lw|w|t
Lx

(

eLx(t−tk) − 1
)

= JeLx(t−ts+ts−tk) +
Lw|w|t
Lx

(

eLx(t−ts+ts−tk) − 1
)

≤ JeLx(ϑ+α+γ) +
Lw|w|t
Lx

(

eLx(ϑ+α+γ) − 1
)

, (36b)

where (36a) follows from the Lipschitz property (15) and

Gronwall-Bellman inequality, as tk ∈ (tk−1
s , tks ] we have tks−

tk ≤ α+ γ and (36b) follows.

D. Proof of Theorem 1

Proof: For all t ∈ [ts, tc] we have

|x(t)− x̄(t)| = |x(ts)− x̄(ts)|+
∣

∣

∣

∣

∫ t

ts

f(x, u, w)dt −

∫ t

ts

f(x̄, u, 0)dt

∣

∣

∣

∣

≤ (37a)

|x(ts)− x̄(ts)|+

∫ t

ts

(Lx|x− x̄|+ Lw|w|) dt ≤ (37b)

|x(ts)− x̄(ts)|e
Lx(t−ts)+

Lw

∫ t

ts

|w(t)eLx(t−ts)|dt ≤ (37c)

|x(ts)− x̄(ts)|e
Lx(t−ts) +

LwM

Lx

(

eLx(t−ts) − 1
)

(37d)

where we used (7) and (24) along the triangle inequality to

arrive at (37a), (37b) follows from Lipschitz property (15),

and (37c) follows from solving the linear differential equa-

tion ẋ(t)− ˙̄x(t) = Lx(x − x̄) + Lww with initial condition

x(ts)− x̄(ts) (see Gronwall-Bellman inequality), and (37d)

follows from (8).

Using (1), (23), (25) and (37) we deduce

|z(t+c )| = |x(tc)− x̂(t+c )| ≤

Υ(0)

2g(ts)
eLxγ +

LwM

Lx

(

eLxγ − 1
)

.

Consequently,

Υ(0)

2g(ts)
eLxγ +

LwM

Lx

(

eLxγ − 1
)

≤ J (38)

suffices to ensure (13) at all reception time. Using (27), (38)

is equivalent to

2g(ts) ≥
Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)
.

The result now follows by noticing the packet size should

be no-negative.

E. Proof of Corollary 1

Proof: Thm. 1 states that with any packet size lower

bounded as (26) there exists a quantization policy that

achieves (13) for all reception times {tkc}k∈N. Thus using



Lem. 1 and (20) we deduce for all time t ≥ 0 we have

|z(t)| ≤ Υw(γ),

where Υw(γ) is defined as (19). Consequently, for all time

t ≥ 0, |z(t)| is upper bounded by summation of a K∞(d)
function of γ with d = JeLxα and a K2

∞(0, d′) function of

|w|t and γ with d′ = (eLxα − 1)LwM/Lx. Therefore, using

Assumption 2 the result follows.

F. Additional remarks about nonlinear systems

Here, we discuss some additional remarks about the non-

linear systems results presented in Sec. V.

Remark 3: Unlike the linear case, a closed form solution

of (10) is not known in general. Consequently, to simplify

the encoding process, we use the periodic event-triggering

scheme (11) and (12) (cf. [37]), which is different from

the continues time event-triggering scheme (31) where a

triggering could occur at any time tks ≥ 0. •
Remark 4: Although Assumption 2 is restrictive, it is

widely used in control of nonlinear systems under com-

munication constraint [25], [27], [38]. An exception is the

work [38] which eliminated this assumption for systems

without disturbances. An alternative ISS assumption which

centers around state estimation x̂ is proposed in [27] where

the evolution of state estimation x̂ is described by an

impulsive system [39]. As in our event-triggering design

the behavior of the state estimation x̂ is described with an

impulsive system (9) and (25), the study of this alternative

ISS assumption for our setup with a digital communication

channel with bounded but unknown delay is an interesting

research venue. •
Remark 5: The lower bound given on the packet size

in (26) might not be a natural number in general. This lower

bound is used to properly bound the information transmission

rate (2) in (28). In addition, the lower bound (26) might

be zero. When g(ts) = 0 there is no need to put any data

payload in the packet and the plant can be stabilized using

only timing information. However, in this case the sensor

still needs to inform the controller about the occurrence of a

triggering event. Consequently, when g(ts) = 0 is sufficient,

the sensor can stabilize the system by transmitting a fixed

symbol from a unitary alphabet to the controller (see [13]).

