
Potential-Based Advice for Stochastic Policy Learning

Baicen Xiao1, Bhaskar Ramasubramanian1, Andrew Clark2,
Hannaneh Hajishirzi1, Linda Bushnell1, and Radha Poovendran1

Abstract— This paper augments the reward received
by a reinforcement learning agent with potential func-
tions in order to help the agent learn (possibly stochas-
tic) optimal policies. We show that a potential-based
reward shaping scheme is able to preserve optimality
of stochastic policies, and demonstrate that the ability
of an agent to learn an optimal policy is not affected
when this scheme is augmented to soft Q-learning.
We propose a method to impart potential-based advice
schemes to policy gradient algorithms. An algorithm
that considers an advantage actor-critic architecture
augmented with this scheme is proposed, and we give
guarantees on its convergence. Finally, we evaluate our
approach on a puddle-jump grid world with indistin-
guishable states, and the continuous state and action
mountain car environment from classical control. Our
results indicate that these schemes allow the agent to
learn a stochastic optimal policy faster and obtain a
higher average reward.

I. INTRODUCTION

Reinforcement learning (RL) is a framework that al-
lows an agent to complete tasks in an environment,
even when a model of the environment is not known.
The agent ‘learns’ to complete a task by maximizing
its expected long-term reward, where the reward signal
is supplied by the environment. RL algorithms have
been successfully implemented in many fields, including
robotics [1], [2], and games [3], [4] . However, it remains
difficult for an RL agent to master new tasks in unseen
environments. This is especially true when the reward
given by the environment is sparse/ significantly delayed.

It may be possible to guide an RL agent towards
more promising solutions faster, if it is equipped with
some form of prior knowledge about the environment.
This can be encoded by modifying the reward signal
received by the agent during training. However, the
modification must be carried out in a principled manner,
since providing an additional reward at each step might
distract the agent from the true goal [5]. Potential-
based reward shaping (PBRS) is one such method that
augments the reward in an environment specified by
a Markov Decision Process (MDP) with a term that is
a difference of potentials [6]. This method is attractive
since it easily allows for the recovery of optimal policies,
while enabling the agent to learn these policies faster.

1University of Washington, Seattle, WA 98195, USA. {bcxiao,
bhaskarr, hannaneh, lb2, rp3}@uw.edu

2Worcester Polytechnic Institute, Worcester, MA 01609, USA.
aclark@wpi.edu

Potential functions are typically functions of states.
This could be a limitation, since in some cases, such a
function may not be able to encode all information avail-
able in the environment. To allow for imparting more
information to the agent, a potential-based advice (PBA)
scheme was proposed in [7]. The potential functions in
PBA include both states and actions as their arguments.

To the best of our knowledge, PBRS and PBA schemes
in the literature [6], [7], [8] assume that an optimal policy
is deterministic. This will not always be the case, since
an optimal policy might be a stochastic policy. This is
especially true when there are states in the environment
that are partially observable or indistinguishable from
each other. Moreover, the aforementioned papers limit
their focus to discrete state and action spaces.

In this paper, we study the addition of PBRS and PBA
schemes to the reward, in settings where: i) the optimal
policy will be stochastic, and ii) state and action spaces
may be continuous. We additionally provide guarantees
on the convergence of an advantage actor-critic architec-
ture that is augmented with a PBA scheme. We make
the following contributions:

• We prove that the ability of an agent to learn an
optimal stochastic policy remains unaffected when
augmenting PBRS to soft Q-learning.

• We propose a technique for adapting PBA in policy-
based methods, in order to use these schemes in en-
vironments with continuous state and action spaces.

• We present an Algorithm, AC-PBA, describing an
advantage actor-critic architecture augmented with
PBA, and provide guarantees on its convergence.

• We evaluate our approach on two experimental do-
mains: a discrete-state, discrete-action Puddle-jump
Gridworld that has indistinguishable states, and a
continuous-state, continuous-action Mountain Car.

The remainder of this paper is organized as follows:
Section II presents related work in reward shaping. Re-
quired preliminaries to RL, PBRS and PBA is presented
in Section III. Section IV presents our results on using
PBRS for stochastic policy learning. We present a method
to augment PBA to policy gradient frameworks and
an algorithm detailing this in Section V. Experiments
validating our approach are reported in Section VI, and
we conclude the paper in Section VII.

II. RELATED WORK

Shaping or augmenting the reward received by an RL
agent in order to enable it to learn optimal policies faster

ar
X

iv
:1

90
7.

08
82

3v
1

 [
cs

.L
G

]
 2

0
Ju

l 2
01

9

is an active area of research. Reward modification via hu-
man feedback was used in [9], [10] to interactively shape
an agent’s response so that it learned a desired behavior.
However, frequent human supervision is usually costly
and may not possible in every situation. A curiosity-
based RL algorithm for sparse reward environments
was presented in [11], where an intrinsic reward signal
characterized the prediction error of the agent as a
curiosity reward. The reward received by the agent was
augmented with a function that represented the number
of times the agent had visited a state in [12].

Entropy regularization as a way to encourage explo-
ration of policies during the early stages of learning was
studied in [13] and [14]. This was used to lead a policy
towards states with a high reward in [15] and [16].

Static potential-based functions were shown to pre-
serve the optimality of deterministic policies in [6].
This property was extended to dynamic potential-based
functions in [8]. The authors of [17] showed that when
an agent learned a policy using Q-learning, applying
PBRS at each training step was equivalent to initializing
the Q-function with the potentials. They studied value-
based methods, but restricted their focus to learning
deterministic policies. The authors of [18] demonstrated
a method to transform a reward function into a potential-
based function during training. The potential function in
PBA was obtained using an ‘experience filter’ in [19].

The use of PBRS in model-based RL was studied in
[20], and for episodic RL in [21]. PBRS was extended
to planning in partially observable domains in [22].
However, these papers only considered the finite-horizon
case. In comparison, we consider the infinite horizon,
discounted cost setting in this paper.

In control theoretic settings, RL algorithms have been
used to establish guarantees on convergence to an opti-
mal controller for the Linear Quadratic Regulator, when
a model of the underlying system was not known in [23],
[24]. A survey of using RL for control is presented in [25].
OpenAI Gym [26] enables the solving of several problems
in classical control using RL algorithms.

III. PRELIMINARIES

A. Reinforcement Learning
An MDP [27] is a tuple (S, A,T,ρ0,R). S is the set

of states, A the set of actions, T : S × A × S → [0,1]
encodes P(st+1|st,at), the probability of transition to st+1,
given current state st and action at. ρ0 is a probability
distribution over the initial states. R : S×A →R denotes
the reward that the agent receives when transitioning
from st while taking action at. In this paper, R <∞.

The goal for an RL agent [28] is to learn a policy π,
in order to maximize J := Eτ∼π[

∑∞
t=0γ

tR(st,at)]. Here, γ
is a discounting factor, and the expectation is taken over
the trajectory τ= (s0,a0, r0, s1, . . .) induced by policy π. If
π : S → A, the policy is deterministic. On the other hand,
a randomized policy returns a probability distribution
over the set of actions, and is denoted π : S× A → [0,1].

The value of a state-action pair (s,a) following policy
π is represented by the Q-function, written Qπ(s,a) =
Eτ∼π[

∑∞
t=0γ

tR(st,at)|s0 = s,a0 = a]. The Q-function allows
us to calculate the state value Vπ(s)= Ea∼π[Qπ(s,a)]. The
advantage of a particular action a, over other actions at
a state s is defined by Aπ(s,a) :=Qπ(s,a)−Vπ(s).

B. Value-based and Policy-based Methods
The RL problem has two general solution techniques.

Value-based methods determine an optimal policy by
maintaining a set of reward estimates when following a
particular policy. At each state, an action that achieves
the highest (expected) reward is taken. Typical value-
based methods to learn greedy (determininistic) policies
include Q-learning and Sarsa-learning [28]. Recently, the
authors of [29] proposed soft Q-learning, which is a value-
based method that is able to learn stochastic policies.

In comparison, policy-based methods directly search
over the policy space [28]. Starting from an initial policy,
specified by a set of parameters, these methods compute
the expected reward for this policy, and update the
parameter set according to certain rules to improve
the policy. Policy gradient [30] is one way to achieve
policy improvement. This method repeatedly computes
(an estimate of) the gradient of the expected reward with
respect to the policy parameters. Policy-based approaches
usually exhibit better convergence properties, and can be
used in continuous action spaces [31]. They can also be
used to learn stochastic policies. REINFORCE and actor-
critic are examples of policy gradient algorithms [28].

C. PBRS and PBA
Reward shaping methods augment the environment

reward R with an additional reward F ∈ R, F < ∞.
This changes the structure of the original MDP M(=
(S, A,T,ρ0,R)) to M′ = (S, A,T,ρ0,R + F). The goal is
to choose F so that an optimal policy for M′, π∗

M′ , is
also optimal for the original MDP M. Potential-based
reward shaping (PBRS) schemes were shown to be able
to preserve the optimality of deterministic policies in [6].

In PBRS, the function F is defined as a difference of po-
tentials, φ(·). Specifically, F(st,at, st+1) := γφ(st+1)−φ(st).
Then, the Q-function, Q∗

M(s,a), of the optimal greedy
policy for M and the optimal Q-function Q∗

M′ (s,a) for M′
are related by: Q∗

M′ (s,a) =Q∗
M(s,a)−φ(s). Therefore, the

optimal greedy policy is not changed [6], [8], since:

π∗
M′ (s) ∈ argmax

a∈A
Q∗

M′ (s,a)

= argmax
a∈A

(
Q∗

M(s,a)−φ(s)
)= argmax

a∈A
Q∗

M(s,a).

The authors of [7] augmented φ(s) to include action a
as an argument. They termed this potential-based advice
(PBA). There are two forms– look-ahead PBA and look-
back PBA– respectively defined by:

F(st,at, st+1,at+1)= γφ(st+1,at+1)−φ(st,at) (1)

F(st,at, st−1,at−1)=φ(st,at)−γ−1φ(st−1,at−1). (2)

For the look-ahead PBA scheme, the state-action value
function for M following policy π is given by:

Qπ
M(s,a)=Qπ

M′ (s,a)+φ(s,a). (3)

The optimal greedy policy for M can be recovered from
the optimal state-action value function for M′ from:

π∗
M(st) ∈ argmax

a∈A

(
Q∗

M′ (st,a)+φ(st,a)
)
. (4)

The optimal greedy policy for M using look-back PBA
can be recovered similarly.

IV. PBRS FOR STOCHASTIC POLICY LEARNING

The existing literature on PBRS has focused on aug-
menting value-based methods to learn optimal deter-
ministic policies. In this section, we first show that
PBRS preserves optimality, when the optimal policy is
stochastic. Then, we show that the learnability will not
be changed when using PBRS in soft Q-learning.