In practice, the packet size should be a natural number or

zero, so if we do not want to use the fixed symbol from a

unitary alphabet, as in (33), the packet size

g(ts) = max

{

1,

⌈

log

(

Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)

)⌉}

,(39)

is sufficient for stabilization. •
Remark 6: As we used the trivial upper bound on the

triggering rate (α + γ)−1 to deduce the bound (28), this

upper bound on Rs might be too conservative in general. •
Remark 7: When γ =M = 0, the data-rate theorem [12],

[22], [23] states that the rate at which the controller receives

information should be at least as large as the intrinsic entropy

rate of the plant defined in [26]. In our design, we can supply

this information only using the implicit timing information in

the triggering events. In fact, when α → 0 the periodic event-

triggering control schemes (11) and (12) become equivalent

to the continuous time event-triggering policy (31). In this

case, in a triggering time ts the controller can discover the

exact value of x(ts) using equation x(ts) = x̂(ts) ± J by

receiving a single bit corresponding to the sign of z(ts). As

there is no system disturbance, the controller then can track

x(t) using (9) after a single triggering time, and Rs (2) will

be arbitrarily small. •

G. Simulations for nonlinear systems

This section presents simulation results validating the

proposed nonlinear scheme. While our analysis is for

continuous-time plants, we perform the simulations in dis-

crete time with a small sampling time δ. In this case, as

discussed in Sec. III, the minimum upper bound for the

channel delay is equal to two sampling times. We illustrate

the execution of our design for the system

ẋ = f(x(t), u(t), w(t)) = 2x(t) + sin(x(t)) + u(t) + w(t).
(40)

During inter-reception time, state estimation is defined ac-

cording to (9). Thus, using (10), for t ∈ (tkc , t
k+1
c ) we deduce

ż(t) = 2z(t) + sinx− sin x̂+ w(t).

Since | sinx − sin x̂| ≤ |x − x̂|, the dynamics (40) satisfies

the Lipschitz property (15) with Lx = 3, Lw = 1 for all

|z(t)| ∈ R≥0.

A set of two simulations are carried out for different values

of γ and M . Each column in Fig. 7 presents one set of

simulation. The first row shows the triggering threshold J
and the absolute value of the state estimation error |z(t)|.
If the absolute value of this error is equal to J during the

period α + γ, the sensor transmits a packet at the end of

this period, and the jumping strategy (25) adjusts x̂ at the

reception time to ensure the plant is ISpS.

Note that the amount this error exceeds the triggering func-

tion depends on the random channel delay, upper bounded

by γ. The second row of Fig. 7 presents the evolution of

the state (40) and its estimation (9). As expected, when

γ increases, while the plant remains ISpS the controller

performance deteriorate significantly.

As discussed in Sec. IV, according to the data-rate theo-

rem, to stabilize the plant, the information rate communicated

over the channel in data payload and timing should be larger

than the entropy rate of the plant [12], [13]. Using [26]

the entropy rate of the plant (40) at point x∗ is equal to

h(x∗) = ∂f/∂x|x=x∗ = 2+ cos(x∗(t)). Thus, for any value

of the state, the information accessible to the controller about

the plant or the information rate communicated over the

channel in data payload and timing, should be larger than

h(x) ≥ h = 1. (41)

Fig. 8 presents the simulation of information transmission

rate versus the delay upper bound γ in the communication

channel to render (7) ISpS. It can be seen that for small

values of γ, the plant is ISpS with an information trans-

mission rate smaller than the one prescribed by the data-



M = 0.1, γ = 0.1 sec, g(ts) = 3 bit M = 0.1, γ = 0.99 sec, g(ts) = 15 bit

0 5 10 15 20
Time in seconds

0

0.01

0.02

0.03

0.04

J

|z|

0 5 10 15 20
Time in seconds

0

5

10

15

J

|z|

0 5 10 15 20
Time in seconds

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

x̂

0 5 10 15 20
Time in seconds

-15

-10

-5

0

5

10

15

x

x̂

Fig. 7. Simulation results for stabilization of the plant (40). We used the following parameters for the simulation: sampling time δ = 0.005, simulation
time T = 20, u(t) = −4x̂(t), α = 0.01, packet size (39), and triggering threshhold J = (e3γ − 1)M/3 + 0.01.
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Fig. 8. Information transmission rate in simulations compared to the
h (41). We used the following parameters for the simulation: sampling time
δ = 0.01 seconds, simulation time T = 100 seconds, u(t) = −2x̂(t),
z(0) = 0.01, M = 0.05, α = 0.01, packet size (39), and triggering
threshhold J = (e3γ − 1)M/3 + 0.05. Note that the rate calculated from
simulations can not start at γ = 0 because the minimum channel delay
upper bound is equal to two sampling time.

rate theorem. Furthermore, as γ increases, more information

has to be sent via data payload for stabilization since larger

delay corresponds to more uncertainties about the value of

the states at the controller and less timing information.
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