Proposition 1: Assume that the optimal policy is
stochastic. Then, with F := γφ(st+1)−φ(st), PBRS pre-
serves the optimality of stochastic policies.

Proof: The goal in the original MDP M was to find
a policy π in order to maximize:

π∗
M = argmax

π
Eτ∼π

[∞∑
t=0

γtR(st,at)

]
. (5)

In PBRS, the goal is to determine a policy so that:

π∗
M′ = argmax

π
Eτ∼π

[∞∑
t=0

γt(R(st,at)+F(st,at, st+1,at+1)
)]

= argmax
π

Eτ∼π
[∞∑

t=0
γt(R(st,at)+γφ(st+1)−φ(st)

)]
= argmax

π

[
Eτ∼π

[∞∑
t=0

γtR(st,at)
]−Eτ∼π[

φ(s0)
]]

= argmax
π

Eτ∼π
[∞∑

t=0
γtR(st,at)

]−∫
s
ρ0(s)φ(s)ds. (6)

The last term in Equation (6) is constant, and doesn’t
affect the identity of the maximizing policy of (5).

Next, we examine the effect on learnability when using
PBRS with soft Q-learning. Soft Q-learning is a value-
based method for stochastic policy learning that was
proposed in [29]. Different from Equation (5), the goal
is to maximize both, the accumulated reward, and the
policy entropy at each visited state:

π∗
soft = argmax

π
Eτ∼π

[∞∑
t=0

γt(R(st,at)+αH (π(·|st))
)]

. (7)

The entropy term H (π(·|st)) encourages exploration
of the state space, and the parameter α is a trade-off
between exploitation and exploration.

Before stating our result, we summarize the soft Q-
learning update procedure. From [29], the optimal value-
function, V∗

soft(st), is given by:

V∗
soft(st)=α log

∫
A

exp
(1
α

Q∗
soft(st,a)

)
da. (8)

The optimal soft Q-function is determined by solving the
soft Bellman equation:

Q∗
soft

(
st,at

)= r t +γEst+1

[
V∗

soft(st+1)
]
. (9)

The optimal policy can be obtained from Equation (9) as:

π∗
soft(at|st)= exp

(1
α

(
Q∗

soft(st,at)−V∗
soft(st)

))
, (10)

In the rest of this Section, we assume both, states
and actions are discrete and no function approximator
is used. We also omit subscripts for Qsoft and Vsoft, and
set α= 1 for simplicity. From Equation (9), and as in Q-
learning, soft Q-learning updates the soft Q-function by
minimizing the soft Bellman error:

δQk(sk,ak)= r(sk,ak)+γVk(sk+1)−Qk(sk,ak), (11)

where Vk(st+1) = log
∑

a∈A exp
(
Qk(st+1,a)

)
. During train-

ing, πk(at|st) = exp
(
Qk(st,at)−Vk(st)

)
. With λ denoting

the learning rate, the Q-function update is given by:

Qk+1(sk,ak)=Qk(sk,ak)+λδQk(sk,ak). (12)

The main result of this section shows that the ability
of an agent to learn an optimal policy is unaffected when
using soft Q-learning augmented with PBRS. We define a
notion of learnability, and use this to establish our claim.

During training, an agent encounters a sequence of
states, actions, and rewards that serves as ‘raw-data’
which is fed to the RL algorithm. Let L and L′ de-
note two RL agents. Let Dk = (sk,ak, rk, sk+1) and D′

k =
(s′k,a′

k, r′k, s′k+1) denote the experience tuple at learning
step k from a trajectory used by L and L′, respectively.

Definition 1 (Learnability): Denote the accumulated
difference in the Q-functions of L and L′ after learning
for k steps by ∆Qk(s,a) and ∆Q′

k(s,a), respectively. Then,
given identical sample experiences, (that is, Dk′ = D′

k′
∀k′ ≤ k), L and L′ are said to have the same learnability
if ∆Qk′ (s,a)=∆Q′

k′ (s,a) ∀k′ ≤ k ∀s∀a.
Proposition 2: Soft Q-learning, with initial soft Q-

values Q(s,a) = Q0(s,a) and augmented with PBRS
where state potential is φ(s), has the same learnability as
soft Q-learning without PBRS but with its soft Q-values
initialized to Q(s,a)=Q0(s,a)+φ(s).

Proof: Consider an agent L that uses a PBRS
scheme during learning and an agent L′ that does not use
PBRS, but has its soft Q-values initialized as Q′

0(s,a) :=
Q0(s,a) +φ(s), where Q0(s,a) is the initial Q-value of
L. We further assume that L and L′ adopt the same
learning rate. From Definition 1, to show that L and L′
have the same learnability, we need to show that the soft
Bellman errors δQk(st,at) and δQ′

k(sk,ak) are equal at
each training step k, given the same experience sets Dk
and D′

k. From Equation (11), the soft Bellman errors for
L and L′ can be respectively written as:

δQk(sk,ak)= r(sk,ak)+γφ(sk+1)−φ(sk)+
γVk(sk+1)−Qk(sk,ak)

δQ′
k(s′k,a′

k)= r(s′k,a′
k)+γV ′

k(s′k+1)−Q′
k(s′k,a′

k).

Since Dk′ = D′
k′ for each k′ ≤ k, comparing δQ′

k(sk,ak)
and δQk(s′k,a′

k) is reduced to comparing δQ′
k(sk,ak) and

δQk(sk,ak). We show this by induction.
At training step k = 0 there is no update. Thus,

δQ0(s0,a0)= δQ′
0(s0,a0). Assume that the Bellman errors

are identical up to a step k = K . That is, δQk(sk,ak) =
δQ′

k(sk,ak) ∀k ≤ K . Then, the accumulated errors for
the two agents until this step are also identical. That
is, ∆QK (s,a) = ∆Q′

K (s,a) ∀s∀a. Consider training step
k = K +1. The state values at this step are: VK (sK+1) =
log

∑
a∈A exp

[
Q0(sK+1,a)+∆QK (sK+1,a)

]
and V ′

K (sK+1) =
log

∑
a∈A exp

[
Q0(sK+1,a)+φ(sK+1)+∆Q′

K (sK+1,a)
]

respec-
tively. The Bellman errors at k = K +1 are:

δQK+1(sK ,aK)= r(sK ,aK)+γφ(sK+1)−φ(sK)

+γVK (sK+1)−QK (sK ,aK)

= r(sK ,aK)+γφ(sK+1)−φ(sK)+γVK (sK+1)

−Q0(sK ,aK)−∆QK (sK ,aK)

δQ′
K+1(sK ,aK)= r(sK ,aK)+γV ′

K (sK+1)−Q′
K (sK ,aK)

= r(sK ,aK)+γV ′
K (sK+1)−Q0(sK ,aK)−φ(sK)−∆Q′

K (sK ,aK)

= δQK+1(sK ,aK)−γφ(sK+1)+γ(V ′
K (sK+1)−VK (sK+1))

= δQK+1(sK ,aK)−γφ(sK+1)+γφ(sK+1)

= δQK+1(sK ,aK).

It follows that ∆QK+1(s,a)=∆Q′
K+1(s,a) ∀s∀a.

Remark 1: If the Q-function is represented by a func-
tion approximator (as is typical for continuous action
spaces), then Proposition 2 may not hold. This is because
the Q-function in this scenario is updated using gradient
descent, instead of Equation (12). Gradient descent is
sensitive to initialization. Thus, different initial values
will result in different updates of the Q-function.

V. PBA FOR STOCHASTIC POLICY LEARNING

Although PBRS can preserve the optimality of policies
in several settings, it suffers from the drawback of being
unable to encode richer information, such as desired
relations between states and actions. The authors of [7]
proposed potential-based advice (PBA), a scheme that
augments the potential function by including actions as
an argument together with states. In this section, we
show that while using PBA, recovering the optimal policy
can be difficult if the optimal policy is stochastic. Then,
we propose a novel way to impart prior information in
order to learn a stochastic policy with PBA.

A. Stochastic policy learning with PBA

Assume that we can compute Q∗
M(s,a), the optimal

value for state-action pair (s,a) in MDP M. The optimal
stochastic policy for M is π∗

M = argmaxτ∼πEπ
[
Q∗

M(s,a)
]
.

From Equation (3), the optimal stochastic policy for the
modified MDP M′ that has its reward augmented with
PBA is given by π∗

M′ = argmaxπEτ∼π
[
Q∗

M(s,a)−φ(s,a)
]
.

Without loss of generality, π∗
M 6=π∗

M′ . If the optimal policy
is deterministic, then the policy for M can be recovered

easily from that for M′ using Equation (4). However,
when it is stochastic, we need to average over trajectories
in the MDP, which makes it difficult to recover the
optimal policy for M from that of M′.

In the sequel, we will propose a novel way to take
advantage of PBA in the policy gradient framework in
order to directly learn a stochastic policy.

B. Imparting PBA in policy gradient

Let JM(θ) denote the value of a parameterized policy
πθ in MDP M. That is, JM(θ) = Eτ∼πθ

[∑∞
t=0γ

tR(st,at)
]
.

Following the policy gradient theorem [28], and defining
G(st,at) :=∑i=∞

i=t γi−tr i, the gradient of J(θ) with respect
to the parameter θ is given by:

∇θJM(θ)= Eτ∼πθ
[
G(st,at)∇θ logπθ(at|st)

]
. (13)

Then, Eτ∼πθ
[
G(st,at)

]=Qπθ (st,at).
REINFORCE [28] is a policy gradient method that

uses Monte Carlo simulation to learn θ, where the
parameter update is performed only at the end of an
episode (a trajectory of length T). If we apply a look-
ahead PBA scheme as in Equation (1) along with REIN-
FORCE, then the total return from time t is given by:

Ga(st,at)=
i=T∑
i=t

γi−tr i +γT−tφ(sT ,aT)−φ(st,at)

=G(st,at)+γT−tφ(sT ,aT)−φ(st,at).

(14)

Notice that if Ga(st,at) is used in Equation (13) in-
stead of G(st,at), then the policy gradient is biased.
One way to resolve the problem is to add the differ-
ence −γT−tφ(sT ,aT)+φ(st,at) to Ga(st,at). However, this
makes the learning process identical to the original
REINFORCE and PBA is not used. While using PBA in
a policy gradient setup, it it important to add the term
φ(s,a) so that the policy gradient is unbiased, and also
leverage the advantage that PBA offers during learning.

To apply PBA in policy gradient, we turn to temporal
difference (TD) methods. TD methods update estimates
of the accumulated return based in part on other learned
estimates, before the end of an episode. A popular TD-
based policy gradient method is the actor-critic frame-
work [28]. In this setup, after performing action at at
step t, the accumulated return G(st,at) is estimated by
QM(st,at) which, in turn, is estimated by r t+γVM(st+1).
It should be noted that the estimates are unbiased.

When the reward is augmented with look-ahead PBA,
the accumulated return is changed to QM′ (st,at), which
is estimated by r t +γφ(st+1,at+1)−φ(st,at)+γVM′ (st+1).
From Equation (3), at steady state, QM(st,at) −
QM′ (st,at)=φ(st,at). Intuitively, to keep policy gradient
unbiased when augmented with look-ahead PBA, we can
add φ(st,at) at each training step. In other words, we can
use r t+γφ(st+1,at+1)+γVM′ (st+1) as the estimated return.
It should be noted that before the policy reaches steady
state, adding φ(st,at) at each time step will not cancel
out the effect of PBA. This is unlike in REINFORCE,

where the addition of this term negates the effect of using
PBA. In the advantage actor-critic, an advantage term is
used instead of the Q-function in order to reduce the
variance of the estimated policy gradient. In this case
also, the potential term φ(st,at) can be added in order
to keep the policy gradient unbiased.

Algorithm AC-PBA : Actor-critic augmented with PBA

Input: Differentiable policy function πθ(a|s)
Differentiable value function Vω(s)
Potential-based advice φ(s,a)
Maximum episode Tmax

Initialization:
policy parameter θ, value parameter ω, learning rate
αθ and αω, discount factor γ, episode counter T ← 0
repeat

initialize state s0, t ← 0
repeat

Sample action at ∼πθ(·|st)
Take action at, observe reward r t, next state st+1

R =
{

0, if st+1 is a terminal state ,
Vω(st+1), otherwise.

if use look-ahead advice then
δt = r t +γφ(st+1,at+1)−φ(st,at)+γR−Vω(st)
Update θ← θ+αθ(δt +φ(st,at)

)∇θ logπθ(at|st)
else
δt = r t +φ(st,at)−γ−1φ(st−1,at−1)+γR−Vω(st)
Update θ← θ+αθδt∇θ logπθ(at|st)

end if
Update ω←ω−αωδt∇ωVω(st)

until st+1 is a terminal state
T ← T +1

until T > Tmax

A procedure for augmenting the advantage actor-critic
with PBA is presented in Algorithm AC-PBA. αθ and
αω denote learning rates for the actor and critic respec-
tively. When applying look-ahead PBA, at training step
t, parameter ω of the critic Vω(s) is updated as follows:

δa
t = r t +γφ(st+1,at+1)−φ(st,at)+γVω(st+1)−Vω(st)

ω=ω−αωδa
t ∇ωVω(st),

where δa
t is the estimation error of the state value after

receiving new reward [r t+γφ(st+1,at+1)−φ(st,at)] at step
t. To ensure an unbiased estimate of the policy gradient,
the potential term φ(st,at) is added while updating θ as:

θ = θ+αθ(δa
t +φ(st,at)

)∇θ logπθ(at|st).

A similar method can be used when learning with
look-back PBA. In this case, the critic and the policy
parameter are updated as follows:

δb
t = r t +φ(st,at)−γ−1φ(st−1,at−1)+γVω(st+1)−Vω(st)

ω=ω−αωδb
t ∇ωVω(st),

θ = θ+α(
δb

t +γ−1E
[
φ(st−1,at−1)|st

])∇θ logπθ(at|st) (15)

In fact, the potential term need not be added to ensure
an unbiased estimate in this case. Then, the policy
parameter update becomes:

θ = θ+αδb
t ∇θ logπθ(at|st), (16)

which is exactly the policy update of the advantage actor-
critic. This is formally stated in Proposition 3

Proposition 3: When the actor-critic is augmented
with look-back PBA, Equations (15) and (16) are equal
in the sense of expectation. That is

E(st,at)∼ρπθ
[(
δb

t +γ−1E
[
φ(st−1,at−1)|st

])∇θ logπθ(at|st)
]

= E(st,at)∼ρπθ
[
δb

t ∇θ logπθ(at|st)
]
, (17)

where ρπθ is the distribution induced by the policy πθ.
Proof: It is equivalent to show that:

E(st,at)∼ρπθ
[
E
[
φ(st−1,at−1)|st

]∇θ logπθ(at|st)
]= 0. (18)

The inner expectation E
[
φ(st−1,at−1)|st

]
is a function of

st, policy πθ, and transition probability T. Denoting this
expectation by f (st,πθ,T), we obtain:

E(st,at)∼ρπθ
[
f (st,πθ,T)∇θ logπθ(at|st)

]
=Est∼ρπθ

[
Eat∼πθ

[
f (st,πθ,T)∇θ logπθ(at|st)

]]
=Est∼ρπθ

[∫
A
πθ(at|st) f (st,πθ,T)

∇θπθ(at|st)
πθ(at|st)

da
]

=Est∼ρπθ
[

f (st,πθ,T)∇θ

∫
A
πθ(at|st)da

]
= 0. (19)

The last equality follows from the fact that the integral
evaluates to 1, and its gradient is 0.

The main result of this paper presents guarantees on
the convergence of Algorithm AC-PBA using the theory
of ‘two time-scale stochastic analysis’ [32]. Assume that:

• A1: The value function Vω(s) belongs to a linear
family. That is, Vω =Φω, where Φ ∈ R|S|×k,k < S is
a known full-rank feature matrix, and ω ∈Ω⊆Rk.

• A2: For the set of policies {πθ,θ ∈ Θ ⊆ Rd}, there
exists a constant CΘ such that ‖∇θ logπθ‖2 ≤ CΘ.

• A3: Learning rates of the actor and critic satisfy:∑
tα

θ
t =

∑
tα

ω
t =∞,

∑
t[(αθt)2 + (αωt)2]<∞, lim

t→∞
αθt
αωt

= 0.

For any probability measure µ on a finite set M , the
`2-norm of f with respect to µ is given by ‖ f ‖µ :=[∫

M | f (x)|2dµ(x)
] 1

2 . Theorem 1 gives a bound on the
error introduced as a result of approximating the value
function VM′ with Vω

M′ as in assumption A1. This error
term is small if the family Ω is rich. In fact, if the critic
is updated in batches, a tighter bound can be achieved,
as shown in Proposition 1 of [33]. Extending the result
to the case of online updates is a subject of future work.

Theorem 1: Let E (θ) :=
∥∥∥Vω(θ)

M′ (s)−Vπθ
M′ (s)

∥∥∥
ρπθ

. Then,
for any limit point (θ∗,ω∗) := lim

Tmax→∞
(θTmax ,ωTmax)} of

Algorithm AC-PBA, ‖∇θJM(θ∗)‖2 ≤ CE (θ∗).
Proof: We consider only look-ahead PBA. The

proof for look-back PBA follows similarly. Define F :=
F(s,a, s′,a′). From assumption A3, the actor is updated

at a slower rate than the critic. This allows us to fix the
actor to study the asymptotic behavior of the critic [34].
The update dynamics of the critic can be represented by:

ω̇= Eρπθ
[
δω∇ωVω

M′ (s)
]
, (20)

where δω = r(s,a)+γφ(s′,a′)−φ(s,a)+γVω(s′)−Vω(s) if
look-ahead PBA is applied. When the critic is approx-
imated by a linear function (assumption A1), ω will
converge to ω(θ), an asymptotically stable equilibrium
of Equation (20). The update of the actor is then:

θ̇ = Eρπθ
[∇θ logπθ(a|s)

(
r(s,a)+F +γVω(θ)

M′ (s′)+φ(s,a)
)]

.
(21)

Let Θs denote the set of asymptotic stable equilibria in
Equation (21). Any θ ∈Θs will satisfy θ̇ = 0 in Equation
(21). Then, {(θt,ωt)}t>0 will converge to {(θ,ω(θ)) : θ ∈Θs}.

Now, consider the evaluation of πθ, θ ∈ Θs, in the
original MDP M. We obtain the following equations:

∇θJM(θ)= Eρπθ
[∇θ logπθ(a|s)Qπθ

M (s,a)
]

= Eρπθ
[∇θ logπθ(a|s)

(
Qπθ

M′ (s,a)+φ(s,a)
)]

= Eρπθ
[∇θ logπθ(a|s)

(
r(s,a)+F +γVπθ

M′ (s′)+φ(s,a)
)]

. (22)

Subtracting Equation (21) from Equation (22), and apply-
ing the Cauchy-Schwarz inequality to the result yields:

∇θJM(θ)= γEρπθ
[∇θ logπθ(a|s)

(
Vω(θ)

M′ (s′)−Vπθ
M′ (s′)

)]
∴ ‖∇θJM(θ)‖2 ≤ γ‖∇θ logπθ(a|s)‖ρπθ

∥∥∥Vω(θ)
M′ (s)−Vπθ

M′ (s)
∥∥∥
ρπθ

.

The result follows by applying assumption A2.
Remark 2: Look-back PBA could result in better per-

formance compared to look-ahead PBA since look-back
PBA does not involve estimating a future action.

VI. EXPERIMENTS

Our experiments seek to compare the performance
of an actor-critic architecture augmented with PBA
and with PBRS with the ‘vanilla’ advantage actor-critic
(A2C). We consider two setups. The first is a Puddle-
Jump Gridworld [35], where the state and action spaces
are discrete. The second environment we study is a
continuous state and action space mountain car [26].

In each experiment, we compare the rewards received
by the agent when it uses the following schemes: i):
‘vanilla’ (A2C); ii): A2C augmented with PBRS; iii): A2C
with look-ahead PBA; iv): A2C with look-back PBA.

A. Puddle-Jump Gridworld

Figure 1 depicts the Puddle-jump gridworld environ-
ment as a 10x10 grid. The state space is s = (x, y)
denoting the position of the agent in the grid, where
x, y ∈ {0,1, . . . ,9}. The goal of the agent is to navigate
from the start state S = (0,0) to the goal G = (9,9).
At each step, the agent can choose from actions in the
set A = {up,down, le f t, right, jump}. There is a puddle
along row 2 which the agent should jump over. Further,
the states (9,8) and (8,9) (blue squares in Figure 1) are

S

G

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Fig. 1: Schematic of the puddle-jump gridworld. The state
of the agent is its position (x, y). The shaded row (row 2)
represents the puddle the agent should jump over. The
two blue grids denote states that are indistinguishable
to the agent. The agent can choose an action from the
set {up,down, le f t, right, jump} at each step.

indistinguishable to the agent. As a result, any optimal
policy for the agent is a stochastic policy.

If the jump action is chosen in rows 3 or 1, the agent
will land on the other side of the puddle with probability
p j, and remain in the same state otherwise. This action
chosen in other rows will keep the agent in its current
state. Any action that will move the agent off the grid will
keep its state unchanged. The agent receives a reward
of −0.05 for each action, and +1000 for reaching G.

When using PBRS, we set φPBRS(s) := u0 for states in
rows 0 and 1, and φPBRS(s) := u1 for all other states.
We need u1 > u0 to encourage the agent to jump over
the puddle. Unlike in PBRS, PBA can provide the agent
with more information about the actions it can take. We
set φPBA(s,a) to a ‘large’ value if action a at state s
results in the agent moving closer to the goal according
to the `1 norm,

(|G−x|+|G−y|). We additionally stipulate
that 1

|A|
∑

a∈Aφ
PBA(s,a) = φPBRS(s). That is, the state

potential of PBA is the same as the state potential of
PBRS under a uniform distribution over the actions. This
is to ensure a fair comparison between PBRS and PBA.

In our experiment, we set the discount factor γ = 1.
Since the dimensions of the state and action spaces is
not large, we do not use a function approximator for the
policy π. A parameter θs,a is associated to each state-
action pair, and the policy is computed as: πθ(a|s) =

exp(θs,a)∑
a∈A exp(θs,a) . We fix αω = 0.001, and αθ = 0.2 for all cases.
From Figure 2, we observe that the look-back PBA

scheme performs the best, in that the agent converges
to the goal in five times fewer episodes (25 vs. 125
episodes) than A2C without advice. When A2C is aug-
mented with PBRS, convergence to the goal is slightly
faster than without any reward shaping. When aug-
mented with look-ahead PBA, in the first few episodes,
the reward increases faster than in the case of A2C
augmented with PBRS. However, this slows down after
the early training stages and the policy converges to the
goal in about the same number of episodes as a policy
trained without advice. A reason for this could be that

Fig. 2: Average rewards in puddle-jump gridworld when
jump success probability p j = 0.2. The baseline is the
advantage actor-critic without advice.

Fig. 3: Average reward for the first 100 episodes with
respect to the jump success probability p j.

during later stages of training, a look-ahead PBA scheme
might advise an agent with ‘bad’ actions, leading to bad
policies, thereby impeding the progress of learning. For
example, an action at might be a good choice at state st,
but the look-ahead PBA scheme might indicate that at
is bad, due to a poor estimate of the future action at+1.

A smaller jump success probability p j is an indication
that it is more difficult for the agent to reach the goal
state G. Figure 3 shows that look-back PBA results in
the highest reward for a more difficult task (lower p j),
when compared with the other reward shaping schemes.

B. Continuous Mountain Car

In the mountain car (MC) environment, an under
powered car in a valley has to drive up a steep hill
to reach the goal. In order to achieve this, the car
should learn how to accumulate momentum. A schematic
for this environment is shown in Figure 4. This MC
environment has continuous state and action spaces. The
state s = (p,v) denotes position p ∈ [−1.2,0.6] and velocity
v ∈ [−0.07,0.07]. The action a ∈ [−1,+1]. The continuous
action space makes it difficult to use classic value-based
methods, such as Q-learning and Sarsa-learning. The
reward provided by the environment depends on the
action and whether the car reaches the goal. Specifically,
once the car reaches the goal it receives +100, and before

Fig. 4: Schematic of the mountain-car environment. The
agent’s state is represented by its position pt (along the
x−coordinate) and velocity vt. The action at is a force
applied to the car. The goal is marked as a flag.

that, the reward at time t is −|at|2. This reward structure
therefore discourages the waste of energy. This acts as a
barrier for learning, because there appears to be a sub-
optimal solution where the agent remains at the bottom
of the valley. Moreover, the reward for reaching the goal
is significantly delayed, which makes it difficult for the
conventional actor-critic algorithm to learn a good policy.

One choice of a potential function while using PBRS in
this environment is φPBRS(st) := pt +2, where the offset
is so that the potential is positive. An interpretation
of this scheme is: ‘state value is larger when the car
is horizontally closer to the goal.’ The PBA scheme we
use for this environment encourages the accumulation
of momentum by the car– the direction of the action
is encouraged to be the same as the current direction
of the car’s velocity. In the meanwhile, we discourage
inaction. Mathematically, the potential advice function
has a larger value if at 6= 0. We let φPBA(st,at) = 1, if
atvt > 0, and φPBA(st,at)= 0, otherwise.

In our experiments, we set γ= 0.99. To deal with the
continuous state space, we use a neural network (NN) as
a function approximator. The policy distribution πθ(a|s)
is approximated by a normal distribution, the mean and
variance of which are the outputs of the NN. The value
function is also represented by an NN. We set αθ = 1×
10−5 and αω = 5.6×10−4, and use Adam [36] to update
the NN parameters. The results we report are averaged
over 10 different environment seeds.

No advice PBRS Look-ahead PBA Look-back PBA

10% 20% 40% 100%

TABLE I: Percentage of trials where policy converges
correctly in continuous mountain car problem.

Our experiments indicate that the policy makes the
agent converge to one of two points: the goal, or remain
stationary at the bottom of the valley. The percentage
of solutions that converge to the goal is shown in Table
I. From Figure 5 and Table I, when learning with the
vanilla A2C, the agent is able to reach the goal only in
10% of the trials (out of 10 trials), and was stuck at
the sub-optimal solution for the remaining trials. With

Fig. 5: Average rewards for continuous mountain car
problem (averaged over 10 different environment random
seeds). The baseline is the A2C without advice.

PBRS, the agent could converge correctly in only 20% of
the trials. This is because the agent might have to take
an action that moves it away from the goal in order to
accumulate momentum. However, the potential function
φPBRS(·) discourages such actions. In comparison, the
average reward when using look-ahead PBA is slightly
higher, but the agent is able to reach the goal in only
40% of the trials. Similar to the gridworld setup, look-
back PBA performs the best, where the agent is able to
reach the goal in 100% of the trials.

VII. CONCLUSION

This paper presented a framework for augmenting the
reward received by an RL agent with PBRS and with
PBA. Different from prior work, we demonstrated that
our approach can be used in environments with contin-
uous states and actions, and when the optimal policy is
stochastic. We presented guarantees on the convergence
of an algorithm that augments an A2C architecture with
these schemes. Our experiments indicated that these
schemes allowed the agent to achieve higher average
rewards, and learn an optimal policy faster. Future work
will focus on establishing tighter bounds for Theorem 1,
and extending our approach to the average reward case.

REFERENCES

[1] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback
control,” Machine Learning, vol. 84, pp. 137–169, 2011.

[2] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in International Conference on Learning and Represen-
tations, 2016.

[3] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, 2015.

[4] D. Silver et al., “Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, 2016.

[5] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using
reinforcement learning and shaping.” in International Conference
on Machine Learning, 1998.

[6] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under re-
ward transformations: Theory and application to reward shaping,”
in International Conference on Machine Learning, 1999.

[7] E. Wiewiora, G. W. Cottrell, and C. Elkan, “Principled methods
for advising reinforcement learning agents,” in International Con-
ference on Machine Learning, 2003, pp. 792–799.

[8] S. M. Devlin and D. Kudenko, “Dynamic potential-based reward
shaping.” in Autonomous Agents and Multiagent Systems, 2012,
pp. 433–440.

[9] A. L. Thomaz and C. Breazeal, “Reinforcement learning with
human teachers: Evidence of feedback and guidance with impli-
cations for learning performance,” in AAAI, 2006, pp. 1000–1005.

[10] W. B. Knox and P. Stone, “Combining manual feedback with
subsequent MDP reward signals for reinforcement learning,” in
Autonomous Agents and Multiagent Systems, 2010, pp. 5–12.

[11] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-
driven exploration by self-supervised prediction,” in International
Conference on Machine Learning, 2017.

[12] H. Tang et al., “# Exploration: A study of count-based exploration
for deep reinforcement learning,” in Advances in Neural Informa-
tion Processing Systems, 2017.

[13] R. J. Williams and J. Peng, “Function optimization using con-
nectionist reinforcement learning algorithms,” Connection Science,
vol. 3, no. 3, pp. 241–268, 1991.

[14] V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in International Conference on Machine Learning, 2016.

[15] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, 2013, pp. 1–9.

[16] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[17] E. Wiewiora, “Potential-based shaping and Q-value initialization
are equivalent,” Journal of Artificial Intelligence Research, pp.
205–208, 2003.

[18] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowé, “Expressing
arbitrary reward functions as potential-based advice.” in AAAI,
2015, pp. 2652–2658.

[19] M. Li, T. Brys, and D. Kudenko, “Introspective reinforcement
learning and learning from demonstration,” in Autonomous Agents
and MultiAgent Systems, 2018, pp. 1992–1994.

[20] J. Asmuth, M. L. Littman, and R. Zinkov, “Potential-based shaping
in model-based RL,” in AAAI, 2008, pp. 604–609.

[21] M. Grześ, “Reward shaping in episodic reinforcement learning,” in
Autonomous Agents and MultiAgent Systems, 2017, pp. 565–573.

[22] A. Eck, L.-K. Soh, S. Devlin, and D. Kudenko, “Potential-based
reward shaping for finite horizon online POMDP planning,” Au-
tonomous Agents and Multi-Agent Systems, vol. 30, no. 3, 2016.

[23] S. J. Bradtke, “RL applied to linear quadratic regulation,” in
Advances in Neural Information Processing Systems, 1993.

[24] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence
of policy gradient methods for the linear quadratic regulator,” in
International Conference on Machine Learning, 2018.

[25] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko,
“Reinforcement learning for control: Performance, stability, and
deep approximators,” Annual Reviews in Control, 2018.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai Gym,” arXiv:1606.01540, 2016.

[27] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, 2014.

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Intro-
duction. MIT press, 2018.

[29] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
Learning with Deep Energy-Based Policies,” in International Con-
ference on Machine Learning, 2017, pp. 1352–1361.

[30] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in Advances in Neural Information Processing
Systems, 2000, pp. 1057–1063.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” arXiv:1801.01290, 2018.

[32] V. Borkar and S. Meyn, “The ODE method for convergence
of stochastic approximation and reinforcement learning,” SIAM
Journal on Control and Optimization, vol. 38, no. 2, 2000.

[33] Z. Yang, K. Zhang, M. Hong, and T. Başar, “A finite sample
analysis of the actor-critic algorithm,” in IEEE Conference on
Decision and Control (CDC), 2018, pp. 2759–2764.

[34] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Nat-
ural actor–critic algorithms,” Automatica, vol. 45, no. 11, 2009.

[35] O. Marom and B. Rosman, “Belief reward shaping in reinforce-
ment learning,” in AAAI, 2018, pp. 3762–3769.

[36] D. P. Kingma and J. Ba., “Adam: A method for stochastic opti-
mization,” arXiv:1412.6980, 2014.

	I Introduction
	II Related Work
	III Preliminaries
	III-A Reinforcement Learning
	III-B Value-based and Policy-based Methods
	III-C PBRS and PBA

	IV PBRS for Stochastic Policy Learning
	V PBA for Stochastic Policy Learning
	V-A Stochastic policy learning with PBA
	V-B Imparting PBA in policy gradient

	VI Experiments
	VI-A Puddle-Jump Gridworld
	VI-B Continuous Mountain Car

	VII Conclusion
	References

